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Abstract

Here, we introduce a new molecule optimization method, MolFinder, based on

an efficient global optimization algorithm, the conformational space annealing algo-

rithm, and the SMILES representation. MolFinder finds diverse molecules with desired

properties efficiently without any training and a large molecular database. Compared

with recently proposed reinforcement-learning-based molecule optimization algorithms,

MolFinder consistently outperforms in terms of both the optimization of a given target

property and the generation of a set of diverse and novel molecules. The efficiency

of MolFinder demonstrates that combinatorial optimization using the SMILES rep-

resentation is a promising approach for molecule optimization, which has not been

well investigated despite its simplicity. We believe that our results shed light on new

possibilities for advances in molecule optimization methods.
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Introduction

An inverse molecular design approach, finding valuable molecules with desired properties

for a given application, is drawing attention from chemists recently. Conventional molecular

design approaches find novel molecules by perturbing known molecules using experienced

chemists’ intuition. For validation, the designed molecules should be synthesized and tested

through experiments. This whole procedure requires considerable time and resources to

complete, which retards the development of novel valuable molecules. On the other hand,

the inverse molecular design determines the desired properties or properties first and then

searches/generates candidate molecules that are assumed to have desired properties.1,2 With

the help of the recent development of artificial intelligence (AI)/machine learning (ML), the

inverse molecular design is expected to accelerate the discovery of novel molecules in various

fields including the pharmaceutical industry.3

Various inverse molecular design methods using AI have been actively developed re-

cently.4 The most commonly used strategy for molecular design is to use the SMILES repre-

sentation, which is a character-based linear notation in which the structure of the molecule

is considered.5 In other words, the SMILES string contains information about the structure

and stereochemistry of a molecule and the presence of electric charges. The following are a

few examples of ML-based molecule generation models. First, various methods have been

developed based on the variational autoencoder (VAE) algorithm.6–8 VAE-based approaches

convert input SMILES strings or molecular graphs into multi-dimensional vectors on a latent

space based on their similarities and physicochemical properties. It is also shown that molec-

ular transformations are possible by vector transformation on the numerical chemical space.

Second, many methods that generate novel SMILES strings have been suggested based on

the recurrent neural network (RNN) models.9,10 In these methods, RNN-models are trained

to learn the syntax of the SMILES representation from a large set of molecule database.

After initial training, the models are used to generate novel SMILES strings. Generally,

RNN-based methods have two inherent limitations. First, not all generated SMILES strings
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are valid; some generated strings violate the syntax of SMILES. Second, generated SMILES

strings may overlap with those in the training set.

Efforts are being made to create the models that generate molecules with desired prop-

erties using the idea of reinforcement-learning (RL).10–14 RL is an area of ML that aims

to obtain the best of the selectable behaviors based on the current environment. As an

example, the ReLeaSE algorithm11 performed RL with a SMILES generating model using

stacked-RNN cells15 trained with known chemical databases. ReLeaSE was shown to gener-

ate molecules with desired physicochemical properties and was used to design possible strong

binders of the JAK2 proteins. Another RL-based molecular design model is Molecule DQN

(MolDQN),12 which is based on the Deep Q-Networks (DQN) algorithm.16 MolDQN uses

predefined molecular variation operations to modify existing molecules into new molecules

suitable for their purposes. Together with the VAE approach, RL-VAE models that improve

the fitness of molecules produced by VAE via RL have been suggested.17,18 More comprehen-

sive reviews of various ML-based molecular generation and optimization methods are given

in detail in recent papers.4,19–21

The above ML-based models must be trained using existing molecular libraries such as

ZINC,22 ChEMBL,23 and PubChem.24 One potential limitation of ML-based approaches is

that the results of these models heavily depend on training data. In other words, these models

may be difficult to generate novel molecules that are highly dissimilar to the molecules seen

during training. For example, in the case of the VAE model, the latent multi-dimensional

space is constructed based on the similarities between input molecules, which guarantees

good interpolation between known molecules. However, it is still not clear whether extrap-

olation on the latent space will yield valid molecules. In summary, ML-based models suffer

from strong training data dependence, which may bias the quality and quantity of generated

molecules.

In addition to recent ML-based approaches, various genetic algorithm (GA)-based molec-

ular property optimization algorithms have been developed.25–33 The main advantage of GA-
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based algorithms is that they do not require a large amount of molecule data relevant to a

given optimization task because they search novel molecules in a combinatorial and stochas-

tic way. Also, they do not need to train a molecule generator, which takes considerable

computational time and resources. Most existing GA-based molecular optimization algo-

rithms are based on the graph representation of a molecule. In recent studies, they showed

competitive, sometimes better, performance compared to ML-based methods in generating

novel molecules with desired properties.25,26,28,29 A GA-based method using the graph rep-

resentation requires careful design of crossover and/or mutation operations of graphs, which

may bias the direction and extension of chemical space search. In addition, the design of any

arbitrary operation may be limited because generally it is tightly coupled with the molecular

manipulation functionality of underlying cheminformatics libraries, such as RDKit.34 Alter-

native to graph-based approaches, Yoshikawa et al. proposed a GA method by converting

a SMILES string into a 200-dimensional integer array based on a certain grammar.30 How-

ever, interestingly, performing GA using the SMILES representation itself has not been well

investigated despite its simplicity and computational efficiency.31,33 The approach has been

considered less efficient than the graph-based approaches.28,29,32,33

In this study, we propose the MolFinder method, which is a new molecular design algo-

rithm using the conformational space annealing (CSA) algorithm,35 a class of an evolutionary

algorithm. Unlike most existing graph-based GA methods, MolFinder performs a highly ef-

ficient global optimization of molecular properties using the SMILES representation. This

contradicts the preconception of the field that using the SMILES representation with an evo-

lutionary algorithm is relatively inefficient.26,28,29,31,33 For the global optimization of molec-

ular properties, MolFinder employs the CSA algorithm, which has been successfully applied

to many global optimization problems in various disciplines.35–39 Compared to conventional

GA, the CSA algorithm has sophisticated selection procedures to control the diversity of

populations/solutions during sampling. By considering the diversity of sampled molecules,

MolFinder finds novel molecules with better properties than those generated by ML-based
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methods. Additionally, it is demonstrated that MolFinder successfully explores a wider range

of chemical space than the other ML-based methods tested here.

Methods

Global property optimization using conformational space annealing

The goal of this study is to develop an efficient algorithm that performs global optimization

of molecular properties on chemical space. We call our method MolFinder. In this study,

the CSA algorithm, a highly efficient global optimization algorithm, was utilized for the

global search on chemical space.35,37,39–41 CSA combines the strengths of GA, simulated

annealing,42 and Monte-Carlo minimization.43 It performs an extensive search during the

initial stage of search and intensive optimization near many different local minima during

the later stage of the search by controlling distance constraints between candidate solutions.

The detailed description of the general CSA algorithm and its efficiency are discussed in

detail elsewhere.36

MolFinder performs a global search on chemical space using the SMILES representation.

The workflow of MolFinder is illustrated in Figure S1. During the search, MolFinder uses a

set of molecules called a bank, and its size, Nbank, is kept constant during the search. In this

study, Nbank is set to 1000. MolFinder starts with a predefined number of random molecules.

The average distance between all pairs of molecules in the first bank is calculated, Davg. The

half of Davg is set as an initial distance cutoff, Dcut = Davg/2, which is used to keep the

diversity of the bank. A distance between a pair of molecules is defined as 1 − S(mi,mj),

where S(mi,mj) is the similarity between the two molecules, mi and mj. In this study, a

similarity between the two molecules is calculated by using the Tanimoto coefficient of their

RDKit fingerprint vectors.34

Among Nbank molecules, a subset of best molecules in terms of a given objective function

with a size of Nseed is selected as seed molecules for generating new molecules. In this study,

5



we set Nseed = 600. Afterward, one molecule is randomly selected from this seed set, and

the other from the entire bank. New molecules, child solutions, are generated from this pair

through cross-over and mutation operations (Figure 1). From a single seed molecule, 40

molecules are generated by crossover. Mutation operations consist of addition, deletion, and

substitution of an atom, and 20 molecules are generated by each operation, respectively. In

summary, a total of 100 molecules are generated from one seed molecule.

The generated molecules are followed by local optimization. For local optimization,

atoms in a molecule are randomly substituted with other elements for a certain number of

times. If the objective value of a molecule becomes better, the change is accepted, otherwise

rejected. In this study, we tested the two versions of MolFinder, with and without this local

optimization step. Sampling with local optimization is called MolFinder-local in this paper.

The generated new molecules are used to update the bank by considering both the diver-

sity of molecules and their objective values. First, if a new molecule has a worse objective

value than the worst of the bank, it is discarded. If it is not discarded, the molecule is

compared with all molecules in the bank and its nearest neighbor is identified. Then, if the

distance between the molecule and its nearest neighbor is less than Dcut, the two molecules

are considered to be in the same basin on chemical space. Thus, only one molecule with

a better objective value remains. If the distance between the new molecules and its near-

est neighbor in the bank is larger than Dcut, the new molecule is considered to represent

a favorable novel region and it replaces the molecule with the worst objective value in the

bank. The Dcut value decreases by a power of 0.98 after every generation until it reaches

Davg/5. After Dcut becomes Dcut/5, it remains constant. By using this update procedure, the

CSA algorithm enables an extensive search on chemical space and prevents the premature

convergence of the search.
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Crossover operation

The key components of MolFinder are crossover and mutation operations using SMILES

strings to generate novel molecules (Figure 1). Previously, it has been considered that

performing GA with SMILES is inefficient because the random crossover and the mutation

operations of SMILES strings mostly result in invalid SMILES strings.28,29 To alleviate this

invalid SMILES problem, we devised sophisticated crossover and mutation procedures to

increase the success rate of valid SMILES generation.

§ Crossover operator

CC(=O)NC1=CC=C(C=C1)O CC(C)CC1=CC=C(C=C1)C(C)C(=O)O

Ibuprofen

piece
piece

SlicingSlicing

CC(=O)NC1=CC=C(C=C1)C(C)C(=O)O

New SMILES

Acetaminophen

§ Mutation operator

CC(=O)NC1=CC=C(C=C1)O

Original molecule

CC(=O)NC1=CC=C(C=C1)CO

• Add

CC(=O)NC1=CC=C(C=C1)N

• Replace

CC(=O)NC1=CC=C(C=C1)O

• Delete

(A) (B)

Figure 1: The crossover (A) and mutation operations (B) using SMILES strings.

The pseudocode of the crossover operation is presented in Algorithm 1. A pair of SMILES

strings are truncated from both the left and the right to enhance the diversity of substruc-

tures. In other words, one string is truncated from the left and the other from the right. The

positions to be truncated are selected almost randomly for both strings by considering ring

structures. To generate more valid SMILES strings, truncation of a SMILES string in the

middle of a ring structure is avoided. The two truncated strings are concatenated and the

numbers of open and closing parentheses are counted. If they do not match, excess paren-

theses are removed or deficient parentheses are inserted at random positions. After fixing

imbalanced parentheses, the validity of the resulting string is checked. If the concatenated

string is not valid, the procedure is repeated until it results in a valid SMILES string. If a

valid SMILES is not found after 30 iterations, the pair is dismissed.
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Algorithm 1 Crossover operation

1: best SMILES → m1

2: random SMILES → m2

3: while mnew is invalid do
4: Select SMILES random positions ← m1, m2

5: Truncated from left SMILES → ml

6: Truncated from right SMILES → mr

7: mnew ← concatenate m1 and m2 Fix imbalanced parentheses of mnew

8: Check the validity of mnew

9: end while
10: Append mnew to the offspring list

Mutation operation

Mutation operations consist of the insertion, deletion, and substitution of atoms of a molecule.

For insertion and deletion operations, an atom is inserted or deleted at a random position of

a SMILES string. If the resulting string is not valid, the operation is repeated until a valid

molecule is generated up to 30 times. The pseudocode of the substitution operation is shown

in Algorithm 2. A random atom of a molecule is substituted with another atom considering

its neighboring environment, such as the number of valences. To consider the valence of an

atom properly, a SMILES string is converted to a Mol type instance of RDKit.

Algorithm 2 Substitution operation

1: Atom list = [B, C, N, O, F, P, S, Cl, Br, I]
2: Aromatic atom list = [C, N, P, O, S]
3: Convert a Mol-type instance of RDKit into a SMILES string
4: Randomly select an atom of a molecule
5: if Selected an atom is an aromatic atom then
6: Replace an atom from the aromatic atom list considering valence
7: else
8: Replace an atom from the atom list considering valence
9: end if

10: return Convert a SMILES string into a Mol-type instance of RDKit
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Dataset

In this study, initial molecules were randomly sampled from the ZINC15 database,22 which

consists of purchasable drug-like molecules. As of Nov. 2019, there were over 980 million

SMILES strings in ZINC15 and they were grouped as tranches based on molecular weight

and logP values. We randomly sampled 1/1000 of each tranche, resulting in 982,518 SMILES

strings. This subset was used as a seed set for both MolFinder and the training set for other

deep-learning-based generation models.

Comparison with reinforcement-learning-based methods

To assess the efficiency of MolFinder, we compared the objective values and the diversity of

generated molecules with two generative-model-based molecular property optimization ap-

proaches, ReLeaSE11 and MolDQN.12 ReLeaSE uses the reinforcement-learning approach16

and a stacked-RNN model15 to generate novel SMILES strings with desired properties. To

compare with MolFinder, we used the ReLeaSE code downloaded from its Github reposi-

tory.11 The initial training of a stacked-RNN machine to learn the syntax of SMILES was

performed with the training set, the random subset of ZINC15. A learning rate of 0.00005

was used. After initial training, reinforcement-learning was performed for 3000 steps to

optimize the machine to produce more molecules with desired properties.

MolDQN12 is a molecular property optimization approach based on the deep-Q-network

(DQN) reinforcement learning algorithm.16 With the MolDQN approach, a seed molecule is

modified by atom addition, bond addition/deletion operations to optimize target properties.

The advantage of MolDQN is that it generates valid molecules mostly because it generates a

new molecule by modifying a seed molecule with the predefined operations. We downloaded

the MolDQN code from its Github repository and reinforcement-learning was performed for

40,000 episodes. One episode means the completion of modifying a seed molecule. Similar

to ReLeaSE, MolDQN also requires the initial training of its generative model to learn the

syntax of SMILES. The generator of MolDQN was trained with the identical training set
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with ReLeaSE. MolDQN simulations were performed from the seed molecule provided in

their repository.

Implementation detail

MolFinder was implemented with Python version 3.7.6. To compute molecular similari-

ties and properties, RDKit version 2019.09.3.034 was used. MolDQN was performed with

Tensorflow version 1.1544 and ReLeaSE with PyTorch version 1.4.45

Results and discussion

Optimization of drug-likeness

To assess the efficiency of molecular property optimization approaches, we sampled molecules

by optimizing the following objective function, a modified drug-likeness score, SmQED:

SmQED(m) = wSQED(m) + (1− w)SSAS(m) (1)

, where SQED(m) is the original quantitative estimate of drug-likeness (QED) score46 of a

molecule m, SSAS(m) is the synthetic accessibility47 of m, and w is the weight of SQED. In

this study, we used w = 0.994. The QED score ranges from 0 to 1, and more drug-like

molecules have values closer to 1. The synthetic accessibility score spans from 0 to 10, and a

higher score indicates that a molecule is expected to be harder to synthesize.47 Thus a high

modified QED value, SmQED, indicates that a molecule has similar molecular properties to

known drugs and is easy to synthesize.

To assess the optimization efficiency of ReLeaSE and MolDQN, we generated 10,000

SMILES strings with each method using SmQED (eq. 1). The validity of the strings was

checked and only valid ones were kept for further analysis. All SMILES strings generated by

MolDQN were valid. However, after removing redundancy, only 4273 molecules remained.
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This shows that more than half of the generated molecules by MolDQN were redundant. Re-

LeaSE generated 9821 valid SMILES strings from 10000 trials. After removing redundancy,

only 1340 molecules remained. In other words, more than 80% of the generated molecules

by ReLeaSE were redundant suggesting that generative models may have limitations in sam-

pling diverse molecules. For a fair comparison, the top-1000 molecules in terms of SmQED

were selected from each generated set.

A comparison of the top-1000 molecules obtained with MolFinder and the other ap-

proaches demonstrates that MolFinder discovers better molecules than the other methods

(Table 1 and Figure 2). MolFinder-local achieved the highest mean SmQED of 1000 molecules,

0.9240. The molecule with the highest SmQED, 0.9326, was also obtained with MolFinder-

local. It is noticeable that the minimum SmQED values obtained with both MolFinder mod-

els, 0.921 and 0.920, are significantly higher than those of the ReLeaSE and MolDQN re-

sults, which are 0.847 and 0.868, respectively. These numbers indicate that even the worst

molecules generated by the MolFinder are comparable to those generated by the RL-based

methods. When the two versions of MolFinder methods are compared, it is identified that

MolFinder-local finds slightly better molecules than MolFinder.

Table 1: A comparison of modified drug-likeness optimization results by the MolFinder,
ReLeaSE and MolDQN methods.

ZINC MolFinder MolFinder-local ReLeaSE MolDQN
mean 0.7086 0.9237 0.9240 0.8473 0.8677
std 0.1248 0.0020 0.0027 0.0380 0.0240
min 0.3263 0.9209 0.9199 0.7570 0.8281
max 0.9224 0.9316 0.9326 0.9317 0.9235

Overall, the ReLeaSE results have the lowest mean and minimum SmQED values. However,

it found one molecule that has a higher SmQED value than the best of MolFinder, but lower

than that of MolFinder-local. This indicates that the molecules generated by ReLeaSE have

a wide distribution in terms of SmQED. Similarly, MolDQN generated a few molecules with

SmQED values higher than 0.9. However, the SmQED values of most molecules generated by
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MolDQN were distributed between 0.85 to 0.90, which were significantly lower than the

MolFinder and MolFinder-local results (Figure 2).

Figure 2: The boxplot of the modified drug-likeness scores of generated molecules by
MolFinder, MolFinder-local, ReLeaSE, and MolDQN (top). The histogram of QED (left
bottom) and SAS (right bottom) values of the generated molecules by MolFinder (orange),
ReLeaSE (green), and MolDQN (red), and those of the initial ZINC15 database (blue).

For further analysis, we compared the distributions of the original QED score and the

SA score independently (the bottom plots of Figure 2). The analysis shows that MolFinder

results have significantly higher original QED values than the other methods (left bottom

of Figure 2). All molecules generated by MolFinder had SQED values of higher than 0.92.

12



On the other hand, the results of the other methods have lower SQED values. Following

MolFinder, the most frequently observed SQED values of MolDQN and ReLeaSE results are

centered around 0.90. On average, MolDQN results have slightly higher SQED values than

the ReLeaSE results. All optimization results have higher SQED values than ZINC15 on

average.

In terms of synthetic accessibility, the ReLeaSE results have the lowest average SSAS

value meaning that they are relatively easier to synthesize, followed by the MolFinder and

MolDQN results (right bottom of Figure 2). It is noticeable that the MolDQN results have

significantly higher SSAS values than the initial molecules from ZINC15. This suggests that

MolDQN tends to optimize seed molecules by modifying them into complicated and harder

ones to synthesize (Figure S4). On the other hand, the reinforced ReLeaSE is inclined to

generate rather simpler molecules (Figure S5). In summary, although both ReLeaSE and

MolDQN are based on the reinforcement learning algorithms, they optimize molecules in the

opposite way: making molecules simpler and more complex. The SSAS values of MolFinder

results are distributed between those of the ReLeaSE and MolDQN results, which are also

improved than the ZINC15 set (Figure S6).

The top-12 molecules discovered by MolFinder are presented in Figure 3. It appears

that all molecules consist of relatively simple fragments and high SQED values. All top-12

molecules in Figure 3 have low SSAS values, less than 2.5, suggesting that they are readily

synthesizable. It is noticeable that, even though we optimized SmQED in this study, the

SQED values of the top-12 molecules are identical or comparable to the best reported values

obtained from the sole optimization of SQED.25 In conclusion, the above results indicate that

molecule optimization of SmQED using MolFinder successfully generated a set of molecules

with good drug-likeness and synthetic accessibility simultaneously. This clearly demonstrates

that MolFinder can help accelerate the drug discovery process by generating novel drug

candidates that are readily synthesizable.
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Figure 3: Top-12 molecules discovered by MolFinder. The modified drug-likeness scores
(TARGET, eq. 1) and their drug-likeness (QED) and synthetic accessibility score (SAS) are
presented.

Diversity of generated molecules

To assess the sampling efficiency of the tested approaches, pairwise similarities between the

generated molecules were investigated (Table 2). It is demonstrated that MolFinder and

MolFinder-local find more diverse sets of molecules than the other RL-based approaches.

This suggests that MolFinder performs a more extensive exploration of chemical space

than the others. The average pairwise similarities of molecules sampled by MolFinder and

MolFinder-local were 0.3106 and 0.3211, while those of ReLeaSE and MolDQN were 0.4330

and 0.4097, respectively. From the histogram of pairwise similarities, it is evident that most

pairs of molecules have similarity values between 0.1 and 0.4 (Figure S8). Although the

ReLeaSE results show a peak of around 0.2, which is similar to the MolFinder results, they

also include many pairs of molecules whose similarities are over 0.4. The MolDQN results

have a peak of around 0.38, which is significantly larger than those of the other methods.
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In other words, the molecules generated by the MolFinder methods are highly diverse while

those generated by ReLeaSE and MolDQN are much more similar to each other. This im-

plies that RL-based methods are likely to be biased and their results may be confined to a

certain region of chemical space possibly due to training data dependency.

Table 2: A comparison of pairwise similarities between generated molecules by the
MolFinder, ReLeaSE and MolDQN methods.

MolFinder MolFinder-local ReLeaSE MolDQN (default) MolDQN (ZINC)
mean 0.3106 0.3211 0.4330 0.4097 0.3693
std 0.0716 0.0560 0.1116 0.0782 0.0719

To identify the training/initial data dependency of the methods, the distributions of

generated molecules are displayed by using the t-SNE dimension reduction method.48 A

molecular similarity was calculated using the MACCS key.49 From the plot, it is clear that

MolFinder and MolFinder-local sampled different regions of chemical space compared to

the initial data from ZINC15. On the t-SNE plot, MolFinder results form several distinct

clusters that are widely spread over chemical space. On the other hand, molecules generated

by ReLeaSE are mostly clustered at the right top of the plot, which suggests that they are

similar to each other and the sampling of ReLeaSE may be biased. Also, molecules from

Zinc15 are highly populated at the right top region and they are largely overlapped with

the ReLeaSE results. MolDQN results overlap with the training data most. Molecules from

ZINC15 and MolDQN are mostly clustered around the center and the left-center region of

the plot. This indicates that molecules generated by MolDQN are highly similar to seed

molecules, which may limit the sampling efficiency of the method. In summary, MolFinder

and MolFinder-local explore wider regions of chemical space than the other methods.

Assessment of novelty of molecules

To further analyze the sampling efficiencies of the molecular optimization methods, the

uniqueness and novelty of molecules and their Bemis–Murcko scaffolds50 were investigated
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Figure 4: The t-SNE plot of the top-1000 molecules generated by MolFinder (yellow),
MolFinder-local (green), MolDQN (red), and ReLeaSE (purple). For comparison, ini-
tial/seed molecules from ZINC15 (blue) are illustrated together. The sizes of circles are
proportional to the molecules’ SmQED values. The best molecule generated by each method
is emphasized with black border lines.

(Table 3). Almost all molecules generated by MolFinder and MolFinder-local were novel,

absent in the input database. Only one molecule generated by MolFinder was found in the

input database and none by MolFinder-local. Thirty-three molecules generated by ReLeaSE
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were redundant. In terms of scaffolds, MolDQN found the most unique scaffolds, 880. How-

ever, as identified by higher SA scores in Figure 2, MolDQN results have relatively complex

chemical structures, such as many fused rings, which make them hard to synthesize and

less practical (Figure S4). The MolFinder and MolFinder-local methods generated 860 and

828 scaffolds, respectively, which are comparable to the MolDQN results. However, their

SSAS values are significantly lower than those of the MolDQN results (Figure 2). In other

words, most molecules discovered by MolFinder were drug-like and reasonably easy enough

to synthesize (Figure S6 and S7). It is noticeable that ReLeaSE generated only 213 unique

scaffolds, which are remarkably smaller than the other methods. Many molecules generated

by ReLeaSE were identified to have similar scaffolds and only peripheral groups were differ-

ent (Figure S5). This suggests that the reinforced generator of ReLeaSE may be biased to

yield only similar molecules, which limit the efficiency of RL-based models.

Table 3: A comparison of uniqueness and novelty of generated molecules and their scaffolds

Method Unique Novel (M) Scaffolds (N) Pscaffolds (N/M) Novel scaffold %
ZINC 1000 - 956 0.956 -

MolFinder 1000 1000 860 0.860 99.2
MolFinder-local 1000 1000 828 0.828 98.6

MolDQN 1000 997 880 0.883 96.1
ReLeaSE 967 967 213 0.220 92.0

Additionally, the percentages of novel scaffolds were investigated. If a scaffold was not

found in the initial dataset, it was considered novel. MolFinder results showed the highest

percentage of a novel scaffold, 99.2%. The percentages of novel scaffolds of the ReLeaSE and

MolDQN results, 96.1% and 92.0%, were lower than those of MolFinder and MolFinder-local.

This demonstrates that the MolFinder methods not only optimize a target property more

efficiently but also perform a wider exploration of chemical space than the other methods.
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Generating similar molecules to a reference

Designing novel molecules based on a specific scaffold or a core structure is a commonly used

approach for molecular design. Thus, generating molecules with desired properties while

preserving a specific scaffold has practical advantages. To benchmark this, we optimized the

following objective function used by Zhou et al.12 using MolFinder and MolDQN:

f(m) = wSsim(m;mref) + (1− w)SQED(m) (2)

where Ssim(m,mref) is the Tanimoto similarity between a molecule m and a reference molecule

mref calculated with the Morgan fingerprint and w is the weight coefficient of the similarity

term. Here, we set w = 0.8.
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Figure 5: Histograms of (a) objective values (eq. 2), (b) similarities to the reference molecules,
and (c) drug-likeness scores (QED) of molecules generated by MolFinder (orange) and
MolDQN (blue).

Independent molecular generation calculations were repeated ten times using MolFinder

and MolDQN based on the same reference molecule used to benchmark MolDQN (PubChem

CID: 174590).12 Each MolDQN simulation was performed for 40,000 episodes and only the

best 1000 non-redundant molecules in terms of the objective value (eq. 2) were analyzed.

Thus, 10,000 molecules were generated by MolFinder and MolDQN, respectively, and they

are analyzed here.

It is demonstrated that the molecules generated by MolFinder have remarkably higher
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objective values and similarities than those generated by MolDQN (Figure 5). The average

objective value of the MolFinder results was 0.716, while that of the MolDQN results was

0.628. All molecules generated by MolFinder have higher objective function values over 0.7,

while MolDQN results peaked around 0.6.

This difference is mainly attributed to the higher similarity to the reference molecule

(Ssim(m;mref) in eq. 2). The molecules generated by MolFinder had an average similarity of

0.784 to the reference. However, the molecules generated by MolDQN were less similar to the

reference with an average similarity of 0.669. This result shows that MolFinder results are

much similar to the reference as intended. In terms of the QED, the MolDQN results were

slightly better than the MolFinder results, 0.461 to 0.444, while the difference is much smaller

than that of the similarity. It is not clear whether such a small difference in QED, 0.017,

will lead to a significant difference in the final quality of generated molecules. In summary,

these results suggest that MolFinder outperforms MolDQN in generating molecules that have

desired properties and are similar to a given reference molecule, simultaneously.

Conclusion

In this study, we presented a new molecule optimization approach, MolFinder, based on

the efficient global optimization of molecular properties using the SMILES representation.

This method performs a global search on chemical space by using the crossover and mutation

operations of the SMILES representation, which makes the method computationally efficient

and straightforward to implement. Our work indicates that applying evolutionary algorithms

based on the SMILES representation to molecular property optimization is promising, which

has been overlooked by the field despite its simplicity. We showed that MolFinder finds

better molecules than the ML-based molecular property optimization methods in terms of

a given objective function. In addition, it is also demonstrated that MolFinder samples a

more diverse set of molecules than the other tested methods.
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The key components of the efficiency of MolFinder are the following two. First, MolFinder

uses the sophisticated crossover and mutation operations of SMILES to increase the success

rate of the operations. Second, the diversity of the bank of molecules was kept during the

exploration of chemical space as much as possible, which is one of the key aspects of the CSA

algorithm. One common limitation of conventional GA is that all solutions become highly

similar to each other, meaning that the sampling is trapped in a local minimum or a set

of local minima. In many previous studies using CSA, it has been shown that keeping the

diversity of the bank high is critical in efficient search on multi-dimensional hyper-spaces.36–39

However, despite the efficiency of MolFinder, we cannot completely rule out the possibility

of any sampling bias caused by crossover and mutation operations.

The results presented in this paper clearly demonstrate that applying an evolutionary

algorithm with the SMILES representation can be an effective strategy for molecular opti-

mization, which is contrary to the conventional notion.26,28,29 Thus our results will facilitate

the development of new computational molecular design approaches based on the SMILES

representation, which is advantageous in terms of its interpretability, manipulation and shar-

ing data with other researches. In conclusion, we believe that MolFinder is an alternative

complementary approach to existing GA-based as well as ML-based methods and paves a

new path for the inverse design of molecules via property optimization.
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