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Accurate numerical calculations of porosities and related properties are of importance when analyzing metal-
organic frameworks (MOFs). We present porE, an open-source, general-purpose implementation to compute
such properties and discuss all results regarding their sensitivity to numerical parameters. Our code combines
the numerical efficiency of Fortran with a user-friendly Python interface. Two different approaches to
calculate porosities are implemented in porE, and their advantages and drawbacks are discussed. In addition
to this functionality, porE can calculate pore size distributions and offers the possibility to analyze pore
windows. The underlying approaches are outlined. Pore windows are discussed concerning their impact on
the analyzed porosities. Comparisons with experimental values aim for a clear differentiation between void
and accessible porosities, which we provide. This work highlights that the calculated quantities are sensitive
to the choice of numerical parameters and that a careful evaluation of convergence is essential.

I. INTRODUCTION

Metal-organic frameworks (MOFs) are a material class
aiming for different possible applications1, such as gas
absorbers2,3, catalysts4–6, optical sensors7,8, and post-
synthetic modification (PSM) of MOFs for modulating
reaction outcomes and biomedical applications9. The
class of amorphous MOFs (aMOFs) has possible appli-
cations as liquids or melt quenched glasses10. Recently,
it has been shown that the pore sizes in MOFs can be var-
ied by enforcing an external pressure on a given MOF11.
Many applications of MOFs are based on the porous na-
ture of these materials, as MOFs typically exhibit several
pores. These pores usually have different sizes. With
that, an accurate determination of the porosity and the
pore sizes is important12.

In general, the porosity Φ is defined as the empty vol-
ume Vempty within a given total volume Vtotal, e.g., the
unit cell of a MOF.

Φ =
Vempty

Vtotal
. (1)

While the total volume for crystal structures is always
well defined, the empty volume misses this general def-
inition. One major aim of this work is to define and
clearly separate two different empty volumes, namely the
void volume Vvoid and the accessible volume Vacc. The
void volume is the space that is not occupied by any
atom in the unit cell. This volume can easily be ana-
lyzed given the sizes of the atoms, e.g., their respective
van der Waals (vdW) radii13. With this volume, the
void porosity Φvoid can be obtained, which serves as a
first descriptor of a porous material. However, it has to
be considered that a void porosity does not necessarily
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reflect the volume/porosity which can be assumed by ad-
sorbed species. Such a porosity strictly depends on the
size of that species. With that, another volume occurs,
i.e., the accessible volume. Accordingly, the accessible
porosity Φacc can be defined. This porosity, in contrast
to Φvoid, depends on a probe radius rprobe which varies
for different species. One has to be careful when analyz-
ing the porosity in a material, as the porosity of interest
is usually Φacc. When reporting this quantity, one needs
to provide the respective probe radius, such as the vdW
radius of H (rprobe = 1.20 Å) or Xe (rprobe = 2.16 Å).

Within this work it will be shown that choosing differ-
ent probe radii significantly impacts the evaluated poros-
ity. A systematic analysis of the probe radius dependence
allows to evaluate the porosity for any adsorbed species,
i.e., any atom or molecule with an effective probe ra-
dius. Furthermore, additional details about the under-
lying MOF (i.e., pore sizes) are automatically obtained
when carrying out such a systematic study.

This manuscript is structured as follows: in the next
section, the theoretical background as well as detailed as-
pects of the implementation for the different approaches -
an overlapping spheres approach (OSA) and a grid point
approach (GPA) - are presented, including discussions
about the grid size dependence for the GPA as well as
the importance of the probe radius dependence for the
accessible porosity. Afterwards, an ansatz to calculate
the pore size distribution is outlined, following by an ap-
proach to determine pore windows. A comparison to ref-
erence values comes right before the conclusion.

II. THEORETICAL BACKGROUND

We developed the porE code to analyze the porosi-
ties and related properties numerically. While numeri-
cal demanding routines are written in Fortran, these
routines are available through a Python user-interface.
Thus, our porE code combines numerical efficiency with
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user-friendliness. The open-source porE code, under li-
cence Apache 2.0, is available at github, i.e., https:
//github.com/kaitrepte/porE, and can easily be in-
stalled through the Python pip package manager. For
calculations using porE, one only needs the unit cell
parameters and the coordinates of the atoms as input,
similar to alternative implementations14–18. Two dif-
ferent approaches are implemented, namely an overlap-
ping spheres approach (OSA) and a grid point approach
(GPA). While the OSA is very fast and gives a good ap-
proximation for the (void) porosity, the GPA is able to
distinguish between void and accessible properties and
can be tuned to any desired accuracy. Both approaches
are summarized below. Further, porE can calculate the
pore size distribution (PSD) and, based on PSD results,
allows for an evaluation of pore windows. These options
are described below as well.

For this study, the MOFs UiO-6619–21, UiO-6720–22,
DUT-8(Ni)open23–25, DUT-8(Ni)closed23, IRMOF-1026,
MOF-527, HKUST-128–30 and MOF-21031 are investi-
gated. For convenience, the two structures (open, closed)
of DUT-8(Ni) are abbreviated with DUT-8(Ni)o and
DUT-8(Ni)c. Further, MOF-210 is only analyzed with
the OSA, as its structure is currently to large to be prop-
erly analyzed with the GPA.

For illustration, pore centers determined using porE
are plotted as spheres within the periodic structures of
the investigated MOFs (see Fig. 1).

A. Overlapping sphere approach (OSA)

To evaluate the porosity within MOFs (or any porous
material), a hard sphere model can be used. In such a
model, the overlap of atomic spheres is evaluated and
consequently subtracted from the total volume of all
spheres/atoms. The volume which is left, Vvoid, can be
compared to the total volume of a unit cell, providing the
(void) porosity Φvoid as

Φvoid =
Vvoid
Vtotal

, (2)

with the void, total, occupied, atomic and overlap vol-
umes given by

Vvoid = Vtotal − Vocc (3)
Vtotal = a · (b× c) (4)
Vocc = Vatoms − Voverlap (5)

Vatoms =
∑
i

Vi,vdW (6)

Voverlap =
∑
i,j>i

Vij,overlap. (7)

Here, a, b and c are the unit cell vectors and Vi,vdW is
the volume of a sphere with a radius equal to the vdW
radius of atom i. The sum of the volumes of all atoms
Vatoms minus the overlap Voverlap between pairs of atoms

FIG. 1. Pores visualized as spheres for the test set of
MOFs. HKUST-1, UiO-66, and UiO-67 have three distinct
pores. MOF-5 has two characteristic pores, while DUT-8(Ni)o
and IRMOF-10 have one pore, which is repeated within the
periodic structure. The individual pictures are generated
with VESTA using the calculated pore centers as additional
species with an effective radius equal to the determined pore
size. The entire picture was generated using the Inkscape
program.

defines the occupied volume Vocc. The overlap volume
can be calculated analytically following the derivation in
the supplemental material. This is done if the sum of
the covalent radii is smaller than the distance between
atoms i and j, thus if rcovalenti + rcovalentj ≤ dij . This
simple approach gives reasonable results (see Tab. I, a
comparison to literature values is given in Tab. VI) at
essentially no computational cost.

As higher-order terms are neglected, only the two-
center overlap is calculated. However, the OSA recovers
the total overlap (three-order and higher terms) almost
entirely for the benzene molecule. The literature value32
of the occupied volume in benzene, treating only the C-C
overlap, is V ref

occ = 114.8 Å3. The proposed OSA deliv-
ers a value of V OSA

occ = 115.2 Å3. For comparison, the
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TABLE I. All volumes V (in Å3) for the determination of the
porosity Φ (in %) of all considered MOFs based on the simple
overlapping sphere approach (OSA).
MOF Vtotal Vatoms Voverlap Vocc Vvoid Φvoid

DUT-8(Ni)o 3190 1953 709 1244 1946 61
DUT-8(Ni)c 648 976 324 652 −4 −1
UiO-66 2308 1992 823 1169 1139 49
UiO-67 4972 2906 1308 1599 3374 68
IRMOF-10 10099 2549 1297 1252 8847 88
MOF-5 17305 6536 2592 3944 13362 77
HKUST-1 4546 2499 1062 1437 3109 68
MOF-210 144400 29385 14937 14449 129952 90

sum of the vdW spheres of all atoms is 166.9 Å3. The
molecular geometry is taken from the CCCBDB33 with
dC-C = 1.397 Å, in analogy to Gibson and Scheraga 32 .
Given this result, it can be assumed that the results for
the overlap should be accurate, even without the higher-
order terms.

The main advantage of the OSA is the access of rea-
sonable results with essentially no numerical effort. For
example, the calculation for MOF-210 (1854 atoms per
unit cell) takes about 1 s (see supplemental material).
The main disadvantage is that technically only the void
porosity is calculated and there is no information about
accessible terms. The approach presented in the next
section overcomes this shortcoming.

B. Grid point approach (GPA)

An alternative approach to calculate the porosity is
based on a numerical grid inside the unit cell. This pro-
cedures requires the explicit treatment of each grid point.
Any grid point is either close to an atom (inside its vdW
sphere) and can be considered occupied. If no such occu-
pation is found, the grid point is considered unoccupied.
In analogy to equation (2), the void porosity can be eval-
uated by the number of unoccupied points divided by the
total number of grid points

Φvoid =
Nunoccupied

Ntotal
. (8)

A suitable amount of grid points will provide accurate
results. Using this ansatz, one obtains an insight into
the void volume and thus the void porosity. This is not
equivalent to the accessible volume and porosity, which is
often given in the literature. Thus, one needs to be care-
ful when comparing, e.g., the values for DUT-8(Ni)closed
as explained in the supplemental material.

The accessible volume can be obtained by modifica-
tions to the presented ansatz. Grid points need to be
evaluated such that around each grid point, a sphere with
a probe radius rprobe is assumed. If this sphere has no
contact with the vdW surface of the MOF, all points in-
side this sphere are considered to be unoccupied as well

as accessible. With that, points can be occupied, unoccu-
pied and not accessible or unoccupied and accessible (see
Fig. 2). This ansatz gives rise to another quantity, the ac-
cessible porosity Φacc, which depends on the probe radius
Φacc = Φacc(rprobe). The relation Φacc(rprobe) ≤ Φvoid is
clearly fulfilled. The basic outline of the procedure is
given in Fig. 3.

FIG. 2. Visual explanation of different grid points in the
GPA. If a grid point is inside the vdW sphere of an atom, it
is occupied (red). Otherwise, it is unoccupied. Then, two dif-
ferent cases can occur. If the point is in a region which can be
accessed as described by a given probe radius rprobe (green),
it is unoccupied and accessible. Otherwise, it is unoccupied
and not accessible (blue). The difference in the blue and the
green points defines the difference between the void and the
accessible porosity.

The used grid is defined either as a total number of
grid points for each cell vectors or as an approximate
grid density per Å for all cell vectors. In either case,
the grid points are placed along the cell vectors. With
that, a unique grid for any system is generated. This
grid can either be uniform, i.e., grid density along all cell
vectors is the same, or non-uniform. In this work, we
only investigate uniform grids.

From a numerical point of view, the variable Ncheck_acc
is introduced (see Fig. 3). With this variable, there is
no need to loop over all accessible points to determine
which unoccupied points are also accessible. Only se-
lected points have to be evaluated (see Fig. 4). This
reduces the computational time while not changing the
results. The variable Ncheck_acc is defined as a subset
of points chosen from all immediately accessible points,
i.e., all points with a distance larger than rvdW + rprobe
for all atoms. This subset contains points which have a
distance within rvdW + δ, with δ = rprobe · (1.0 + h),
h = 1.0/n and n is the average grid point density
per Å. Accordingly, δ becomes smaller for larger grids.
All points k within this subset are within a distance of
rvdW+rprobe ≤ dk ≤ rvdW+δ. Visually, this subset forms
a layer of thickness δ− rprobe = rprobe ·h = rprobe/n over
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FIG. 3. Outline of the grid point approach (GPA) to eval-
uate void and accessible porosities (and related properties).
In loop 1, everything regarding the void porosity is collected
(occupied, unoccupied and all immediately accessible points).
During loop 2, it is determined which unoccupied points
are also accessible. This ensures that all remaining acces-
sible points are collected for the accessible porosity. Here,
δ = rprobe ·(1.0+h), with h = 1.0/n and n = (nx +ny +nz)/3
being the average grid point density per Å in all directions.
Thus, the denser the grid, the smaller δ.

the vdW surface of the MOF (indicated in gray in Fig. 4).
The obtained subset (Ncheck_acc) is used to identify

whether unoccupied points are also accessible. If the dis-
tance of any unoccupied point to any point in Ncheck_acc
is smaller than rprobe, the unoccupied point is accessi-
ble (green point in Fig. 4). Otherwise, the point is not
accessible (blue point in Fig. 4). Further modifications
to this approach can be introduced, where Ncheck_acc is
only obtained per atom. If an unoccupied point is close
to an atom i, only the points Ncheck_acc,i need to be eval-
uated. This is the basis of GPAsub-grid (see supplemental
material), which gives an additional speed-up.

a. Grid size dependence As the GPA depends on
the (uniform) distribution of grid points, it is important
to determine how dense the grid needs to be to provide
numerically reliable results. For all structures (except
MOF-210), the grid was successively increased and the
porosities (void and accessible) were calculated. A probe
radius of 1.20 Å was used for all MOFs. In addition,
a probe radius of 2.16 Å has been employed for DUT-
8(Ni)open, UiO-66 and UiO-67. This was done to see
whether the porosities converge differently using different
probe radii. The results for all MOFs are summarized in
the supplemental material. For UiO-66, the results are

FIG. 4. Visualization of Ncheck_acc. Circles for Atom 1 and
Atom 2 indicate their respective vdW radii rvdW. The subset
of points Ncheck_acc is chosen from all immediately accessible
points, i.e., all points with a distance larger than rvdW+rprobe
for all atoms. This subset (indicated in gray) contains points
which have a distance within rvdW + δ, where δ = rprobe ·
(1.0 + h), h = 1.0/n and n is the average grid point density
per Å. Accordingly, δ becomes smaller for larger grids. If the
distance of an unoccupied point to any Ncheck_acc is smaller
than rprobe, this point is also accessible (green). Otherwise,
it is not accessible (blue, color code adopted from Fig. 2).

given in Fig. 5.

FIG. 5. Grid size dependence for UiO-66. The void porosity
as well as the accessible porosity for two different probe radii
are shown. The x-axes denote the used grid. Maximum grid:
≈ 35/Å→ 1.42 ·108 points for rprobe = 1.20 Å and ≈ 29/Å→
8.17 · 107 points for rprobe = 2.16 Å.

Clearly, the void porosity converges very fast with an
increasing grid, and even a smaller number of grid points
provides good results. For the presented example, a grid
point density of 5 points/Å seems to be sufficient for
the void porosity. On the other hand, the accessible
porosity converges much slower, and more grid points
are needed to reach convergence. Using our example, at
least 10 points/Å are needed to sufficiently converge the
results. This is true for the other MOFs as well.
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Using different probe radii influences the convergence
as well. Furthermore, the accessible porosity for the dif-
ferent probe radii is very different. This will be discussed
in the next section in more detail.

b. Probe radius dependence After establishing that
a grid size of ca. 10 points/Å is sufficient for an accu-
rate description of the porosities, the next question is
how the accessible porosity changes for different probe
radii. This becomes especially important if the poros-
ity is analyzed with respect to different adsorbed species,
having different effective probe radii. Furthermore, it is
important to analyze this behavior regarding the com-
parison with literature values. Usually, the accessible
porosity is reported, while the probe radius is typically
disregarded. Here we show that the accessible porosity
strongly depends on the probe radius, which can be seen
for all MOFs in Fig. 6. Individual pictures and values for
each MOF are given in the supplemental material.

FIG. 6. Probe radius dependence for some MOFs. The ac-
cessible porosity is given on the y-axis, while the probe ra-
dius is shown on the x-axis. The used grid is approximately
10 points/Å for all MOFs besides UiO-66 (12.5 points/Å) and
DUT-8(Ni)closed (20 points/Å). The drops in the accessible
porosity correspond to different pore sizes/radii.

Given the results of Fig. 6, it is obvious that differ-
ent species have different accessible porosities, because of
their different probe radii. For example, compare the ef-
fective probe radii of Xe (2.16 Å), CH4 (≈ 2.29 Å), SO2−

4

(≈ 3.01 Å) and C2H6 (≈ 5.48 Å). These values were de-
termined by using the bond distances and the vdW radii
of the atoms. For C2H6, the distance between the most
distant H atoms was used. It should be noted that all
molecules are approximated as spheres having some effec-
tive probe radius, with the goal to make the comparison
and the used probe radii more intuitive to understand.
This shall not be interpreted as an accurate approxima-
tion for, e.g., adsorption investigations (clearly, C2H6 is
not spherical and shape effects become important), but
only as a way to analyze the probe radius dependence.

The accessible porosity for such species will be smaller
than for, e.g., H (rprobe = 1.20 Å) or He (rprobe =
1.40 Å). To illustrate this more quantitatively, the ac-
cessible porosities for different probe radii are listed
in Tab. II. The same analysis was done with PLA-

TON14 and Zeo++18,34–37 (see supplemental material).
The general trends for the probe radius dependence for
all investigated MOF are consistent between the used
codes. As an example, the accessible porosity for UiO-
66 behaves as follows: 59.1 % (rprobe = 0.00 Å) to
53.3 % (rprobe = 1.20 Å) to 50.8 % (rprobe = 1.40 Å) to
42.9 % (rprobe = 2.16 Å) to 39.9 % (rprobe = 2.29 Å) to
34.2 % (rprobe = 3.01 Å) to 0.0 % (rprobe = 5.48 Å). Fur-
thermore, it should be mentioned that the void porosity
is recovered for rprobe = 0.00 Å. In addition, the accessi-
ble porosity has to become zero for rprobe →∞.

TABLE II. Accessible porosities (in %) for some MOFs de-
pending on different probe radii (in Å). The used grid con-
tains ca. 10 points/Å, except for UiO-66 where the grid point
density is 12.5 points/Å. Values with an ∗ indicate that the
smallest pore window (see section IV) in the system is smaller
than the probe radius. Thus, the accessible volumes become
inaccessible.

rprobe 0.00 1.20 1.40 2.16 2.29 3.01 5.48
DUT-8(Ni)o 70.5 66.3 65.6 55.7 54.5 51.7 0.0∗

UiO-66 59.1 53.3 50.8 42.9∗ 39.9∗ 34.2∗ 0.0∗

UiO-67 72.4 68.8 67.8 64.1 63.2 56.4∗ 23.2∗

IRMOF-10 87.8 86.6 86.5 85.0 84.6 82.8 76.4
MOF-5 80.2 78.3 77.9 75.4 75.0 72.6 64.5∗

HKUST-1 71.4 69.1 68.9 65.1∗ 64.6∗ 57.3∗ 47.0∗

Besides its fundamental importance, a screening of dif-
ferent probe radii can be performed to analyze the pore
sizes of MOFs. One can calculate the porosities for dif-
ferent probe radii, and monitor the corresponding ac-
cessible porosity. Once the probe radius is larger than
a specific pore, all grid points within this pore become
inaccessible. Accordingly, the accessible porosity drops
significantly. This gives an intuitive way to characterize
the pore sizes (see Fig. 6). More information is given in
the supplemental material.

A more accurate approach to analyze the pore dimen-
sions/ pore size distribution is discussed in the next sec-
tion.

III. PORE SIZE DISTRIBUTION

An approach to determine the pore sizes based on
Monte-Carlo (MC) has been implemented. The strategy
is straightforward. At first, N random starting points i
within the unit cell are initialized, such that

ri = α · a + β · b + γ · c. (9)

Here, α, β, γ ∈ [0.1, 0.9] are random numbers and a, b
and c are the unit cell vectors. With that, the initial
point is somewhere inside the unit cell (maybe even inside
an atom). After this initialization, M Monte-Carlo steps
are carried out to move these initial points like

xi+1 = xi + (2 · δ − 1) · astep (10)
yi+1 = yi + (2 · ε− 1) · astep (11)
zi+1 = zi + (2 · ζ − 1) · astep (12)
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for the x, y and z components. The random numbers
δ, ε and ζ are all ∈ [0, 1] and astep is the step size. After
moving a point, the minimal distance to the vdW surface

di+1 = min
A

(√
∆x + ∆y + ∆z − rvdW,A

)
, (13)

with ∆x = (xi+1 − xA)2 (14)

∆y = (yi+1 − yA)2 (15)

∆z = (zi+1 − zA)2, (16)

is computed. Here, rvdW,A is the vdW radius of atom
A. Periodic boundary conditions are taken into account.
If di < di+1, the new point is reset (ri+1 = ri). On
the other hand, if di > di+1, the new point is kept
(ri = ri+1). Then, the next MC step is carried out. With
that, d is maximized. This procedure is done for all N
initial points until the maximum number of MC steps
M is reached. Several initial points ensure that different
pores inside MOFs can be analyzed. This gives informa-
tion about the pore size distribution (PSD), simply by
analyzing how many starting points end up in the same
pore (i.e., bigger pores have more, smaller pores have less
final points).

The step size astep is changed throughout the MC cy-
cle, and adapted to the structure under consideration.
As a starting point, the length of the largest cell vector
lmax = max(|a|, |b|, |c|) is taken. The initial step size is
defined as ainitstep = lmax/10. The step size is adjusted as
shown in Tab. III and Fig. 7.

TABLE III. Adaptive step size astep with respect to the MC
steps, given in intervals of fractions of the total number of
MC steps M .

Fraction of M astep/a
init
step

[0.00,0.25] 1.000
]0.25,0.50] 0.100
]0.50,0.75] 0.010
]0.75,1.00] 0.001

FIG. 7. Illustration of the adaptive step size used in the cal-
culation of the pore size distribution. The black dot is the
maximum, while the orange dot indicates the starting point.
Three different step sizes are shown for simplicity. Blue in-
dicates the largest step size, green refers to the next smaller
step size and red corresponds to the smallest step size. With
this scheme, accurate results are obtained using a small num-
ber of steps. This is not possible by only using one of these
step sizes.

This adaptive way of generating the step size has sev-
eral advantages over a fixed step size. Given that the

step size in the beginning of the MC cycle is fairly large,
the steps taken are large, too. With that, the points are
moved much more quickly towards a nearby maximum,
especially when the starting point is far away from any
maximum (e.g., if it was initialized inside an atom). By
reducing the step size over the course of the MC cycle,
the maximum can be approached more and more accu-
rately without the need for a very large number of MC
steps (which would be necessary for a fixed astep). For the
last steps, the position of the pore centers as well as the
pore diameters are determined very accurately (typically,
the final values are within 10−3-10−4 Å of the theoretical
maximum. This can be checked for structures where the
pore centers can be determined by symmetry arguments,
like in the UiOs). With this ansatz, only a small number
of MC steps (usually about 1000) is needed to properly
converge the results. For bigger unit cells one should
consider using larger M to avoid having insufficient MC
steps to reach a maximum. The PSDs for the considered
MOFs are summarized in Tab. IV and Fig. 8.

TABLE IV. Pore sizes distributions, using the pore diame-
ters dpore (in Å) and their distribution Γ (in %), evaluated
from the Monte-Carlo procedure described in the text. For
the distribution, every pore size with less than 5 % has been
disregarded. Accordingly,

∑
i Γi might not add up to 100 %.

For these values, N = 200 and M = 2000.
MOF d1pore Γ d2pore Γ d3pore Γ
DUT-8(Ni)o 10.18 95.5
UiO-66 7.19 23.0 7.71 26.5 8.44 50.5
UiO-67 9.63 16.0 10.42 17.5 12.75 66.5
IRMOF-10 18.02 99.5
MOF-5 11.82 28.0 15.10 72.0
HKUST-1 5.54 17.0 11.15 46.0 13.37 37.0

FIG. 8. Pore size distributions (PSDs) for selected MOFs.
Using N = 200 and M = 2000, see text for details.

IV. PORE WINDOWS

For an accurate determination of the porosity, it is im-
portant to not only analyze which regions in a MOF are
occupied, void or accessible, and how large the pores are.
It is also essential to analyze how large the windows be-
tween pores are. The pore window is the largest possi-



7

ble size a species can have to travel through the porous
framework. Thus, if the species would theoretically fit
into a pore, but cannot reach it due to a smaller pore
window, the pore itself has unoccupied volume, which is
however inaccessible. To analyze the pore window, the
following ansatz is chosen. First, the PSD (see last sec-
tion) is computed. With that, the centers of all pores
within a MOF are known. Then, one draws a line in be-
tween all pores (taking periodic boundary conditions into
account). The smallest distance of this line to the vdW
surface is characterizing a minimum radius rmin between
two pores. This approach is summarized in Fig. 9 using
UiO-66.

FIG. 9. Visualization of the pore window in UiO-66. The
pore window is characterized as the minimal distance to the
vdW surface on a line between pore centers. The picture was
generated using the VESTA and the Inkscape program.

An additional characteristic of a pore window is that
it lies in between two pores. With that, if the distance
between the coordinate of rmin and the pore centers,
min(dcenter), is very different from the respective pore
sizes dpore (i.e., |min(dcenter) − dpore|/dpore > 0.3), the
rmin does not represent a pore window. This corre-
sponds to a case where the position of rmin lies almost
completely within one pore, not between two pores. For
example, in UiO-68 one initially finds four rmin with
1.89 Å, 2.06 Å, 4.22 Å and 4.69 Å. However, the first two
are not pore windows and need to be excluded. Thus,
the actual pore windows in UiO-68 are 4.22 Å and 4.69 Å.

By employing this approach, the pore windows for all
MOF were evaluated. The smallest one is the limiting
pore window. If the probe radius is larger than this lim-
iting pore window, the porosity/volume that is evaluated
to be accessible becomes inaccessible. To justify this ap-
proach, the calculated pore windows are compared to
Zeo++18,34–37 and pywindow38. We find consistent
results, which are summarized in Tab. V.

There is only one pore window for DUT-8(Ni)o,
IRMOF-10 and MOF-5, but there are two different pore
windows in all UiOs and HKUST-1. The smaller one in
each MOF represent the limiting pore window.

The presented ansatz is computationally efficient, and
only requires an accurate PSD. The PSD only needs to
be computed once per structure. Thus, once the PSD is
known, the pore windows can be evaluated and analyzed

TABLE V. Pore windows rwindow (in Å) for the given MOFs,
including a comparison to Zeo++18,34–37 and pywindow38.

rwindow
MOF porE: r1 porE: r2 Zeo++ pywindow
DUT-8(Ni)o 4.05 4.60 4.80
UiO-66 1.84 2.06 2.06 2.09
UiO-67 2.59 2.91 3.02 3.05
IRMOF-10 5.88 6.09 5.67
MOF-5 3.91 3.96 3.97
HKUST-1 1.84 3.21 3.32 3.33

with respect to different used grids.

V. COMPARISON TO REFERENCES

To further validate the implementation in porE, several
reference calculations were performed. For this, we used
the codes RASPA216,17, poreblazer15, PLATON14

and Zeo++18,34–37.

TABLE VI. Comparison of calculated porosities between ref-
erence codes (RASPA216,17 (π), poreblazer15 (ρ), PLA-
TON14 (γ), Zeo++18,34–37 (ξ)), literature values and the
presented approaches (OSA (α) and GPA (ω)). For the GPA,
a differentiation between void and accessible porosities (using
rprobe = 1.20 Å and the largest possible grids) is done. All
porosities are given in %. The literature values (REF) are:
DUT-8(Ni)23, UiO-66 and UiO-6739, IRMOF-1026, MOF5
and MOF-21031, HKUST-112,40.

MOF π ρ γ ξ α ωvoid ωacc ΦREF

DUT-8(Ni)o 70 68 66 68 61 70 67 67
DUT-8(Ni)c 0 0 0 0 −1 27 1 0
UiO-66 52 51 53 55 49 59 54 53
UiO-67 72 72 69 70 68 72 69 68
IRMOF-10 91 90 86 87 88 88 87 87
MOF-5 81 81 76 79 77 80 79 79
HKUST-1 73 72 69 69 68 71 69 68
MOF-210 93 — — 88 90 — — 89

The RASPA2 code provides various features for the
calculation of porous materials. The porosity can be ac-
cessed using the calculation mode for the determination
of the helium void fraction. For that, the porous struc-
ture is probed with a helium atom at room tempera-
ture. The helium atom itself is described with a TraPPE
force field16,17,41, while the porous structure can be de-
scribed with various available force fields. For our ref-
erence calculations, we used the CrystalGenerator force
field16,17, 2000 Monte Carlo cycles and the unit cell of the
MOFs. The used unit cells contain the following amount
of atoms: DUT-8(Ni)open (132), DUT-8(Ni)closed (66),
UiO-66 (114), UiO-67 (174), HKUST-1 (156), IRMOF-
10 (166), MOF-5 (424) and MOF-210 (1854). All struc-
tures are available at https://github.com/kaitrepte/
porE. The PLATON code offers several analysis tech-
niques for crystal structures. It allows to analyze the
accessible porosity using a grid based approach, similar
to the GPA presented here. The poreblazer code can

https://github.com/kaitrepte/porE
https://github.com/kaitrepte/porE


8

be used to analyze the surface areas, the pore size distri-
bution and the porosity. In poreblazer, the porous sys-
tem is described using the universal force field (UFF42)
and the helium atoms are describe using a Lennard-Jones
force field description. The (helium) void volume is cal-
culated using a cublet procedure. In Zeo++, the acces-
sible volume is calculated by placing points randomly in
the unit cell. Afterwards, each point is analyzed regard-
ing its accessibility with respect to a given probe radius
using a Voronoi decomposition scheme18.

In general the void porosities using porE with the GPA
agree well with the results of the RASPA2 and the pore-
blazer code (see Tab. VI). The accessible porosities
applying porE with the GPA is in excellent agreement
with the results calculated with the PLATON and the
Zeo++ codes (see Tab. VI). Further, the comparison to
literature values shows that literature values are acces-
sible porosities, while the corresponding probe radius is
usually not provided. The void porosities do not accu-
rately reflect the porous nature of the MOFs.

This is especially true for systems with more com-
plex pores, where the probe radius plays a crucial role
(compare, e.g., UiO-66 and MOF-5). In MOFs with
large, open pores the void porosity will already reflect
the porous nature of the MOF fairly accurately. If a
pore would be entirely spherical, the calculated poros-
ity would be independent of the probe radius (unless
rprobe ≥ rpore). Using any probe smaller than the pore
radius would sample the entire pore, as there are no ar-
eas/volumes which are inaccessible. With that, the void
and accessible porosities coincide.

However, if the pores are different from the spherical
symmetry, e.g., having tetrahedral or octahedral symme-
tries as in the UiOs, the probe radius dependence be-
comes significant. In such cases, a sphere is not a suit-
able approximation for the pores (see Fig. 1 for UiO-66
and UiO-67). Quantitatively, this can be seen for UiO-66
(see table VI), where the void and the accessible porosi-
ties are quite different (59 % and 54 % for a probe radius
of 1.20 Å). These differences become more pronounced
the larger the probe radius becomes. This also explains
the rather small dependence of the accessible porosity
for rprobe = 1.20 Å in IRMOF-10, MOF-5 and HKUST-1
(see table II and the supplemental material), as spheres
are a fair approximation to describe the respective pores
for these three MOFs.

In summary, the accessible porosities from the GPA are
in excellent agreement with literature values, reassuring a
proper implementation. Considering its limitations, even
the OSA provides reasonable results.

VI. CONCLUSION

We present two approaches to analyze the poros-
ity in porous materials, in specific for metal-organic
frameworks (MOFs). Various MOFs (DUT-8(Ni)open,
DUT-8(Ni)closed, UiO-66, UiO-67, IRMOF-10, MOF-5,

HKUST-1, MOF-210) have been studied using these ap-
proaches. One approach is based on overlapping spheres
(OSA) and their corresponding volumes, from which the
void porosity is calculated. This approach is computa-
tionally very efficient. The other approach (GPA) uses
a grid within the unit cell. With this approach, a clear
differentiation between accessible and void porosities can
be made. It was shown that it is essential to converge
the results with respect to the used grid. Further, the
crucial importance of a clear differentiation between ac-
cessible and void porosity for the correct description of
porosities in MOFs was demonstrated. For the accessible
porosity, it was shown that a correct treatment of the
probe radius is essential for reliable results. Thus, this
dependence must be considered in any case. In addition,
the pore size distribution and the pore windows are ana-
lyzed for all MOFs. This is another crucial aspect of an
accurate determination of the porosities.

A comparison to reference calculations and literature
values confirms that both approaches work as intended,
and that the GPA gives very accurate results.
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