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Abstract. Artificial intelligence is driving one of the most important revolutions
in organic chemistry. Multiple platforms, including tools for reaction prediction and
synthesis planning based on machine learning, successfully became part of the organic
chemists’ daily laboratory, assisting in domain-specific synthetic problems. Unlike
reaction prediction and retrosynthetic models, the prediction of reaction yields has
received less attention in spite of the enormous potential of accurately predicting
reaction conversion rates. Reaction yields models, describing the percentage of
the reactants converted to the desired products, could guide chemists and help
them select high-yielding reactions and score synthesis routes, reducing the number
of attempts. So far, yield predictions have been predominantly performed for
high-throughput experiments using a categorical (one-hot) encoding of reactants,
concatenated molecular fingerprints, or computed chemical descriptors. Here, we
extend the application of natural language processing architectures to predict reaction
properties given a text-based representation of the reaction, using an encoder
transformer model combined with a regression layer. We demonstrate outstanding
prediction performance on two high-throughput experiment reactions sets. An analysis
of the yields reported in the open-source USPTO data set shows that their distribution
di↵ers depending on the mass scale, limiting the dataset applicability in reaction yields
predictions.

1. Introduction

Chemical reactions in organic chemistry are described by writing the structural

formula of reactants and products separated by an arrow, representing the chemical

transformation by specifying how the atoms rearrange between one or several reactant



Prediction of Chemical Reaction Yields using Deep Learning 2

molecules and one or several product molecules [1]. Economic, logistic, and energetic

considerations drive chemists to prefer chemical transformations capable of converting

all reactant molecules into products with the highest yield possible. However, side-

reactions, degradation of reactants, reagents or products in the course of the reaction,

equilibrium processes with incomplete conversion to a product, or simply by product

isolation and purification undermine the quantitative conversion of reactants into

products, rarely reaching optimal performance.

Reaction yields are usually reported as a percentage of the theoretical chemical

conversion, i.e., the percentage of the reactant molecules successfully converted to the

desired product compared to the theoretical value. It is not uncommon for chemists

to synthesise a molecule in a dozen or more reaction steps. Hence, low-yield reactions

may have a disastrous e↵ect on the overall route yield because of the individual steps’

multiplicative e↵ect. Therefore, it is not surprising that designing new reactions with

yields higher than existing ones attracts much e↵ort in organic chemistry research.

In practice, specific chemical reaction classes are characterised by lower or higher

yields, with the actual value depending on the reaction conditions (temperature,

concentrations, etc.) and on the specific substrates.

Estimating the reaction yield can be a game-changing asset for synthesis planning.

It provides chemists with the ability to evaluate the overall yield of complex reaction

paths, addressing possible shortcomings well ahead of investing hours and materials in

wet-lab experiments. Computational models predicting reaction yields could support

synthetic chemists in choosing an appropriate synthesis route among many predicted

by data-driven algorithms. Moreover, reaction yields prediction models could also be

employed as scoring functions in computer-assisted retrosynthesis route planning tools

[2, 3, 4, 5], to complement forward prediction models [6, 4] and in-scope filters [2].

Most of the existing e↵orts in constructing models for the prediction of reactivity or

of reaction yields focused on a particular reaction class: oxidative dehydrogenations of

ethylbenzene with tin oxide catalysts [7], reactions of vanadium selenites [8], Buchwald–

Hartwig aminations [9, 10, 11], and Suzuki–Miyaura cross-coupling reactions [12, 13, 14].

To the best of our knowledge, there was only one attempt to design a general-purpose

prediction model for reactivity and yields, without applicability constraints to a specific

reaction class [15]. In this work, the authors design a model predicting whether the

reaction yield is above or below a threshold value and conclude that the models and

descriptors they consider cannot deliver satisfactory results.

Here, we build on our legacy of treating organic chemistry as a language to introduce

a new model that predicts reaction yields starting from reaction SMILES [16]. More

specifically, we fine-tune the rxnfp models by Schwaller et al. [17] based on a BERT-

encoder [18] by extending it with a regression layer to predict reaction yields. BERT

encoders belong to the transformer model family, which has revolutionised natural

language processing [19, 18]. These models take sequences of tokens as input to compute

contextualised representations of all the input tokens, and can be applied to reactions

represented in the SMILES [20] format. In this work, we demonstrate for the first
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time, that these natural language architectures are very useful not only when working

with language tokens, but also to provide descriptors of high quality to predict reaction

properties such as reaction yields.

It is possible to train our approach both on data specific to a given reaction class

or on data representing di↵erent reaction types. Thus, we initially trained the model on

two high-throughput experimentation (HTE) data sets. Among the few HTE reaction

data sets published in recent years, we selected the data sets for palladium-catalysed

Buchwald–Hartwig reactions provided by Ahneman et al. [9] and for Suzuki–Miyaura

coupling reactions provided by Perera et al. [21]. Finally, we trained our model on

patent data available in the USPTO data set [22, 23].

HTE and Patent data sets are very di↵erent in terms of content and quality. HTE

data sets typically cover a very narrow region in the chemical reaction space, with

chemical reaction data related to one or a few reaction templates applied to large

combinations of selected precursors (reactants, solvents, bases, catalysts, etc.). In

contrast, patent reactions cover a much wider reaction space. In terms of quality, HTE

data sets report reactions represented uniformly and with yields measured using the

same analytical equipment, thus providing a consistent and high quality collection of

knowledge. In comparison, the yields from patents were measured by di↵erent scientists

using di↵erent equipments. Incomplete information in the original documents, such

as unreported reagents or reaction conditions, and the extensive limitation in text

mining technologies makes the entire set of patent reactions quite noisy and sparse.

An extensive analysis of the USPTO data set revealed that the experimental conditions

and reaction parameters, such as scale of the reaction, concentrations, temperature,

pressure, or reaction duration, may have a significant e↵ect on the measured reaction

yields. The functional dependency of the yields from the reaction conditions poses

additional constraints, as the model presented in this work does not consider those

values explicitly in the reaction descriptor. The basic assumption is that every reaction

yield reported in the data set is optimised for the reaction parameters.

Our best performing model reached an R2 score of 0.956 on a random split of

the Buchwald-Hartwig data set while the highest R2 score on the smoothed USPTO

data was 0.388. These numbers reflect how the intrinsic data set limitations increase

the complexity of training a su�ciently good performing model on the patent data,

resulting into a more di�cult challenge than training a model for the HTE data set.

2. Models & experimental pipeline

We base our models directly on the reaction fingerprint (rxnfp) models by Schwaller et

al. [17]. We use a fixed size encoder model size, tuning only the hyperparameter for

dropout rate and learning rate, thus avoiding often encountered di�culties of neural

networks with numerous hyperparameters. During our experiments, we observed good

performances for a wide range of dropout rates (from 0.1 to 0.8) and conclude that

the initial learning rate is the most important hyperparameter to tune. To facilitate
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the training, our work uses simpletransformers [24], huggingface transformer [25] and

PyTorch framework [26]. The overall pipeline is shown in Figure 1.
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Figure 1. Training/evaluation pipeline and task description.

To provide an input compatible with the rxnfp model we use the same RDKit [27]

reaction canonicalisation and SMILES tokenization [6] as in the rxnfp work [17].

3. High-throughput experiment yield predictions

3.1. Buchwald–Hartwig reactions

Ahneman et al. [9] performed high-throughput experiments on Pd-catalysed Buchwald–

Hartwig C-N cross coupling reactions, measuring the yields for each reaction. For

the experiments, they used three 1536-well plates spanning a matrix of 15 aryl and

heteroaryl halides, 4 Buchwald ligands, 3 bases, and 23 isoxazole additives resulting in

3955 reactions. As inputs for their models, Ahneman et al. [9] computed 120 molecular,

atomic and vibrational properties with density functional theory using Spartan for

every halide, ligand, base and additive combination. The descriptors included HOMO

and LUMO energy, dipole moment, electronegativity, electrostatic charge and NMR

shifts for atoms shared by the reagents. Compared to reaction SMILES that can

vary in length, the input in the work of Ahneman et al. [9] was a fixed-size vector.

They investigated numerous methods, including linear models, k-Nearest-Neighbours,

support vector machines, Bayes generalised linear models, artificial neural networks

and random forests. Eventually, they selected their random forest model as the best

performing. The work of Ahneman et al. [9] was challenged by Chuang and Keiser

[10], who pointed out several issues. First, by replacing the computed chemical features

with random features of the same length or one-hot encoded vectors Chuang and Keiser

got similar performance than the original paper with the chemical features. Therefore,

they weakened the original claim that additive features were the most important for

the predictions. However, the additive features were on average still estimated to
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be the most important features by the random forest model when the yields were

shu✏ed [10]. Recently, Sandfort et al. [11] used a concatenation of multiple molecular

fingerprints as an alternative reaction representation to demonstrate superior yield

prediction performance compared to one-hot encoding.

Table 1. Comparing methods on the Buchwald-Hartwig data set. All results shown
in this table used the rxnfp pretrained model as base encoder.

R2 DFT [9] one-hot [10, 11] MFF [11] Yield-BERT

rand 70/30 0.92 0.89 0.927 ± 0.007 0.951 ± 0.005

rand 50/50 0.9 0.92 ± 0.01

rand 30/70 0.85 0.88 ± 0.01

rand 20/80 0.81 0.86 ± 0.01

rand 10/90 0.77 0.79 ± 0.02

rand 5/95 0.68 0.61 ± 0.04

rand 2.5/97.5 0.59 0.45 ± 0.05

test 1 0.8 0.69 0.85 0.84 ± 0.01

test 2 0.77 0.67 0.71 0.84 ± 0.03

test 3 0.64 0.49 0.64 0.75 ± 0.04

test 4 0.54 0.49 0.18 0.49 ± 0.05

avg. 1-4 0.69 0.59 0.60 0.73

Unlike previous work, we directly use the reaction SMILES as input to a

BERT-based reaction encoder [17] enriched with a regression layer (Yield-BERT). To

investigate the suggested method, we used the same splits as Sandfort et al. [11]. In

contrast, to their work, we used 1/7 of the training set from the first random split as

a validation set to select optimal values for the two hyperparameters, namely, learning

rate and dropout probability. Once selected, we kept the hyperparameters identical for

all the subsequent experiments.

The results are shown in Table 1. Using solely a reaction SMILES representation,

our method achieves an average R2 of 0.951 on the random splits and outperforms not

only the MFF by Sandfort et al. [11], but also the chemical descriptors computed with

DFT by Ahneman et al. [9]. Moreover, for the out-of-sample tests where the isoxazole

additives define the splits our method performs on average better than MFF and one-

hot descriptors and comparable to the chemical descriptors. As in the work of Sandfort

et al. [11], the test 3 split resulted in the worst model performance. For the rest of

the out-of-sample, our method performs better than the others. We also reduced the

training set to 5% (197 reactions), 10% (395 reactions) and 20% (791 reactions) and

observed that the model learned to reasonably predict yields despite the significantly

smaller training set.
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3.2. Suzuki–Miyaura reactions

Perera et al. [21] used HTE technologies to the class of the Suzuki–Miyaura reactions.

They considered 15 pairs of electrophiles and nucleophiles, each leading to a di↵erent

product. For each pair, they varied the ligands (12 in total), bases (8), and solvents (4),

resulting in a total of 5760 measured yields. The same data set was also investigated in

the work of Granda et al. [12].

Here, we first trained our yield prediction models with the same hyperparameters

as for the Buchwald–Hartwig reaction experiment above, achieving an R2 score of

0.79±0.01. Second, we tuned the dropout probability and learning rate, similarly to

the previous experiment, using a split of the training set of the first random split. The

resulting hyperparameters were then used for all the splits. The hyperparameter tuning

did not lead to better performance compared to the parameters used for the Buchwald–

Hartwig reactions. This shows that the models have a stable performance for a wide

range of parameters and that they are transferable from one data set to another related

data set.

Table 2. Summary of the average R2 scores on the Suzuki–Miyaura reactions data set
using a Yield-BERT with di↵erent base encoders. We used 10 di↵erent random folds
(70/30).

Base encoder rxnfp [17] pretrained pretrained ft ft

Hyperparameters same as 3.1 tuned same as 3.1 tuned

random 70/30 0.79 ± 0.01 0.79 ± 0.02 0.81 ± 0.02 0.81 ± 0.01

We also compared two di↵erent base encoder models that are available from the

rxnfp library [17], namely the BERTmodel pretrained with a masked language modelling

task, and the BERT model subsequently fine-tuned on a reaction class prediction task.

The results are displayed in Table 2. In contrast to the Buchwald–Hartwig data set,

where no di↵erence between the two base encoders was observed, the ft model achieves

an R2 score of 0.81 ± 0.01, outperforming the pretrained base encoder on the Suzuki–

Miyaura reactions.

3.3. Discovery of high yielding reactions with reduced training sets

Granda et al. [12] proposed to train on a random (10%) portion of the original data

set to evaluate the rest of the reactions with the purpose of selecting the next reactions

to test. Similarly, we trained our models on di↵erent fractions of the training set and

used them to evaluate the yields of the remaining reactions. The aim here is to evaluate

how well the models are at selecting high-yielding reactions after having seen a small

fraction of randomly chosen reactions.

As can be seen from Figure 2, training on only 5% of the reactions already enables

a chemist to select some of the highest yielding reactions for the next round of the
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Figure 2. Average and standard deviation of the yields for the 10, 50, and 100
reactions predicted to have the highest yields after training on a fraction of the data
set (5%, 10%, 20%). The ideal reaction selection and a random selection are plotted
for comparison.

experiments. With a training set of 10% the yields of the selected reactions are close

to the best possible selection marked with “ideal” in the Figure. For the Buchwald–

Hartwig reaction, using a model trained on 10% of the data set, the 10 reactions from

the remaining unseen data set predicted to have the highest yields, have an average yield

of 90 ± 6 %, compared to the ideal selection of 98.7 ± 0.9 %. In contrast, a random

selection of 10 reactions would have let to yields of 34 ± 27 %. The selection works

similarly for the Suzuki–Miyaura reactions.

We performed a purely greedy selection, as we aimed to find highest yielding

reactions after one training round. A wider chemical reaction space exploration with

a reaction selection using more elaborate uncertainty estimates and an active learning

strategy was investigated by Eyke et al. [14].
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4. Patent yield predictions

In this section, we analyse USPTO data set [22, 23] yields. We started from the same

set as in our previous work [28], keeping only reactions for which yields and product

mass were reported. In contrast to HTE, where reactions are typically performed in

sub-gram scale, the patent data contains reactions spanning a wider range, from grams

to sub-grams scales.

4.1. Gram versus sub-gram scale

When investigating the yields for di↵erent mass scales, we observed that gram and sub-

gram scales had statistically di↵erent yield distributions, as shown in Figure 3. One

reason could be that the reaction sub-gram scale reactions are generally less optimised

than gram-scale. In sub-gram scale, the primary goal is to show that the desired product

is present. To be able to synthesise a specific compound on a larger scale, reactions are

optimised and predominantly high yielding reactions are employed. Therefore, we split

the USPTO reactions into two data sets according to the product mass. If for the same

canonical reaction SMILES multiple yields were reported in the same mass scale, we

took the average of those yields.

Figure 3. USPTO yields historgrams separated in gram and sub-gram scale

We performed various experiments summarised in Table 3. The R2 scores for the

randomly train-test splits with 0.117 for gram scale and 0.195 low. As expected, the

tasks become even more di�cult when the time split is used. In our experiment, we

took all reactions first published in 2012 and before as training/validation set and the

reactions published after 2012 as test set. To show that the model was still able to learn,

we performed a sanity check by randomising the yields across the training reactions. The

resulting performance on the test set was a R2 score of 0.

Unfortunately, the yields from the USPTO data set could not be accurately

predicted. To better understand why, we further inspected the USPTO reaction yields
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with a visual analysis using reaction atlases built using TMAP [29], faerun [30] and our

reaction fingerprints [17]. Figure 4 reveals that globally reaction classes tend to have

similar yields. However, if a local neighbourhood is analysed the nearest neighbours

often have extremely diverse reaction yields. Those diverse yields make it challenging

for the model to learn anything but yield averages for similar reactions and hence,

explain the low performance on the patent reactions. This analysis opens up relevant

questions on the quality of the reported information (relative to the mass scale) and its

extraction accuracy from text, which could severely hamper the development of reaction

yield predictive models. The need of cleaned and consistent reaction yields data set is

even more important than for other reaction prediction tasks.

Table 3. Summary of the R2 scores on the di↵erent USPTO reaction sets.

scale gram sub-gram

random split 0.117 0.195

time split 0.095 0.142

random split (smoothed) 0.277 0.388

randomized yields 0.0 0.0

In Table 3, the ”random split (smoothed)” row shows an experiment inspired from

the observations above. As some of the yields values are probably incorrect in the data

set, we smoothed the yields by computing the average of the three nearest neighbour

yields plus twice the own yield of the reaction. The nearest neighbours were estimated

using the rxnfp ft [17] and faiss [31]. On the smoothed data sets, the performance of our

models more than triples in the gram scale and doubles on the sub-gram scale, achieving

R2 scores of 0.277 and 0.388, respectively. The removal of noisy reactions [32] or reaction

data augmentation techniques [33] could potentially lead to further improvements.

5. Conclusion

In this work, we combined a reaction SMILES encoder with a reaction regression task

to design a reaction yield predictive model. We analysed two HTE reaction data sets,

showing excellent results. On the Buchwald–Hartwig reaction data set, our models

outperform previous work on random splits and perform similar to models trained on

chemical descriptors computed with DFT on test sets where specific additives were held

out from the training set. Compared to random forest models, the feature importance

can not directly be obtained. Future work could (visually) investigate the attention

weights to find out what tokens and molecules contribute the most to the predictions

[34, 35].

We analysed the yields in the public patent data and show that the distribution

of reported yields strongly di↵ers depending on the reaction scale. Because of the
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Figure 4. Reaction Atlases. Top: gram scale. Bottom: sub-gram scale. Left:
Reaction superclass distribution, reactions belonging to the same superclass have the
same colour. Right: Corresponding reaction yields.

intrinsic lack of consistency and quality in the patent data, our proposed method fails

to predict patent reaction yields accurately. While we cannot rule out the existence

of any other architecture potentially performing better than the one presented in this

manuscript, we raise the need for a more consistent and better quality public data set for

the development of reaction yields prediction models. The suspect that the patent data

yields are inconsistently reported is substantiated by the large variability of methods

used to purify and report yields by the di↵erent reaction mass scales and the di↵erent

optimisation in each reported reaction. Our reaction atlases [30, 29, 17] reveal globally

higher yielding reaction classes. However, nearest neighbours often have significantly

scattered yields. We show that better results can be achieved by smoothing the patent

data yields using the nearest neighbours.

Our approach to yield predictions can be extended to any reaction regression task,

for example, for predicting reaction activation energies [36, 37, 38], and is expected to
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have a broad impact in the field of organic chemistry.

The code and data are available on https://rxn4chemistry.github.io/rxn_

yields/.
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1. Detailed results on Buchwald Hartwig reactions

Figure S1-S14 show the correlation between the measured yields and the predicted yields

for the di↵erent splits published by Sandfort et al. [1]. Moreover, the root mean squared

error (RMSE) and the mean average error (MAE) are shown in the figures.
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Figure S1. Measured vs predicted yields [%] - FullCV 01

Figure S2. Measured vs predicted yields [%] - FullCV 02
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Figure S3. Measured vs predicted yields [%] - FullCV 03

Figure S4. Measured vs predicted yields [%] - FullCV 04
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Figure S5. Measured vs predicted yields [%] - FullCV 05

Figure S6. Measured vs predicted yields [%] - FullCV 06
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Figure S7. Measured vs predicted yields [%] - FullCV 07

Figure S8. Measured vs predicted yields [%] - FullCV 08
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Figure S9. Measured vs predicted yields [%] - FullCV 09

Figure S10. Measured vs predicted yields [%] - FullCV 10
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Figure S11. Measured vs predicted yields [%] - Test1

Figure S12. Measured vs predicted yields [%] - Test2
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Figure S13. Measured vs predicted yields [%] - Test3

Figure S14. Measured vs predicted yields [%] - Test4
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2. Detailed results on Suzuki-Miyaura reactions

Figure S15-S24 show the correlation between the measured yields and the predicted

yields for model with the rxnfp ft base encoder on the 10 random splits.

Figure S15. Measured vs predicted yields [%] - random split 0
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Figure S16. Measured vs predicted yields [%] - random split 1

Figure S17. Measured vs predicted yields [%] - random split 2
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Figure S18. Measured vs predicted yields [%] - random split 3

Figure S19. Measured vs predicted yields [%] - random split 4
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Figure S20. Measured vs predicted yields [%] - random split 5

Figure S21. Measured vs predicted yields [%] - random split 6
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Figure S22. Measured vs predicted yields [%] - random split 7

Figure S23. Measured vs predicted yields [%] - random split 8
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Figure S24. Measured vs predicted yields [%] - random split 9

3. Detailed analysis of USPTO yields data

Table S1 show global statistics on the gram scale and sub-gram scale USPTO yields

data sets.

Table S1. USPTO yield statistics

gram scale subgram scale

count 197619 302040

mean 73.2 56.8

std 20.9 26.6

min 0.0 0.0

25% 60.2 35.5

50% 78.0 58.9

75% 90.3 79.5

max 100.0 100.0

Tables S2 and S3 show the yields average in the random split test set for the di↵erent

reaction superclasses.

Figure S25 shows the distributions of the smoothed yields. To smooth the yields of

the USPTO data set [2, 3] we calculated the average of the 3 nearest-neighbours of the

reaction, computed using the rxnfp ft [4] and faiss [5], and twice the own reaction yield.
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Table S2. Test set sub-gram scale. Average and standard deviation per class.

Class Name Mean [%] Std Count

0 Unrecognised 52.1 26.8 12359

1 Heteroatom alkylation and arylation 53.3 25.8 12995

2 Acylation and related processes 54.8 25.6 10583

3 C-C bond formation 53.2 25.6 5111

4 Heterocycle formation 48.0 25.1 2043

5 Protections 69.8 22.3 527

6 Deprotections 68.7 25.2 8542

7 Reductions 67.5 26.1 3528

8 Oxidations 63.4 25.3 1078

9 Functional group interconversion (FGI) 62.3 25.2 2779

10 Functional group addition (FGA) 56.2 25.1 863

Table S3. Test set gram scale. Average and standard deviation per class.

Class Name Mean [%] Std Count

0 Unrecognised 69.4 22.0 10327

1 Heteroatom alkylation and arylation 71.9 20.9 7912

2 Acylation and related processes 74.5 19.7 4745

3 C-C bond formation 70.7 20.0 2547

4 Heterocycle formation 67.1 22.9 1417

5 Protections 79.9 18.5 1154

6 Deprotections 82.2 16.9 3332

7 Reductions 81.2 18.2 3105

8 Oxidations 76.0 18.8 742

9 Functional group interconversion (FGI) 74.9 20.1 2751

10 Functional group addition (FGA) 71.7 21.7 1491

4. Hyperparameter tuning

The two hyperparameters we tuned were dropout rate (between 0.05 and 0.8) and

learning rate (between 1e-6 and 1e-4). For the rxnfp pretrained model on the Buchwald-

Hartwig reactions a learning rate of 9.659e-05 and dropout probability of 0.7987 led to

the highest validation R2 score. We observe high R2 scores for a wide range of dropout

probabilities. The hyperparameter tuning was performed on a single Nvidia RTX 2070

super GPU and the optimal hyperparameters were found in less than 12 hours. A typical

training run (10 epochs) on the same hardware takes 4 minutes and 30 seconds. We

trained the final models for 15 epochs.

On the Suzuki-Miyaura reactions, we selected a learning rate of 5.812e-05 and
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Figure S25. Smoothed USPTO yields distribution separated in gram and sub-gram
scale

dropout probability of 0.5848 for the rxnfp pretrained base encoder and a learning rate

of 9.116e-05 and dropout probability 0.7542 for the rxnfp ft base encoder model.

On the USPTO data we performed a hyperparameter search using a reduced

training set of 50k reactions and only 3 epochs. We selected a learning rate of 1.562e-

05 and dropout probability of 0.5237 for the gram scale and 2.958e-05 and 0.5826

respectively, for the sub-gram scale. The final models were trained for 2 epochs on

the complete training data, as an evaluation showed signs of over-fitting from the third

epochs on.

Figure S26 – S30 show the hyperparameters with the corresponding R2 values on

the validation set. The validation was made on subsplit of the training set of the first

random split for all three data sets. Overall, the learning rate seemed to be more

important to tune than the dropout probability.
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Figure S26. Hyperparameter optimisation on Buchwald-Hartwig data set (pretrained
base encoder)
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Figure S27. Hyperparameter optimisation on Buchwald-Hartwig data set (class base
encoder)
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