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Abstract 

 
Transfer entropy methods provide an approach to understanding asymmetric information 

flow in coupled systems, with particular application to understanding allosteric interactions in 
biomolecular systems. Transfer entropy analysis holds the potential to reveal pathways or 
networks of residues that are coupled in their information flow and thus give new insights into 
folding and binding dynamics. Most current methods for calculating transfer entropy require very 
long simulations and almost equally long calculations of joint probability histograms to compute 
the information transfer that make these methods either functionally intractable or statistically 
unreliable. Available approximate methods based on graph and network theory approaches are 
rapid but lose sensitivity to the chemical nature of the biomolecules and thus are not applicable 
in mutation studies. We show that reliable estimates of the transfer entropy can be obtained 
from the variance-covariance matrix of atomic fluctuations, which converges quickly and retains 
sensitivity to the full chemical profile of the biomolecular system. We validate our method on 
ERK2, a well-studied kinase involved in the MAPK signaling cascade for which considerable 
computational, experimental, and mutation data are available. We present the results of transfer 
entropy analysis on data obtained from molecular dynamics simulations of wild type active and 
inactive ERK2, along with mutants Q103A, I84A, L73P, and G83A. We show that our method is 
consistent with the results of computational and experimental studies on ERK2, and we provide 
a method for interpreting networks of interconnected residues in the protein from a perspective 
of allosteric coupling. We introduce new insights about possible allosteric activity of the extreme 
N-terminal region of the kinase, which to date has been under-explored in the literature and may 
provide an important new direction for kinase studies. We also describe evidence that suggests 
activation may occur by different paths or routes in different mutants. Our results highlight 
systematic advantages and disadvantages of each method for calculating transfer entropy and 
show the important role of transfer entropy analysis for understanding allosteric behavior in 
biomolecular systems.  

 
Introduction 

 
Transfer entropy was first proposed by Thomas Schreiber in 2000 as an asymmetric 

approach to understanding information flow in coupled systems.1 Since that original paper, 
transfer entropy methods have been used to describe thermodynamic systems,2 to suggest or 
infer causal relationships among data sets,3–5 and to measure information flow in biological,6 
neurological,7 social,8 and economic systems.9 While transfer entropy analyses hold great 
promise for extracting significant information from complex data sets, there remain important 
concerns with both methodology and interpretation, particularly in biomolecular systems. 



 
One of the greatest challenges with current transfer entropy approaches is that they require 

extremely large data sets to populate sparse multidimensional probability histograms; in theory, 
it is desirable to have three times as many samples as possible state configurations, though this 
is typically unrealistic in practice.10 In order to ameliorate the impacts of (inevitable) 
undersampling, several methods are used to ensure that the relationships extracted from the 
data are statistically significant. In one approach, the time series can be shuffled many times and 
the (average) transfer entropy calculated from these shuffled time series is subtracted from the 
original transfer entropy to obtain the effective transfer entropy. 11 In other methods, random 
statistical noise is introduced into the calculations to determine if the calculated transfer entropy 
rises above the level of background noise. 12 In either case, the methods used to avoid 
undersampling may result in missing key relationships in the data, chiefly because the choice of 
method requires making assumptions about the underlying structure of the data, which is often 
not known a priori.12 

In biomolecular systems particularly, these limitations on transfer entropy methodologies 
have important consequences. In order to gather sufficient statistics to satisfactorily populate 
the multidimensional histograms required for reliable probability analysis, very long simulations 
(often microsecond timescale) are required. Even with the increase in available computational 
tools and GPU speedups, such simulations are still not feasible for most proteins as a matter of 
routine. The other currently-available option is to use approximate methods derived from graph 
theory and the Gaussian Network Model (GNM) to model the dynamics of the protein and 
estimate the transfer entropy.5,6,13 One significant drawback of these approximate methods is 
that, because there is no sensitivity to side chain identity or motions, there is limited utility for 
these methods in mutation studies, which are often of great interest in biomolecular systems.5,14  

Here we demonstrate a method that balances these two considerations: one that is fast 
enough for practical use but sensitive enough to the chemical nature of the protein to be capable 
of studying the effects of amino acid mutations on the information transfer and allosteric 
behavior of the protein. In this method, the transfer entropy is extracted from the variance-
covariance matrix derived from short simulations (which converge on a timescale of 5-20ns15) 
and computed using the formalism of the dynamic Gaussian Network Model (dGNM), since the 
covariance matrix is known to be inversely proportional to the contact (Kirchoff) matrix used as 
the basis for the GNM method.5 Because our method is based on the covariance matrix of protein 
fluctuations (for which there are robust methods to calculate the convergence16), we avoid the 
sampling and convergence issues that plague many current methods, as well as the need for 
trajectory shuffling or the introduction of statistical noise.  

We apply our method to the well-studied extra-cellular signal-regulated kinase-2 (ERK2, 
shown in Figure 1) and a series of known ERK2 mutants16,17 and demonstrate that our method is 
consistent with important available experimental and theoretical data.18–20 Regions and mutated 
residues of interest are shown in Figure 1.  Three structural changes occur upon activation16,21 
(induced by phosphorylation at T183 and Y185): helix C (residues 60-75) directs closing of the N-
domain over the C-domain, the activation lip (residues 170-185) refolds, and loop L16 (329-335) 
folds to expose a hydrophobic leucine zipper motif that provides the dimerization interface for 
the activated kinase. The D site (residues 108, 113-123, 155-162, 315-320) and F site (residues 
197-200, 229-235, 257-262) include direct substrate binding specificity.18,22 The DFG site (165-



167) is a conserved kinase site that is targeted by type II inhibitors but plays an unclear role in 
ERK2.20,22 Three autoactivating ERK2 mutants in this study are the gatekeeper residue Q103A, 
along with I84A and L73P.17 A fourth mutant, G83A, has been shown to prevent activation of the 
kinase by inhibiting domain closure.16  

We note that, in some kinases at least, the binding effects of inhibitors cannot be 
determined solely from structural data, a phenomenon believed to be due to conformational 
trapping or averaging in the X-ray structures; in fact, inhibitors that bind in the same mode at the 
same site have been shown to have opposite effects on the ERK2.20 Studies sensitive to the 
dynamic nature of the structural ensemble are required to elucidate such effects. By comparing 
our method in context with a variety of approaches for the study of allosteric communication in 
proteins,23 we are able to provide new insights about the strengths and weaknesses of various 
methods and shed new light on the role of the N-terminal beta-sheet region in the 
communication pathways of ERK2.  

 
Figure 1: Structure of inactive ERK2 showing important binding sites and allosteric regions (see 
text) in colored cartoons and mutated residues Q103, I84, L73, and G83 in space-filling spheres. 

 
Methods 
 
We base our calculation of the transfer entropy on approach developed in the dynamic 

Gaussian Network Method,5,6,13 which calculates the transfer entropy according to the 
equations:13  
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Where lambda and u are the eigenvalues and eigenvectors, respectively, that result from 

diagonalization of the Kirchhoff matrix that defines the protein network of contacts held together 
by springs. The time delay required for evaluating transfer entropy is introduced by the tau 
parameter which acts as an effective lag time operating on the eigenvectors.13 In our method, 
we replace the Kirchhoff matrix with the variance-covariance matrix of fluctuations calculated 
according to the equation:24  
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In order to meaningfully compare transfer entropy data from the different methods, we 

compute the normalized directional transfer entropy: 
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Intuitively, the normalized transfer entropy (NTE) tells us the proportion of uncertainty 

reduced regarding future fluctuations of residue j given the past fluctuations of residue i and j. 
An NTE=1 implies that i perfectly predicts j. An NTE=0 implies that i is statistically independent of 



j or that the future values of j are perfectly predicted by its own past. That is, all the information 
regarding future fluctuations of j is already encoded within its own past, so i has no uncertainty 
to reduce. The normalized directional transfer entropy (DNTE) provides the magnitude and 
direction of information flow. A DNTE of 1 implies the flow of information is entirely dominated 
by residue i, while a DNTE of -1 would imply the converse. In the case where DNTE is 0, analysis 
of the individual normalized transfer entropies is required to alleviate whether the information 
flow is bidirectional or absent.  

We note two fundamental assumptions in the dGNM approach. The first, that the protein 
can be accurately represented as a network of spring contacts, does not apply to our method 
since we derive our input from the covariance matrix built from molecular dynamics simulations, 
allowing us to bypass the graph or network theory assumptions altogether. The second 
assumption treats the fluctuations of protein atoms as harmonic and following a Gaussian 
distribution, which is rigorously true for the GNM method, since by definition the Gaussian 
Network Model starts with a low-energy structure and explores only harmonic fluctuations in the 
very local phase space around that configuration.25 The Gaussian assumption is true for our 
method in the limit of the quasi-harmonic approximation26,27 which is reliable when the protein 
only visits a single state or energy well during the simulation, but can fail dramatically if multiple 
states or energy minima are visited, especially if the full configurational space of each state is not 
completely explored during the simulation.28 

Simulation data was obtained from previously reported work on ERK2.16 20ns simulations of 
ERK2 in the inactive state29 and active state21 as well as the mutants Q103A, I84A, L73P, and G83A 
were used as the basis for analysis by both the covariance-based and the full histogram transfer 
entropy methods. All simulations were performed in explicit solvent with counterions and 
snapshots from each simulation were saved every 1ps for analysis.  

The full statistical transfer entropy analysis was performed on the ERK2 trajectories using 
the method of Kamberaj and van der Vaart11 as reported in previous work.16 The variance-
covariance matrix of protein fluctuations was calculated for CA atoms using Carma.30 Preparatory 
calculations for the dGNM method were made in python using ProDy31 to parse the pdb files and 
set the atom definitions, as well as to calculate the Kirchhoff matrix. Calculation of the transfer 
entropy for the dGNM method and our new covariance-based method was performed following 
reference5 using python. Our method follows the form of the dGNM calculation entirely, with the 
inverse of the covariance matrix used instead of the Kirchoff matrix. We use a time delay τ = 5 
following the recommendation of reference5 and consistent with cross-correlation delay times in 
molecular dynamics simulations. We note that τ = 5 typically maximizes the transfer entropy 
obtained from our method (using larger values of τ gives negligible differences in the results); 
smaller values of τ tend to underestimate the transfer entropy, though not in any way that would 
alter the analysis — the peak shapes and patterns are consistent for all values of τ we tested in 
the range of 1–50, and in no case did we observe changing the value of τ to result in the switch 
of any residue from driving to responding or vice versa (Figure 2). We note that this is not 
necessarily the case with the original dGNM method, where in addition to choosing the value for 
tau, there is a cutoff parameter that needs to be chosen for each system, and different values for 
the cutoff used to define the Kirchoff matrix can have a significant impact on the calculated 
transfer entropy, including switching which residues/regions appear to be driving or responding 
(Figure 2).  



 
 

Figure 2: Net transfer entropy out from each residue calculated from the covariance method (A) 
and dGNM method (B) for the active state of ERK2 as a function of increasing τ value. Net transfer 
entropy out from each residue calculated from the dGNM method for inactive (C) and active (D) 
ERK2 as a function of increasing cutoff distance used in creating the Kirchhoff matrix. 

 
Transfer entropy analysis was performed on the directional matrix 	

𝐷𝑁𝑇𝐸!→" = 𝑁𝑇𝐸!→" − 𝑁𝑇𝐸"→!  , where positive values indicate that the residue on the vertical 
axis drives the residue on the horizontal axis. The most driving residues were identified in each 
state as the peak with the maximum		𝑁𝑇𝐸!→out calculated as the sum over the ith row of the 
directional matrix. Pathways of information flow were followed by sorting the directional matrix 
row-wise to determine the residue j to which residue i sends the most information, allowing for 
a directional analysis of information flow. All pathways eventually formed a repeating transfer 
entropy loop. Pathways were often remarkably consistent within individual states but varied 
between different methods and states of the kinase. 

Data for the betweenness of the nodes in ERK2 were obtained from the MCPath server32 
using PBD codes 1ERK29 and 2ERK21 to identify functional residues in the inactive and active 
states, respectively, with a path length of 100,000. The mutational and configurational frustration 
of the residues in ERK2 was calculated for the same PDB codes using the frustratometer server33 
with default settings. In cases where residues were missing from the PDB files, values of zero 
were used at those positions to keep numbering consistent for analysis.  
 
Results and Discussion 
 
Our method is consistent with previous theory and experiment and provides new mechanistic 
insights 



 
We used two approaches to analyze and compare the transfer entropy results from the three 

methods tested in this study. We identified the top twenty most driving residues in the protein 
in each state by each method (Table 1), and checked for consistency among the methods in 
identifying the same driving regions. We note that in this analysis, the full simulation method 
seems on the face of it to give remarkably different results from the other two methods; 
however, when we realized that many peaks are in the same immediate region, and expanded 
our analysis to look at the top 4-5 most driving “regions” of the kinase, rather than a fixed residue 
count, we found that in fact the methods are in good agreement, as visual inspection of Figure 3 
shows. We note that the 7 most driving residues in the inactive state for our method are also 
shown as strongly driving in the full-histogram and dGNM method. Almost half of the residues 
shown in the active state are also seen in at least one of the other two methods. 

Table 1: Top 20 most driving residues in each state of ERK2 for our new method. Residues in 
important regions of the kinase are highlighted in colors representing the N-loop (purple), ATP 
binding site (green), helix C (orange), activation lip (blue), and D site (red). Residues that are 
known to be of particular importance for protein function are shown in bold. For purposes of 
comparison between states, residues which appear in the inactive state are marked in all states 
with an asterisk, and residues which appear in the active state are marked with a plus sign. 
Residues which appear in the top 20 most driving of the dGNM and full histogram methods are 
marked with a d and an h, respectively. 

Inactive State  Active State G83A Q103A L73P I84A 
MET 36  *dh TYR 28  *+ CYS 38  *+ GLN 64  * LEU 341  * ARG 259 *+ 
VAL 37  *+dh PHE 17 d MET 36  * ARG 68   GLU 343   ARG 65   
GLN 15 dh LYS 53  *+ VAL 37  *+ MET 36  * PHE 346   LEU 144   
LYS 53 *+d CYS 38  *+d ALA 40  + CYS 63  * THR 179   ASN 260   
VAL 16 *+dh LEU 26  + TYR 41  + ARG 65   SER 200   VAL 171   
CYS 38 *+dh THR 24  + GLU 31  * LYS 53  *+ LYS 342   GLN 64 * 
TYR 28  *+h ARG 259  *+ LYS 53  *+ GLU 31  * ASN 199   VAL 143   
GLY 14 d GLN 234  *+ ILE 51  + THR 61   ALA 5   HSD 145   
GLN 64  * VAL 16  *+d ILE 54   LEU 67   LYS 201   ARG 170   

GLN 234  *+ SER 27  *+ LEU 341  * TYR 41  + ALA 4   CYS 63 * 
ARG 259  *+ GLU 10 dh LEU 26  + VAL 37  *+ ASP 177   THR 61   
LEU 154  *+ LYS 52  + LEU 113    GLN 60    LYS 340  * ASN 236   
LEU 341  * ILE 51  + THR 24  + ARG 259  *+ LEU 344   LEU 235   
GLU 31  *h MET 11 *+ TYR 28  *+ TYR 62   LEU 161   TYR 62   
ALA 6  *d TYR 41 +dh LEU 153   LYS 52  + ILE 345   TYR 356   
CYS 63  * ALA 40  +d ASP 42  + GLN 234  *+ GLY 180   GLU 69   
ILE 29 h ASP 42  +d ASN 25   THR 24  + LEU 154  *+ THR 66   

LYS 340  * VAL 37  *+d GLN 64  * ALA 258   ALA 3   HSD 139   
SER 27  *+ SER 39  d ASP 233   ALA 40  + PHE 181   GLN 234 *+ 
MET 11  *+h LEU 154  *+ HSD 237   LEU 26  + ALA 6  * ARG 357   



 Both Table 1 and Figure 3 show strong driving behavior from the N-loop in both active and 
inactive states. Residues from helix C are seen as strong drivers in the inactive state, mutants 
G83A, Q103A, and I84A. From this region, residues Q64 (important role in domain restructuring), 
R65 (important for auto-activation), R68 (prevents refolding), and salt-bridge residue Q69 are 
seen as drivers of information. Salt-bridge residue K52 is a strong driver in the activate state and 
in mutant Q103A. Residues L153 and L154 are strong drivers of information from the ATP binding 
site. Mutation of residues L73 and I84 also seems to increase the driving behavior of the 
activation lip. Of particular interest, residue R170 shows driving behavior for mutant I84A. 
Literature suggests R170 is in contact with D334 along with R68 to prevent from refolding of loop 
L16 in the inactive state.16 Mutant L73P is the only state that shows driving behavior from the D 
site.  

 
Figure 3: Net transfer entropy out from each residue calculated from the full histogram (blue), 
covariance (black), and dGNM (gray) methods for inactive (A) and active (B) states of ERK2. 

 
We also compared the methods on the basis of the information flow pathways they 

produced from these top 20 most driving residues. From each pathway, we looked to see 
whether key regions of the kinase were coupled in an information-flow relationship. We note 
that in both our method and the dGNM method, the DFG site appears in information flow 
pathways of the inactive state as responding to helix C (both methods), the ATP binding site 
(dGNM method), and the D site (our method).  

From our pathways analysis of active state ERK2, we see that the ATP site drives the motions 
of the D site (and the F site in the dGNM method). In the mutant pathways, we also observe 
driving behavior from the ATP site to the activation lip (Q103A) and loop L16 (G83A). We note, 
consistent with our previous observations of the crucial role of G83 for the domain closure and 
activation of the kinase,16 that residue 83 is found in many information flow pathways for the 
active state of ERK2 and all mutants except L73P.  

Of particular interest is the L73P mutant, where pathways of information flow show that the 
F site drives ATP site and D site, and that loop L16 and the activation lip drive ATP and D site; 
these pathways are markedly different from those seen in all other states and suggest that the 
L73P mutant may activate by a different mechanism than the other mutants. This is consistent 
with previously-reported data that the L73P mutant shows greater fluctuations at the beginning 
of the activation lip than other mutants,16 but our analysis provides deeper insights into the 
possible different pathways of autoactivation.  

 



 
 

Figure 4: Pathways of information flow in the inactive state (A), active state (B), and L73P mutant 
(C and D). Brackets indicate branches that occur in some but not all pathways for the state. 

 
 

Full atomic simulations give insight into the importance of anharmonic conformational motions 
 
The full statistical method shows considerably stronger driving behavior for the activation 

lip (175-176) and loop L16 in the active state than in either of the other methods (Figure 3). These 
regions show significant conformational flexibility and even some degree of folding (in L16) or 
reorganization (in the activation lip) during the course of simulations of even moderate length. It 
is not expected that such motions would be well-described by a quasi-harmonic analysis,28 and 
this is reflected in the transfer entropy descriptions of these regions. What is less clear, however, 
is whether the simulations are sufficiently long for the full statistical treatment of the transfer 
entropy to be converged; our pathways analysis suggests not. We believe that the relative heights 
of the peaks (and thus the pathways generated by following the most driving residues) may not 
be converged in this method at this timescale, and that as a result the finer details of information 
flow in these systems cannot be resolved. However, we highlight again the importance of our 
observations that the first-level analysis (of the regions that are most strongly driving or 
receiving) is consistent across all three transfer entropy methods studied in this work.  
 
Regions of high structural frustration show inconsistencies in transfer entropy calculations 

 
Apart from the differences in the transfer entropy of the highly flexible regions mentioned 

above, the greatest discrepancy among the methods occurs around residue 100, where the 
dGNM method appears to dramatically overestimate the transfer entropy. This region is 



highlighted by other network analysis methods as being highly constrained/frustrated (Figure 5). 
We note that the dGNM method tends to overestimate the TE of these regions compared to 
simulation-based methods. We note that the covariance method shows driving behavior for the 
phosphorylated residues on the activation lip that are missed by the dGNM method (residues 
180-190).   

 
Figure 5: (A) Number of highly frustrated (mutational) contacts within a 5A sphere of each residue 
in ERK2. (B) Betweenness calculated for each residue in ERK2 from the MCPath server. 

 
All methods show the importance of the N-terminal region for information flow in ERK2 

 
We note that in all three methods, residues in the N-terminal region show strong driving and 

responding behavior and couple with the substrate binding sites in many pathways. While there 
has been some evidence of involvement of in this region (particularly the Gly-rich loop) reported 
in the literature,20 it has been attributed largely to instability in the active site and the activation 
loop. We believe that there may be significant allosteric interactions taking place that involve the 
extreme N-terminal domain of the kinase that interact with the substrate binding sites and might 
be of interest for further studies in inhibitor binding and dynamics. 

 
Conclusions 

 
We demonstrate that using the covariance matrix of protein fluctuations leads to 

identification of the same important driving and responding residues, and most importantly, the 
same allosteric interactions as the full statistical method. We note that there are fewer adjustable 
parameters in this method than in the dGNM method, and that this method is sensitive to 
dynamical changes in mutant proteins, whereas dGNM is not. Our method provides rapid, 
reliable insight into the allosteric behavior of ERK2 at reasonable computational cost.  

Importantly, by comparing all three methods to one another in a single, well-studied system, 
we provide insights about where each method is likely to become unreliable for transfer entropy 
calculations in biological systems. The dGNM method may overestimate the transfer entropy of 
highly frustrated regions of the protein network. The covariance method may underestimate the 
transfer entropy of highly flexible regions of proteins where the quasi-harmonic approximation 
fails to hold. In such cases, the full statistical method is likely the best option, but very long 
simulation timescales are likely to be needed to achieve good convergence and the ability to 
obtain detailed interpretation of information transfer pathways.  



Finally, by combining a variety of approaches for the study of allosteric behavior in ERK2, we 
are able to provide insights about the structure and dynamics of the kinase that may help to 
guide future experiments and drug design. We note especially the consistent importance of the 
N-terminal region in our analysis and its regular coupling with the substrate binding sites. We 
expect this to be of interest in future studies of inhibitor binding and dynamics. 
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