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ABSTRACT  

Free energy perturbation (FEP) has become widely used in drug discovery programs 

for binding affinity prediction between candidate compounds and their biological 

targets. Simultaneously limitations of FEP applications also exist, including but not 

limited to, the high cost, long waiting time, limited scalability and application scenarios. 

To overcome these problems, we have developed a scalable cloud computing platform 

(XFEP) for both relative and absolute free energy predictions with refined simulation 

protocols. XFEP enables large-scale FEP calculations in a more efficient, scalable and 

affordable way, e.g. the evaluation of 5,000 compounds can be performed in one week 

using 50-100 GPUs with a computing cost approximately corresponding to the cost for 

one new compound synthesis. Together with artificial intelligence (AI) techniques for 

goal-directed molecule generation and evaluation, new opportunities can be explored 

for FEP applications in the drug discovery stages of hit identification, hit-to-lead, and 

lead optimization with R-group substitutions, scaffold hopping, and completely 

different molecule evaluation. We anticipate scalable FEP applications will become 

widely used in more drug discovery projects to speed up the drug discovery process 

from hit identification to pre-clinical candidate compound nomination.  
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Introduction 

Drug discovery is a challenging task with multiple parameter to be optimized to pre-

defined criteria for various pharmaceutical properties1-2. For drugs targeting specific 

biological molecules, sufficient binding affinity between the drug and its target is the 

basis for developing potency effect of the drug. Therefore, binding affinity is one of the 

critical optimization goals during the drug discovery stages of hit identification, lead 

generation (hit to lead) and optimization. For hit identification, a set of compounds are 

identified with confirmed activity to the biological target usually using high throughput 

screening or virtual screening followed by experimental validation from a library of 

diverse compounds. During the hit-to-lead phase, the structure activity relationship 

(SAR) is explored with various analogous compounds from two or three selected hit 

series, where scaffold hopping involved in the structural change of molecules is a 

common design strategy at this stage. For lead optimization, the SAR is further 

exploited with chemical group substitutions and modifications. During these 

consecutive phases, the change of molecules is gradually narrowed down in structural 

space to achieve sufficient binding affinity. Besides binding affinity, other important 

pharmaceutical properties are also optimized to reach pre-defined criteria. These 

properties include but are not limited to target selectivity, membrane permeability, 

toxicity, metabolism and pharmacokinetics, and solubility etc.. The whole process of 

drug discovery involves many rounds of iterative design (or hypothesis), make, test and 

analysis (DMTA) to tailor pharmaceutical profiles to pre-defined criteria. It takes on 

average 3-5 years and $700 million to bring a satisfactory compound from the discovery 
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stage to the even higher-risk preclinical and clinical development phases3-5. Thus, state-

of-art methods, including both experimental and computational approaches that can 

speed up the project progress and discover high-quality compounds, are continuously 

explored and widely adopted in drug discovery researches.  

Many in-silico methods, including both rule-based physical models and data-based 

machine learning (ML) or artificial intelligence (AI) models, have been adopted in drug 

discovery projects for binding affinity prediction with continuously improved 

performance.6-16 Among these computational methods, free energy perturbation (FEP) 

has attracted increasing attention for binding affinity predictions between candidate 

compounds and their biological target due to its reliable performance in accuracy and 

efficiency. FEP employs a series of well-defined alchemical states to change the system 

from one real ligand to another one (the relative binding free energy method, RBFE) or 

from the target-ligand complex to the separated target and ligand state (the absolute 

binding free energy method, ABFE).17-41 Besides binding affinity, the time-dependent 

information can also be derived from FEP simulations, including the interactions and 

conformational dynamics of the ligand and its target. With this available information, 

FEP can be used to optimize and validate binding pose, predict binding affinity of 

different ligands, interpret binding affinity cliff, and construct virtual SAR, etc. In 

recent years, many studies have been published from both academic and industrial 

communities to further optimize the FEP protocol and methodology for more efficient 

and accurate predictions20-27, 32, 35-40, 42, identify and extend the domain of applicability 

to more challenging target-ligand systems and scenarios35, 43-45, and build open toolkits 
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to reduce the access barrier for FEP applications26, 37-39, 46. Most of these studies focus 

on the use of RBFE for R-group substitution and core hopping in corresponding drug 

discovery scenarios of lead optimization and hit-to-lead stages. The use of ABFE is 

relatively limited due to accuracy issues arising from significant structural changes 

between terminal states of FEP thermodynamic cycle32, 36, 38. All these efforts have 

made FEP more widely applied in drug discovery research. However, limitations in 

scalable FEP applications in drug discovery programs still exist due to issues in the 

scalability, affordability, efficiency, and applicability of scenarios33. 

To overcome these limitations, we have developed a cloud computing platform (XFEP) 

for large-scale FEP simulations, for which the RBFE and ABFE protocols are further 

optimized with system specifically refined force fields and enhanced sampling. 

Together with AI models and wet-lab experiments, we have built an efficient workflow 

for goal-directed design idea generation from AI, quick evaluation and prioritization of 

hypothesized ideas using verified FEP protocol for the given target system, wet-lab 

synthesis and analysis. This makes FEP applications more scalable, affordable and 

efficient in scenarios of hit identification, hit to lead and lead optimization in drug 

discovery projects. In this study, we present the performance of our XFEP platform in 

RBFE and ABFE calculations corresponding to various application scenarios at the 

three phases of drug discovery, based on which the new opportunities and challenges 

of the scalable FEP applications are discussed. 

The remainder of the paper is organized as follows. In the method section, the protocols 

of RBFE, ABFE, system specific force field refinement and XFEP platform 
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introduction are addressed. The performance of the RBFE and ABFE protocols is 

shown using representative examples for R-group substitutions, scaffold hopping, 

macrocycle design, protein residue mutations and hit identification in the results section, 

respectively. The new opportunities and remaining challenges are then discussed in the 

discussion and conclusion sections. We anticipate more impactful applications of our 

scalable XFEP platform in academic studies and industrial projects. 
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Method 

1. RBFE 

The foundations for estimating free energy differences were developed many decades 

ago by Kirkwood in 193518. In this seminal work, Kirkwood introduced the notion of 

coupling parameter, which he used to calculate the free energy difference between two 

well defined thermodynamic states. This laid the groundwork of the perturbation theory 

and thermodynamic integration (TI) methods47-48, both of which rely upon a coupling 

parameter to describe chemical changes between two states. In 1954, Zwanzig proposed 

the FEP method17. This method relates the free energy difference between an initial 

(reference) and a final (target) state of a system to the thermodynamic average of a 

function of their energy difference evaluated in the ensemble of the initial state. 

The XFEP workflow utilizes the AMBER software package34 for free energy 

calculations. Prepared protein structures and docked ligand structures serve as the 

inputs. Common atoms between reference and target compounds are identified using 

structure and maximum common substructure criteria. The input ligands and complexes 

structures are first equilibrated in solution, and then the morphing is performed by 

superimposing the target molecule onto the reference molecule. This step is followed 

by free energy simulations using the AMBER software34. We refer the reader to a 

recently published review paper for details about the AMBER free energy simulation 

protocol34. In order to speed up the calculations, the hydrogen mass transfer (HMR) 

method as well as concerted λ scheme27 are enabled. HMR allows the use of a larger 

timestep, which can speed up the simulations by a factor of two. The concerted λ 
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scheme allows to use fewer lambda windows compared to the more widely used 

stepwise scheme which can also potentially speed up the simulations by another factor 

of two27. Finally, the free energy is evaluated using TI and the multistate Bennett 

acceptance ratio methods48-49. 

2. ABFE 

The calculation of absolute binding affinities is a special case of relative free energy 

calculations, where the target ligand is a dummy ligand. The ABFE approach 

incorporates a considerably different perturbation from the RBFE method and carries 

its own set of difficulties and special considerations. For example, due to the larger size 

of the perturbation, ABFE is much more difficult to converge than RBFE. Also, because 

the target ligand is treated as a dummy ligand, that is the whole ligand is “disappeared” 

from the system, specific treatment for restraining needs to be applied. Moreover, the 

rearrangement of the binding site upon unbinding and the associated water diffusion 

can be very slow processes. As a consequence, ABFE calculations generally demand 

longer simulation times than RBFE to attain comparable accuracy, if these movements 

can ever be sampled properly. 

In the XFEP implementation, Boresch restraining28 is applied. Six restraints, including 

one bond, two angles and three dihedrals, are switched on first, followed by switching 

off the partial charges on all atoms. Then the van der Walls (vdW) interactions between 

the ligands and the environment are turned off keeping the restraints on. At the end, an 

analytical correction term is applied to account for the effect28 of the restraints. 

Additionally, for both RBFE and ABFE, replica exchange with solute tempering 
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(REST2)50 is implemented to enhance the conformation sampling of subsystems of 

interest in XFEP. 

3. System specific force field refinement protocol 

Force field (FF) is one of the critical factors that govern the accuracy of FEP predictions. 

The initial FF parameters for the target specific ligands are derived from an advanced 

general force field developed internally for drug-like molecules (XFF), the 

parametrization philosophy of which is consistent with AMBER macromolecular force 

fields51-52. The ligands were firstly fragmented to construct smaller model compounds 

for QM calculation at B3LYP/6-31G*//RI-MP2/cc-pVTZ level using the PSI4 

package53. The model compounds were constructed by reserving the chemical 

environment of individual flexible torsions for FF validation and further refinement. 

Atomic charges are derived with RESP using multiple low energy conformations for 

the model compounds54. vdW parameters are transferred from the GAFF1.8.1 force 

field52. Using QM energy profiles derived from model compounds, the torsion 

parameters are refitted and then transferred to full ligand compounds for FEP 

simulations.  Table 1 shows the comparison of MM and QM torsion profile agreement 

before and after refitting for ligands of the eight biological targets discussed below for 

the RBFE benchmark. 

4. Cloud computing platform for FEP simulations 

To get access to scalable computing resources55-56, we have developed the XFEP cloud 

computing platform for FEP based simulations. The platform enables simulation tasks 

of RBFE, ABFE and the related relative hydration free energy (RHFE) and absolute 
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hydration free energy (AHFE). Therefore, XFEP supports studies of binding of small-

molecule ligands, peptides or mutated proteins to their biological targets. XFEP 

provides multiple options via a GUI to combine perturbation pair design for RBFE and 

RHFE, force field parameter derivation from existing FF repository and for further 

refinement, enhanced sampling choices for selected subsystems of interest, correction 

schemes for charge change, decoupled as well as concerted schemes for electrostatic 

and vdW interactions, simulation settings for different tasks and for both efficient and 

full protocol FEP (Figure 1). A number of 5,000 FEP pairs can be completed reliably 

within one week using the efficient protocol of XFEP on 50~100 GPU cards.  
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Results 

1. RBFE performance benchmark with R-group substitutions 

We validated our XFEP workflow and in house force field parameters (XFF with system 

specific refinement) against eight datasets from Wang et al.20: Bace, CDK2, Jnk1, 

MCL1, p38, PTP1B, Thrombin, and Tyk2. In order to be able to compare with FEP+ 

results directly, we used exactly the same pairs as were used in Roos et al.57. The protein 

and ligands poses were taken directly from Wang et al. 20. All simulations were carried 

out for five repetitions starting from independently randomized velocities. The 

simulation time for each lambda window was 2 ns. The resulting ΔΔG values were 

calculated from the averages of the five runs. The correlation coefficient R2 , the root-

mean-square error (RMSE), the mean unsigned error (MUE) and the Kendall’s rank 

coefficient τ were calculated and compared with the raw ΔΔG results from FEP+ 

without cycle closure correction added, see Table 2 and Figure 2. 

In terms of accuracy of the FEP results for these eight targets, our XFEP workflow 

combined with our in-house force field parameters outperforms FEP+ in combination 

with opls2.1 in terms of both RMSE and R2 58. Also, our results show comparable R2 

as opls3e. This indicates that in terms of correlation with experimental data, our XFEP 

workflow in combination with our in-house force field parameters show as good 

performance as FEP+ in combination with the most up-to-date OPLS force field59. In 

terms of RMSE, our workflow shows slightly worse performance than opls3e, with 0.15 

kcal/mol larger RMSE. This is likely due to some outliers and relatively high RMSE in 

the MCL1 system. In depth studies of these outliers will be one of our main priorities 
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for next-round refinement of XFEP. 

The sampling time per perturbation is also of interest as computational resources in 

drug design projects are limited. In opls2.1 simulations, a simulation time of 60 ns per 

perturbation was used20, while in opls3e simulations, a simulation time of 300 ns per 

perturbation was used57. The standard XFEP workflow uses 22 lambda windows and 2 

ns per lambda window. Hence, the cumulative simulation time is 220 ns per 

perturbation (accounting for the five repetition per perturbation) in the full-protocol 

FEP. Therefore, the current simulation time per perturbation in our workflow is 

comparable to that of FEP+. However, in an effort to improve computational efficiency, 

we have also tried to reduce the number of lambda windows to 11, using a concerted λ 

scheme27, and the simulation time to 1 ns per lambda window. We have verified that 

using this procedure we obtain results that are very consistent with those obtained with 

the standard workflow described above (data not shown). This optimized setup allows 

to reduce the simulation cost by a factor of 4 in the efficient-protocol FEP. 

2. RBFE performance benchmark with scaffold hopping 

Besides R-group perturbations, FEP calculations have also been employed to calculate 

the free energy changes caused by altering the bonding topology of compounds, which 

is usually referred to as core (scaffold)-hopping in the field of FEP calculations. 

Modeling the changes of bonding topology using FEP is technically challenging but 

can significantly broaden the application of FEP calculations in drug design. Successful 

estimation of the effect caused by altering the bonding topology of compounds requires 

accurate modeling of both the enthalpy and entropy change upon binding. These effects 
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can be well captured with MD-based methods like FEP calculations. Here we 

demonstrate how XFEP can be applied to several different scenarios of drug design, in 

which the bonding topologies of compounds are altered to different extents (Figures 3-

6).  

Minor modification of the bonding topologies such as ring opening/closure, ring and 

chain contraction/expansion are often used by medicinal chemists during rational 

design and optimization of compounds. Two transformations involving ring closure and 

chain expansion60-61 using XFEP are studied here and the results are shown in Figure 3. 

Macrocyclization of linear compounds is a common strategy employed by medicinal 

chemists, which enhances the binding affinity between compounds and protein mainly 

by minimizing the entropy loss upon binding. Macrocyclized compounds can be further 

optimized by rigidification and relieving of strain, which is usually achieved by 

changing the ring size of of the compounds and by modifying the chemistry of the ring 

scaffolds (Figure 4). 

Besides minor changes on the bonding topologies of compounds, XFEP also offers 

solutions for transformations between cores with highly different bonding topologies. 

This allows for the evaluation of molecules constructed by using fragment-based design, 

in which ligands with different sizes and shapes of cores are proposed (Figure 5). 

During the design of bi-valent, bi-substrate and PROTAC compounds, the length, shape 

and rigidity of linkers can greatly affect the potency of the compounds. Choosing the 

optimal linkers usually requires careful balance in the gain and loss of enthalpy and 

entropy upon binding. The capability of XFEP to model with high accuracy both the 
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enthalpy and entropy change upon binding opens the door for a more reliable design of 

linkers (Figure 6). 

3. ABFE performance benchmark for molecules with different scaffolds 

Apart from the conventional R-group substitutions and core hopping discussed above, 

more dramatic structural changes may occur in the hit-to-lead stage of the drug design 

cycle. Sometimes, the molecules molecules considered at this stage may not share any 

common part, which makes it difficult for R group substitution FEP or even core 

hopping to rank them. What’s more, in the hit finding stage, where virtual ligand 

screening is performed, one usually needs to rank dissimilar compounds. In this case, 

structure-based tools such as docking involve significant approximations that limit their 

accuracy. In all these instances ABFE calculations may prove very useful. Since ABFE 

does not rely on any reference compound, it can be used to compare binding affinities 

of very different molecules. 

We have implemented ABFE into our XFEP workflow, and tested the implementation 

using four of eight targets shown in Table 1: CDK2, Jnk1, p38 and Tyk2. These four 

targets were selected because all these ligands are neutral compounds. ABFE was 

carried out using the XFEP workflow in combination with in-house force field 

parameters (XFF with system specific refinement). The simulation setup is as follows. 

11 lambda windows were used for the decharge step to set all the partial charges of the 

ligand to zero, and 16 lambda windows were used for the vdW step to decouple the 

vdW interactions between the ligand and the environment. Simulation time was 2 ns 

for each lambda window. The results are shown in Figure 7. The performance of ABFE 
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is comparable with that of RBFE (Figure 1). Additionally, we further tested ABFE on 

the BRD4 system. To this purpose, we chose 18 compounds with 15 different scaffolds, 

see Figure 8. For this system, the GAFF2 force field in AMBER2052 was used. The 

correlation between predicted ABFE and experimental data is shown in Figure 8. ABFE 

results correlate with experimental data very well, with a correlation coefficient R2 of 

0.78. 

However, we did also notice a systematic shift of the ABFE results compared with 

experimental results for both test systems. The range of ABFE results (from -15 

kcal/mol to –8 kcal/mol for BRD4 system) is almost twice as big as the range of 

experimental data (from –10 kcal/mol to –6 kcal/mol for BRD4 system). This 

systematic shift may be due to a deficiency of the force field parameters, or to inaccurate 

accounting of the effect of binding site changes upon unbinding due to the limited 

simulation time. 

4. RBFE performance benchmark for protein mutations 

FEP calculations have been widely used for studying the effect of protein mutations on 

various thermodynamic quantities. Such calculations have been successfully used to 

predict drug resistance, design selective compounds, optimize binding affinities and 

thermo-stabilities of peptide inhibitors62-64. Typically, the FEP calculations for studying 

protein mutations are carried out by perturbing the side chains of residues from one to 

another, which is similar in spirit to the R-group perturbations described above. 

We carried out FEP calculations to calculate the changes of binding affinity between 

the Streptomyces griseus proteinases B (SGPB) and the turkey ovomucoid third domain 
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(OMTKY3) caused by single mutations65. This protein-protein complex has been used 

to validate the accuracy of FEP calculations in several previous studies64, 66. FEP 

calculations were conducted on five selected mutations, which display changes in 

binding affinity ranging from 3.0 to 8.5 kcal/mol. The calculated and experimental 

values have an MUE, RMSE, Kendall’s τ and R2 of 0.55 kcal/mol, 0.76 kcal/mol, 0.95 

and 0.97 respectively (Table 3). 

FEP calculations were also conducted to calculate the change of binding affinity 

between the Abl kinase and the drug compound Axitinib caused by single mutations67. 

Such calculations can be used to predict mutations that lead to drug resistance due to 

weakened binding (Table 4). 

Selectivity calculations were conducted on the compound CEP-701 and Mitogen-

activated protein kinase kinase kinase kinase (MAP4K) family. The relative binding 

free energy difference of MAP4K1/HPK1 and other isoforms were computed by 

mutating the residues which form direct contact with the bound compound. An example 

is shown in the following table (Table 5). 
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Discussions 

1. A statistical view of prediction performance for RBFE 

Based on data from 333 perturbation pairs of the eight systems studied above, the FEP 

performance was also examined through a statistical analysis of the distribution and 

range of the errors of the predicted values with respect to the experimental data. For 

individual pairs, the predicted ΔΔG result is used to assess if the target molecule is more 

favorable in binding affinity than the reference compound. At this level the prediction 

accuracy is mainly dictated by the force field, the physical rigorousness of the FEP 

protocol, the accurate modeling of systems, and the sampling of important 

conformational states etc. However, under most circumstances, multiple molecules are 

evaluated together for priority ranking. In this case, the performance of the predictions 

is usually characterized by the correlation coefficient (R2) and the Kendall’s rank 

correlation coefficient (τ) between the experimental and predicted values. We notice 

that, as hypothesized in other studies44, 68, the distribution of the prediction error  

(ΔΔGexp-ΔΔGFEP) is well represented by a Gaussian distribution N(µ, σ). We examined 

this hypothesis by fitting a Gaussian model to the 333 pairs from different force fields, 

indicating a well Gaussian distribution (Figure 9). Interestingly, the distribution of 

experimental values (ΔΔGexp) also generally follows a Gaussian distribution with a 

standard deviation of the mean value σexp = 1.14 kcal/mol. Based on these observations, 

we carried out a model study of the R2 and τ dependence on the variation range of the 

experimental values, and the variation of the predicted errors with respect to the 

experimental values. Figure 10 shows the dependence of the average R2 and τ to the 
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two parameters. A dramatic change can be observed along with the range of 

experimental values and the predicted errors. For typical values of predicted errors at 

RMSE = 1.00 kcal/mol, the average R2 and τ are at 0.56 and 0.54, which is close to our 

observations from studies with different force fields (Table 2). This suggests the 

interpretation and expectation of prediction performance using R2 and τ should consider 

the range and accuracy of experimental values included in the dataset. For typical inter-

lab measurements, the average experimental variations are about 0.6 kcal/mol while for 

intra-lab measurements the typical variations are of 6962￼ These average variations 

correspond respectively to an upper limit of the predicted average R2=0.78 and 0.97, 

average τ= 0.69 and 0.89 at RMSE=0.6 kcal/mol and 0.2 kcal/mol at an experimental 

range of σexp = 1.14 kcal/mol. Similar considerations can also be applied to the ABFE 

cases if a similar distribution of errors of the predictions is observed. In summary, the 

statistical analysis of the agreement between predicted and experimental values gives a 

measure of how much the FEP performance can be improved.  

2. Scalable and efficient FEP prediction with cloud computing platforms 

The high cost and long waiting time for FEP calculations are two other main limitations 

for the application of FEP to real drug discovery projects that require efficient DMTA 

iteration and evaluation of many different molecules for priority ranking and hypothesis 

testing. Using scalable resources on cloud computing platforms, the typical number of 

instances of FEP calculations for a project can be expanded from tens or hundreds to 

thousands or even more, potentially allowing for a two-fold increase in the number of 

evaluated molecules. For example, for a medium-sized system (50,000 atoms), with 
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sufficient GPU cards available in spot-instance mode on a cloud platform, e.g. Amazon 

Web Services, all states for one perturbation pair can be run in parallel and completed 

within a walltime of half an hour for 5 ns simulation length per window. Furthermore, 

with a thoroughly validated efficient FEP protocol for a given system, it is possible to 

further reduce the GPU cost of an additional factor of 4-8 as discussed in the methods 

section. Within this framework and under the assumption of emough GPUs available 

in spot-instance mode, the cost of FEP calculations for one molecule can vary from less 

than $1 to $10 depending on which FEP protocol (efficient or full) is adopted. 

3. New opportunities for FEP applications in drug discovery projects 

With persistent efforts in FEP methodology and protocol improvement from both the 

academic and industrial communities, reasonably good prediction performance has 

been achieved in predicting both relative and absolute binding affinities for many 

biological systems. Together with the scalable cloud computing resources available, 

FEP calculations can be applied to thousands of molecules in one week with an average 

GPU cost controlled at less than $1 for each molecule. This capability paves the way 

for FEP predictions to be applied in new scenarios. In this section we will briefly 

discuss three possible examples of such new applications. 

The first scenario is the combination of AI and scalable FEP applications. Here AI is 

used as a tool for fast idea generation with directed goals, e.g. for R-group substitutions, 

core hopping, or de novo molecule generation with defined criteria like, for instance, 

molecular weight, polar surface area, number of hydrogen bond donor and acceptor, 

synthesizability, and binding affinity, etc70. Then thousands of molecules are selected 
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from the AI generation step, for FEP prediction with validated performance against a 

selected biological target. The predicted binding affinity data are then used in a next 

round of AI model refinement with reinforcement learning to generate new molecules 

for subsequent FEP evaluation leading to an automated iterative scheme that improves 

the quality of the candidate molecules generated. A recent paper from Schrödinger and 

our internal application of the combined AI and FEP approach suggest a consistent 

enrichment factor of 4-6 compared to random selections from bare AI generated 

molecules25. However, further studies are required to demonstrate quantitatively how 

AI and FEP tools can be combined together in more intensive drug discovery scenarios. 

The second scenario we consider, is the application of the scalable ABFE prediction at 

the hit identification stage, which so far has seen only limited application compared to 

RBFE calculations due to the high cost and error of ABFE predictions33. From a drug-

design perspective, RBFE and ABFE represent two considerably different domains of 

applicability. RBFE is more appropriate for hit-to-lead and lead optimization, when 

near chemical accuracy (e.g., 1 kcal/mol) is critical to making correct ranking between 

the target and reference compounds; while in the hit finding process, for virtual 

screening ABFE accuracy need only be sufficient to separate binders from nonbinders. 

Hit identification is devoted to maximizing the number of hit series with confirmed 

activity to a validated biological target, from which drug-like compounds can be 

developed with the best chance. It is one of the most critical steps in drug discovery 

because a high quality of starting hits leaves more optimization space to trade-off with 

other essential properties. Tyipcally, virtual screening based on molecular docking and 
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high throughput screening is used to select a diverse set of molecules from existing 

compound libraries. Thanks to our scalable implementation, ABFE can be used in 

combination with these widely used methods, and applied to thousands of selected 

compounds to further explore and prioritize the relevant chemical space. The 

performance of ABFE predictions suggests that addition of the evaluation of binding 

affinity to the screening process can lead to better and faster hit compounds 

identification. In a recent study, ABFE is applied to drug repurpose for identifying 

potent SARS-CoV-2 main protease inhibitors, from which an unprecedentedly high hit 

rate is achieved71. This demonstrates a promising potential to speed up hit identification 

by integrating the ABFE prediction in virtual screening. Further exploration is 

anticipated to demonstrate how scalable ABFE can help with better hit identification in 

more drug discovery programs. 

The third scenario of scalable FEP application is virtual SAR evaluation at the hit-to-

lead and lead optimization stages. The goal of the hit-to-lead stage is to identify two or 

three hit series with the best potential to be developed into drug-like leads. During this 

stage the binding affinity increases from the micro-molar (µM) range of typical hit 

compounds to nano-molar (nM) range of promising lead compounds. Lead 

optimization is then followed for further improvement of the binding affinity by one or 

two orders together with optimization of other essential pharmaceutical properties. 

During the hit-to-lead and lead optimization stages, SAR is constructed from DMTA 

cycles, from which more experimental data are generated. With validated prediction 

performance for given biological targets, FEP can thus be applied for virtual SAR 
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evaluation on a scale of thousands of compounds per project. This enables quick 

prioritization of proposed hypotheses and helps to identify most of the true negative 

compounds. In this scenario, FEP can be expected to speed up DMTA cycles with fewer 

compounds to make and test but with a larger success rate. 

4. Remaining challenges for FEP applications in drug discovery projects 

Despite the new opportunities for FEP applications in drug discovery projects discussed 

above, there are remaining challenges, some of which are as follows. 

a. FEP for RNA target: To the best of our knowledge, both RBFE and ABFE 

calculations have only been applied to protein targets. However, the number of 

druggable protein targets is very limited compared to the number of RNA targets. 

Multiple studies have shown RNA is a suitable small-molecule drug target72-74. 

However, FEP prediction targeting RNA faces several major challenges including 

the limited accuracy of RNA and related metal-ion FF75-78, the issue of proper 

sampling for flexible RNA structures, and the complications due to the highly 

charged environment for RNA and the counterions. This is a new scenario for 

future exploration of FEP applicability. 

b. How to interpret FEP prediction results: From retrospective validation of 

FEP predictions, we know that it is unavoidable to have false negative and false 

positive results in most cases. False positive cases are not always just useless 

byproducts that only increase the computational cost. In fact, they can also be used 

to test the hypothesis of design ideas as invalidate chemical space. FEP can identify 

most true negative cases especially when there exist binding affinity cliffs. On the 
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other hand, false negatives are the most worrying cases because they have the 

power to derail a project by hampering serendipity. Thus it is tricky to interpret the 

FEP results under different circumstances and tolerance to the prediction error 

should be kept in mind.  

c. The variability in FEP performance induced by different users: There are 

many variables that govern the FEP performance for given biological targets and 

chemical compounds, which includes the selection of reference complex structure, 

the treatment of biological targets and small molecules, the modeling details of 

systems, the choice and refinement of FF, the preparation of the systems before the 

FEP production runs, the atom mapping between the pair of compounds in RBFE 

or the selection of restraints in ABFE etc. These possibilities cannot all be covered 

in a user manual. Only experienced FEP experts can positively handle these 

variables to build a reliable FEP protocol within a given project timeline. However, 

most FEP users are not as experienced as the experts in real discovery projects. 

This creates a gap in FEP performance between different users. To alleviate this 

issue, more work dedicated to bridging the gap in user experience is required.  
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Conclusions 

With progress in FEP methodology and protocol improvement, algorithm optimization, 

and GPU hardware development, FEP has been proven as a reliable in-silico method 

for both RBFE and ABFE predictions. Additionally, large-scale FEP calculations have 

become available in drug discovery projects in a more efficient and affordable way. 

These advancements, together with artificial intelligence (AI) techniques for goal-

directed molecule generation and evaluation, enable more opportunities for FEP 

applications in the drug discovery stages of hit identification, hit-to-lead, and lead 

optimization with R-group substitutions, core hopping, and completely different 

molecules evaluation. Based on retrospective validation of FEP performance for given 

biological targets, scalable evaluation with FEP of 5,000 designed compounds can be 

completed in one week using 50-100 GPU cards for a cost approximately equivalent to 

that of the synthesis of one new compound. We anticipate that scalable FEP 

applications will become widely used in more drug discovery projects to accelerate the 

progress of phases from hit to pre-clinical candidate compound. 
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Table 1. Comparison of MM and QM energy profiles for ligands of the eight protein 

targets20 

Biological 

targets 

XFF initial parameters* 
Parameters from system specific 

refinement 

RMSE in kcal/mol R2 RMSE in kcal/mol R2 

Bace 1.18 0.70 0.45 0.93 

Jnk1 0.84 0.92 0.67 0.97 

Tyk2 1.26 0.88 0.69 0.96 

Thrombin 1.33 0.91 1.09 0.94 

CDK2 1.84 0.59 0.59 0.90 

MCL1 1.76 0.65 1.34 0.79 

PTP1B 1.09 0.78 0.71 0.90 

p38 1.03 0.79 0.63 0.93 

*The larger RMSE for MCL1 and Thrombin partially due to deviation at the energy 

barrier regions along torsional profiles between QM and MM. 
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Table 2. Summary for the performance of XFEP and FEP+ (RMSE in kcal/mol) 

Targets 
Nr. of 

cmps 

Nr. of 

pairs 

XFF+XFEP OPLS2.1(a) OPLS3e(b) 

RMSE R2 τ RMSE R2 τ RMSE R2 τ 

Bace 36 58 1.10 0.18 0.23 1.05 0.35 0.37 1.11 0.39 0.43 

CDK2 16 25 0.95 0.56 0.56 1.14 0.14 0.27 1.02 0.32 0.43 

Jnk1 21 34 0.86 0.39 0.46 1.01 0.34 0.45 0.88 0.36 0.39 

MCL1 42 71 1.44 0.30 0.39 1.44 0.25 0.37 1.19 0.27 0.37 

P38 34 56 1.05 0.74 0.69 1.06 0.60 0.59 0.89 0.57 0.55 

PTP1B 23 49 1.18 0.56 0.55 1.27 0.41 0.51 0.66 0.82 0.74 

Thrombin 11 16 0.65 0.05 0.16 0.98 0.15 0.12 1.09 0.28 0.44 

Tyk2 16 24 0.50 0.83 0.71 0.95 0.47 0.51 0.66 0.71 0.66 

Overall 199 333 1.11 0.47 0.49 1.17 0.35 0.44 0.98 0.46 0.49 

(a). Ref. 20 

(b). Ref. 57 

 

  



34 

 

 

Table 3. Comparison of the calculated and experimental ∆∆G values for the change of 

binding free energy between SGPB and OMTLY3 caused by mutations (All units in 

kcal/mol). 

Mutations XFEP* Experimental 

ALA 18 3.15 3.04 

PHE 18 1.18 1.37 

GLY 18 4.57 5.02 

PRO 18 8.02 8.47 

VAL 18 1.48 3.04 

*Overall performance, MUE: 0.55 kcal/mol, RMSE: 0.76 kcal/mol, R2: 0.97, Tau: 0.95. 
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Table 4. Comparison of the calculated and experimental ∆∆G values for the change of 

binding free energy between Axitinib and kinase Abl caused by single mutations (All 

units in kcal/mol). 

Mutations XFEP* Experimental 

L248V 0.84 0.32 

T315V -1.91 -1.73 

F486S 0.14 0.05 

*Overall performance, MUE: 0.26 kcal/mol, RMSE: 0.32 kcal/mol, R2: 0.98. 
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Table 5. The selectivity of compound CEP-701 in term of binding affinity calculated 

by XFEP and measured by experiments (All units in kcal/mol). 

 XFEP Experimental 

MAP4K1/HPK1 0.0 0.0 

MAP4K2/GCK -1.2 -1.2 

MAP4K3/GLK 0.4 0.6 

MAP4K4/HGK -1.1 -0.3 

MAP4K5/KHS -0.2 0.1 

*Overall performance, MUE: 0.33 kcal/mol, RMSE: 0.51 kcal/mol, R2: 0.90. 
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Figure 1. Examples of XFEP graphic user interface 
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Figure 2. Correlation between FEP predicted relative binding free energies ΔΔG and 

experimental data for all eight systems. The dashed lines represent y=x and y=x±2, 

and the green area indicates that the FEP predicted ΔΔG are within 2 kcal/mol of their 

experimental values. 
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Figure 3. Examples of ring opening and chain contraction studied by XFEP. A) a ring 

closure transformation of two checkpoint kinase 1 ligands. B) a chain expansion 

transformation of two Cathepsin S ligands. Units are kcal/mol. 
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Figure 4. XFEP calculations on macrocyclic compounds of Hsp9079. The 

transformations involve rigidification, contraction and ring-opening of the macrocycles. 

Units are kcal/mol. 
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Figure 5. An example of FEP calculation on core-hopping using fragment-based design. 

Core-hopping on the ligands of Tyrosine-protein phosphatase (SHP2)80. Unit is 

kcal/mol. 
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Figure 6. An example of XFEP study of the binding affinity change caused by changing 

the linkers of PRTOTAC compounds which binds to the bromodomain of human 

SMARCA2 and pVHL:ElonginC:ElonginB complex81. Unit is kcal/mol. 
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Figure 7. Correlation between ABFE predicted absolute binding free energies (ABFE) 

and experimental data for CDK2, Jnk1, p38 and Tyk2 compounds. 
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Figure 8. Correlation between ABFE predicted absolute binding free energies (ABFE) 

and experimental data for all BRD4 compounds. 
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Figure 9. The probability density distribution of RBFE predicted error ΔΔGexp-ΔΔGFEP 

from different force fields. Solid line represents fitting to the 330 pairs with Gaussian 

distribution N (µ, σ). 
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Figure 10. The distribution of R2 and τ (different colors) along with the range of 

experimental values (represented by standard deviation of the mean value, σexp, in 

Gaussian distribution) and FEP predicted RMSE. Each point was averaged over 1000 

independent generations for 30 pairs. 


