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Abstract

The nonequilibrium Fermi’s golden rule (NE-FGR) describes the time-dependent rate

coefficient for electronic transitions, when the nuclear degrees of freedom start out in a

nonequilibrium state. In this paper, the linearized semiclassical (LSC) approximation of the

NE-FGR is used to calculate the photoinduced charge transfer (CT) rates in the carotenoid-

porphyrin-C60 molecular triad dissolved in explicit tetrahydrofuran. The initial nonequilibrium

state corresponds to impulsive photoexcitation from the equilibrated ground-state to the ππ∗

state, and the porphyrin-to-C60 and the carotenoid-to-C60 CT rates are calculated. Our results

show that accounting for the nonequilibrium nature of the initial state significantly enhances

the transition rate of the porphyrin-to-C60 CT process. We also derive an instantaneous Marcus

theory (IMT) from LSC NE-FGR, which casts the CT rate coefficients in terms of a Marcus-

like expression, with explicitly time-dependent reorganization energy and reaction free energy.

IMT is found to reproduce the CT rates in the system under consideration remarkably well.

1 Introduction

Photoinduced charge transfer (CT) processes have been the subject of intensive research efforts

over the last several decades, due to their fundamental importance in cellular respiration,1 repair of

photodamaged DNA,2 photosynthesis,3,4 photocatalysis,5 and organic photovoltaics (OPV).6–18

A variety of first principle computational methods for calculating photoinduced CT rates have

been proposed for and applied to gas-phase molecules.19–23 However, the development of similar

methods for calculating photoinduced CT rates in complex condensed-phase systems remains

challenging.24–28

One exception is Marcus theory, which has offered an intuitive approach towards understanding

CT rate constants in a wide range of condensed-phase systems,29,30 as well as fitting and

interpreting experimental measurements.31 However, Marcus theory is based on the assumptions

that the nuclear degrees of freedom (DOF) start out at thermal equilibrium on the donor electronic

potential energy surface (PES) and that CT can be described by a rate constant. Under those
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conditions, the Marcus theory CT rate constant is expressed in terms of only three parameters:

(1) The electronic coupling coefficient, (2) The reorganization energy, and (3) The reaction

free energy.24 As such, Marcus theory provides a robust, flexible, and convenient platform for

calculating CT rate constants in complex condensed-phase systems.15,32–34 However, Marcus

theory cannot account for the effects caused by the nonequilibrium nature of the initial state in

photoinduced CT. Such effects are expected to be important when the time scale of relaxation to

thermal equilibrium on the donor PES is similar to or longer than the time scale on which the

electronic transition occurs.35,36

In contrast, the nonequilibrium Fermi’s Golden Rule (NE-FGR) is designed to account for ef-

fects caused by the nonequilibrium nature of the initial state.37–42 Furthermore, combining the NE-

FGR with the linearized semiclassical (LSC) approximation has made it possible to apply the NE-

FGR to complex condensed-phase systems described by all-atom anharmonic Hamiltonians.40,41

The LSC NE-FGR expression was also shown to coincide with the corresponding quantum-

mechanically exact result when the donor and acceptor PESs correspond to multidimensional

parabolas that differ only with respect to their equilibrium geometry and energy.40 Furthermore,

the time-dependent NE-FGR rate coefficient reduces to the time-independent equilibrium FGR (E-

FGR) transition rate constant when the system starts out at equilibrium on the donor state and the

electronic dephasing time is shorter than the electronic transition time scale. The Marcus theory

rate constant can then be obtained from the LSC approximation of the E-FGR by assuming that

(1) The nuclear DOF are classical; (2) The nuclear motion occurs on a time scale slower than

the electronic dephasing time; and (3) The equilibrium distribution of the donor-acceptor potential

energy gap is Gaussian.33,43

Recently, we used the LSC E-FGR to estimate the CT rate constants between the three

excited states of the carotenoid–porphyrin–C60 (CPC60) molecular triad solvated in explicit

tetrahydrofuran (THF).44 It was found that the CT rate constants are strongly dependent on the

conformation of the triad, and that CT in the linear conformation is faster than in the bent

conformation.15,44 It was also found that CT is driven by the solvent DOF, rather than by the
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intramolecular triad DOF.44 Here, the nuclear motion does not involve light particles and occurs

at room temperature, so significant nuclear quantum effects are not expected; our recent study

of mapping the all-atom Hamiltonians onto spin-boson models indeed showed very small nuclear

quantum effects in this solution of triad in THF.45

In this paper, we apply the LSC NE-FGR to the above-mentioned solvated triad system in order

to estimate the effects of nonequilibrium initial state preparation on the rate of photoinduced CT.

To the best of our knowledge, this is the first-ever application of LSC NE-FGR to a condensed-

phase system described by an all-atom anharmonic Hamiltonian. We also show that it is possible

to derive an instantaneous Marcus theory (IMT, see below) from LSC NE-FGR by making several

reasonable assumptions.

We assume that the triad is initially at equilibrium on the ground (G) state PES, CPC60, before

being impulsively photoexcited to the P-localized excitonic ππ∗ state, CP∗C60. Photoexcitation is

then followed by either a transition to the excited P-to-C60 CT state, CP+C−60, which is denoted as

CT1:

CPC60(G)
hν−→ CP∗C60(ππ

∗)−→ CP+C−60(CT1), (1)

or to the excited C-to-C60 charge separated state, C+PC−60, which is denoted as CT2:

CPC60(G)
hν−→ CP∗C60(ππ

∗)−→ C+PC−60(CT2). (2)

One-dimensional cartoons of the relevant PESs involved in these CT processes in two different

triad conformations (bent and linear) are represented in Fig. 1.

The remainder of this paper is organized as follows. Section 2 outlines the nonequilibrium

Fermi’s Golden Rule and the instantaneous Marcus theory, respectively. The model and simulation

techniques for the triad in THF are described in Sec. 3. Results are reported in Sec. 4. The

conclusions and outlook are provided in Sec. 5.
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Figure 1: One-dimensional cartoons of the potential energy surfaces (PESs) for different donor-to-
acceptor transitions between excited states after a vertical photoexcitation from the ground state in
the bent (top) and linear (bottom) carotenoid-porphyrin-C60 (CPC60) triad conformations. Here,
〈U〉eq is the average donor-acceptor potential energy gap sampled on the equilibrium donor (ππ∗)
state, whereas 〈U〉0 is the average donor-acceptor potential energy gap sampled on the equilibrium
ground state (G). The relative positions of the harmonic PESs are quantitatively obtained using
the corresponding values of 〈U〉eq, 〈U〉0, and the reorganization energy Er obtained from MD
simulations performed on the all-atom anharmonic model of a rigid triad dissolved in THF.
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2 Theory

2.1 Nonequilibrium Fermi’s Golden Rule

Consider a two-state system with the overall Hamiltonian Ĥ = ĤD|D〉〈D|+ĤA|A〉〈A|+ΓDA(|D〉〈A|+

|A〉〈D|), where |D〉 and |A〉 represent the diabatic donor and acceptor electronic states, respectively,

and ΓDA is the electronic coupling coefficient. ĤD/A are the corresponding nuclear Hamiltonians,

ĤD/A = P̂2/2+VD/A(R̂), where R̂ =
(
R̂1, . . . , R̂N

)
and P̂ =

(
P̂1, . . . , P̂N

)
are the mass-weighted

nuclear coordinates and momenta and VD/A(R̂) are the donor/acceptor PESs (in what follows,

boldfaced quantities correspond to vectors and quantities capped with ˆ correspond to quantum-

mechanical operators, while the same quantities without the ˆ correspond to their classical

counterparts).

Assuming that the system starts out at the donor electronic state with the state of the nuclear

DOF described by the nuclear density operator ρ̂0 (in this paper, ρ̂0 is chosen to correspond to

thermal equilibrium on the ground state PES, ρ̂0 = ρ̂
eq
G = e−β ĤG/Trn[e−β ĤG], where ĤG = P̂2/2+

VG(R) is the ground state nuclear Hamiltonian, β = 1/kBT is the inverse temperature, and Trn(·)

denotes trace over the nuclear Hilbert space), the donor-state population PD(t) is given by

PD(t) = Tr
[
e−iĤt/h̄

ρ̂0eiĤt/h̄|D〉〈D|
]
, (3)

where Tr = TrnTre denotes trace over both of the nuclear and the electronic Hilbert spaces.

Applying second-order perturbation theory, the donor-state population can be written as37,40

PD(t)≈ exp
[
−
∫ t

0
dt ′k

(
t ′
)]

, (4)

where the time-dependent rate coefficient is defined as

k
(
t ′
)
=

2
h̄2 Re

∫ t ′

0
dτC

(
t ′,τ
)
. (5)
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Here,

C
(
t ′,τ
)
= |ΓDA|2 Trn

[
e−iĤDt ′/h̄

ρ̂0eiĤDt ′/h̄e−iĤAτ/h̄eiĤDτ/h̄
]
. (6)

For a detailed discussion of the LSC approximation of Eq. 6, as well as the progression of

approximations that can be derived from it, the reader is referred to Appendix A and Ref. 40.

The results presented in this paper were obtained at the “C-D” level of approximation, which

corresponds to classical initial sampling and dynamics on the donor PES:

CC-D (t ′,τ)=|ΓDA|2
∫

dR0dP0ρ0(R0,P0)

× exp
[
− i

h̄

∫ t ′−τ

t ′
dtU

(
RD

t
)]

. (7)

Here, ρ0(R0,P0) is the phase-space density that correspond to the classical limit of ρ̂0, U(R) =

VD(R)−VA(R) is the donor-acceptor potential energy gap, and RD
t is the nuclear configuration

at time t, obtained via classical dynamics on the donor PES, starting with (R0,P0) as the initial

conditions. The nonequilibrium relaxation dynamics during t ′ is propagated on the donor PES at

all levels of LSC NE-FGR. As we will show below, the results are not affected by our choice to

perform the calculation at the C-D level, where the coherence dynamics during (t ′, t ′− τ) occurs

on the donor PES, since the CT rates in the system under consideration turn out to be insensitive

to the choice of PES that the coherence dynamics is based on.

We also note that starting with the nuclear DOF at thermal equilibrium on the donor PES, i.e.

ρ̂0 = ρ̂
eq
D = e−β ĤD/Trn[e−β ĤD], implies that C(t ′,τ)→ C (τ) = |ΓDA|2 Trn

[
ρ̂

eq
D e−iĤAτ/h̄eiĤDτ/h̄

]
.

Assuming that the donor-to-acceptor transition happens on a time scale longer than the lifetime of
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C (τ) then leads to PD(t) = exp(−kD→At), where kD→A is the E-FGR rate constant given by:33

kD→A =
2
h̄2 Re

∫
∞

0
dτ C(τ),

C(τ) =|ΓDA|2Trn

[
ρ̂

eq
D e−iĤAτ/h̄eiĤDτ/h̄

]
≈|ΓDA|2

∫
dR0dP0ρ

eq
D (R0,P0)

× exp
[

i
h̄

∫
τ

0
dtU

(
RD

t
)]

. (8)

It should be noted that the time-dependent rate coefficient, k(t ′), replaces the time-independent

rate constant, kD→A, when the nuclear DOF start out at a nonequilibrium initial state. Accounting

for this effect is important when k(t ′) and kD→A are significantly different and the time scale for

reaching thermal equilibrium on the donor PES is comparable to or longer than the time scales of

donor-to-acceptor electronic transition, ∼ k−1
D→A. The last equality in Eq. (8) corresponds to the

LSC approximation for the E-FGR at the C-D level.

The Marcus rate constant can be obtained from the LSC approximation of the E-FGR rate

constant in Eq. (8) by replacing C(τ) by its second-order cumulant expansion and assuming that

the lifetime of C(τ) is much shorter than the time scale of nuclear motion:33

kMarcus
D→A =

|ΓDA|2

h̄

√
2π

σ2 exp
[
−〈U〉

2

2σ2

]
. (9)

Here, 〈U〉 and σ are the average and standard deviation of the donor-acceptor potential energy

gap, U , at equilibrium on the donor PES, respectively. The corresponding reorganization energy,

Er, and reaction free energy, ∆E, can be related to 〈U〉 and σ through the following relations:

Er = σ2/(2kBT ) =−∆E−〈U〉.

2.2 Instantaneous Marcus Theory

A more intuitive and quantitative way for understanding the trends in the transient CT rate is via

the instantaneous Marcus theory (IMT) picture, where the transition rate coefficient, k(t ′), is given
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in terms of the following Marcus-like expression with explicitly time-dependent donor-acceptor

potential energy gap average and standard deviation:

kM(t ′) =
|ΓDA|2

h̄

√
2π

σ2
t ′

exp

[
−
(
Ut ′
)2

2σ2
t ′

]
. (10)

Here, Ut ′ and σt ′ are the nonequilibrium average and standard deviation of the donor-acceptor

potential energy gap at time t ′ after the photoexcitation, which is calculated by averaging over

many nonequilibrium trajectories that start out with the nuclear DOF sampled from ρ0(R0,P0) and

whose dynamics is governed by the donor PES. Like the Marcus theory, the conditions under which

the IMT expression is reasonably accurate are (1) The nuclear DOF are classical; (2) The nuclear

motion occurs on a time scale slower than the electronic dephasing time; and (3) The t ′-dependent

distribution of the donor-acceptor potential energy gap is Gaussian.

The IMT rate coefficient in Eq. (10) can be derived starting from the LSC NE-FGR at the C-0

level:40

CC-0 (t ′,τ)=|ΓDA|2
∫

dR0dP0ρ0(R0,P0)

× exp
[

i
h̄

U
(
RD

t ′
)

τ

]
≡ |ΓDA|2

〈
eiUt′τ/h̄

〉
. (11)

It should be noted that within this approximation, one would have a distribution of U(RD
t ′ ) = Ut ′

at each t ′, since each choice of (R0,P0) will give rise to a different RD
t ′ . Substituting Eq. (11) into

Eq. (6), we have

kC-0(t ′) =
2
h̄2 Re

∫ t ′

0
dτCC-0(t ′,τ)

=
2
h̄2 |ΓDA|2Re

∫ t ′

0
dτ

〈
eiUt′τ/h̄

〉
. (12)

The integrand
〈

eiUt′τ/h̄
〉

is expected to decay to zero rapidly because of the distribution of Ut ′ will
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result in destructive interference (the broader the distribution the faster the decay). The decay time

can be easily estimated by calculating
〈

eiUt′τ/h̄
〉

directly from MD data. For the system under

consideration, this decay time is ∼ 20 fs (see Fig. S2). Let τc(t ′) be the lifetime of
〈

eiUt′τ/h̄
〉

as a

function of nonequilibrium time t ′. Assuming the lifetime τc(t ′) is much shorter on the time scale

of nuclear motion, i.e. t ′ > τc(t ′) (which would be any time scale of practical interest in practice

since τc is so short), we can then change the integration upper limit to infinity:

kC-0(t ′) =
2
h̄2 |ΓDA|2Re

∫
∞

0
dτ

〈
eiUt′τ/h̄

〉
=

1
h̄2 |ΓDA|2

〈∫
∞

−∞

dτeiUt′τ/h̄
〉

=
2π

h̄
|ΓDA|2 〈δ (Ut ′)〉

=
2π

h̄
|ΓDA|2Prob(Ut ′ = 0) . (13)

Here, Prob(Ut ′ = 0) is the probability for Ut ′ = 0.

If we also assume that the instantaneous distribution of Ut ′ is Gaussian,

Prob(U ; t ′) =
1√

2πσ2
t ′

exp

[
−(U−Ut ′)

2

2σ2
t ′

]
, (14)

where Ut ′ is the nonequilibrium average of U and σt ′ =U2
t ′ −

(
Ut ′
)2 is the corresponding standard

deviation. Finally, inserting Eq. (14) into Eq. (13), we arrive at IMT time-dependent rate coefficient

as in Eq. (10). The IMT rate coefficient kM(t ′) can also be expressed in terms of time-dependent

∆E and Er:

Er(t ′) =
σ2

t ′

2kBT
=−∆E(t ′)−Ut ′. (15)

It should be noted that similar expressions were proposed previously.38,46,47 For example, Cho

and Silbey derived an expression with a time-dependent reorganization energy but a constant σ2

for harmonic systems,46 which is different from Eq. (10). Also, Evans and Coalson arrived at an
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expression that is similar to our C-0 formula (Eq. (13)).38

3 Simulation Techniques

The all-atom Hamiltonian of the CPC60 molecular triad dissolved in THF was adopted from Refs.

44 and 15. For the bent and linear triad conformations, different force fields were constructed for

the ground, ππ∗, CT1, and CT2 states. The PESs for the entire system of the triad and THF differ

from one electronic state to another by the excitation energies and the partial charges assigned to

triad atoms. The excitation energies, partial charges, and electronic coupling coefficients for this

system were obtained from time-dependent density functional theory (TDDFT) using the range-

separated hybrid BNL functional.48–50 Although we are applying the Condon approximation by

assuming the electronic coupling to be constant, in some sense, we take some non-Condon effects

into account by assigning different electronic couplings to different triad conformations. For a

given triad conformation, the Condon treatment is reasonable due to the low-amplitude solvent

motion will not change the coupling dramatically. Partial charges for the triad on each electronic

state on the donor-bridge-acceptor level and on the atomistic level are shown in Figs. S3 and

S4, respectively. Table S1 shows the energy corrections to the potential energy due to electronic

excitation. The electronic coupling coefficients (Table 1) between the electronically excited states

were assumed to be constant within the Condon approximation, and calculated via the fragment

charge difference (FCD) method.51

The potential energy of a triad in explicit THF solvent in the MD simulations consists of three
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terms: triad-triad Vα,T (r) , solvent-solvent VS(s), and solvent-triad Vα,ST (r,s) interactions:

V MD
α (r,s) =Vα,T (r)+VS(s)+Vα,ST (r,s), (16)

Vα,T (r) =V NE
T (r)+

n−1

∑
j=1

n

∑
j′= j+1

1
4πε0

qα
j qα

j′

|r j− r j′|
, (17)

VS(s) =V NE
S (s)+

N−1

∑
i=1

N

∑
i′=i+1

1
4πε0

QiQi′

|si− si′|
, (18)

Vα,ST (r,s) =V NE
T S (r,s)+

N

∑
i=1

n

∑
j=1

1
4πε0

Qiqα
j

|si− r j|
. (19)

Here, R = (r,s) where r and s are the triad and the solvent coordinates, respectively, α represents

the electronic state of the triad (ground, ππ∗, CT1 and CT2), {qα
j } are the triad’s atomic partial

charges (n atoms) in the α-th excited state, and {Qi} are the the solvent atomic partial charges (N

atoms). The non-electrostatic interaction terms, i.e. V NE
T (r), V NE

S (s), and V NE
ST (r,s), are assumed

to be the same for different electronic states.

The overall PES in the α-th excited state is given by44

Vα(r,s) =V MD
α (r,s)+Eα(rG,eq)−Vα,T (rG,eq)

=V MD
α (r,s)+Wα . (20)

Here, Eα(rG,eq) is the α-th excited state energy with respect to ground state for the gas-phase triad

obtained from electronic structure calculations using the ground-state optimized or characteristic

geometries, i.e. rG,eq (in our case, bent and linear conformations). Since V MD
α (r,s)+Eα(rG,eq)

double counts the triad intramolecular interactions, we subtract the corresponding contribution

from the classical force fields, Vα,T (rG,eq), giving rise to the energy correction Wα to the MD

potential energy at the α-th excited state. The values for of Eα , Vα,T and Wα for the ππ∗, CT1, and

CT2 states in the bent and linear conformations are shown in Table S1. The donor-acceptor energy
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gap is thus given by

U(R) =U(r,s) =V MD
D (r,s)−V MD

A (r,s)+(WD−WA). (21)

MD simulations for the system containing one triad molecule and 6741 THF molecules within

a 100 Å×100 Å×100 Å periodic cubic simulation box were performed by AMBER 18 package.52

The general AMBER force field (GAFF)53 was employed. We simulated four cases including

flexible bent and flexible linear triad conformations, where the end-to-end distance between carbon

atoms with indices of 21 and 193 as shown in Fig. S1 (out of 207 atoms in the triad) was constrained

at 49.6 Å using a harmonic force with force constant of 100 kcal mol−1Å−2 in the flexible linear

conformation, as well as rigid bent and rigid linear triad conformations, where all atoms of the triad

molecule were constrained using the same harmonic restraint. Particle mesh Ewald summation54

was used to describe the long-ranged electrostatic interactions. All the covalent bonds involving

hydrogen were constrained by the SHAKE algorithm.55 A cutoff of 9.0 Å was employed for the van

der Waals interactions. The MD time step was chosen as δ t = 1.0 fs. The system was equilibrated

at 300 K using a Langevin thermostat with a collision frequency of 1.0 ps−1.

In the equilibrium MD simulations for the Marcus E-FGR rate constant calculation, 200

independent trajectories of length 10 ns each were generated on the ground and ππ∗ states’ PESs in

constant-NVT ensemble, giving rise to 4×108 configurations in total, which were sampled every

5 fs.

In the nonequilibrium MD simulations for NE-FGR and IMT calculations, 2×104 independent

initial configurations were sampled from a constant-NVT ensemble at 300 K on the ground-

state PES. Subsequently, 2× 104 nonequilibrium trajectories were generated on the ππ∗ (donor)

state PES in the constant-NVE ensemble of 4 ps in length with a time step of 1.0 fs, and 4000

configurations and energy gaps (ππ∗→ CT1 and ππ∗→ CT2) were recorded per trajectory with

time interval of one time step between frames. Thus, a sum total of 8× 107 nonequilibrium

configurations were averaged over obtaining the NE-FGR and IMT rates. The NE-FGR plateau
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values for each transition were obtained by dividing 2× 104 trajectories into 5 blocks, and the

plateau value of each block was calculated from t ′ = 3 ps to 4 ps. The NE-FGR plateau values of

the 5 blocks and their average with error bars were provided in Table S2.

Finally, we estimate the computational costs for the nonequilibrium MD simulations for NE-

FGR or IMT calculation. For each nonequilibrium trajectory, generating 4000 configurations and

recalculating the potential energies on all states (ππ∗, CT1 and CT2) takes about 21 minutes on an

HPC node with two Intel Xeon Gold 6132 @ 2.60 GHz (28 cores) CPUs using the Sander module

in AMBER 18. Thus, the total computational cost of nonequilibrium MD simulations for the 4

cases of triad conformations studied in this paper is about 784,000 core-hours, which is expensive.

Therefore, it would be desirable to develop an efficient method for these types of calculations.

Work in this direction is underway and will be reported in a separate future publication.

4 Results and Discussion

We present results for two characteristic conformations of the triad, bent and linear, with

the intramolecular triad DOF either frozen (rigid) or flexible. The point of considering two

conformations is to elucidate the correlation between molecular structure and CT rates. The point

of considering the rigid and flexible cases is to elucidate whether or not the intramolecular motions

of the triad contribute to the CT process.

NE-FGR transition rate coefficients, k(t ′), and donor population relaxation profiles, PD(t), as

calculated for the ππ∗→ CT1 transition via the LSC approximation at the C-D level, Eq. (7), are

shown in the left and right panels of Fig. 2, respectively. Also shown in Fig. 2 are the corresponding

predictions based on E-FGR at the Marcus theory level, Eq. (9). Significant deviations between the

predictions of E-FFR and NE-FGR are observed in the bent conformation, where the population

of the donor ππ∗ state is seen to drop by ∼ 90% within the first ∼ 1 ps, which is the time scale for

k(t ′) to reach it’s plateau value. Importantly, reaching the plateau corresponds to reaching thermal

equilibrium on the donor PES. It should also be noted that the plateau value agrees with the Marcus
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Figure 2: NE-FGR rate coefficient (left) and donor-state population (right) for the ππ∗→ CT1
transition in the flexible bent (a), rigid bent (b), flexible linear (c), and rigid linear (d) triad cases,
in comparison with E-FGR Marcus rate constants (blue). The dashed lines indicate the NE-FGR
plateau.
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Figure 3: NE-FGR rate coefficient (left) and donor-state population (right) for the ππ∗→ CT2
transition in the flexible bent (a), rigid bent (b), flexible linear (c), and rigid linear (d) triad cases,
in comparison with E-FGR Marcus rate constants (blue). The dashed lines indicate the NE-FGR
plateau.
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rate constant calculated with sampling on equilibrium donor PES (see Table 1). In other words, the

system is in a nonequilibrium state during the initial ∼ 1 ps transient period during which ∼ 90%

of the CT process is completed. Thus, the ππ∗→ CT1 transition in the bent conformation is seen

to follow non-exponential kinetics (as manifested by the strong time dependence of the transition

coefficient, k(t ′)) and to be strongly enhanced by the nonequilibrium nature of the initial state.

It should also be noted that the relaxation time scale and the plateau value of the ππ∗ →

CT1 transition rate in the bent conformation is relatively insensitive to whether or not the triad

intramolecular DOF contribute (flexible) or not (rigid). This has already been observed for Marcus

theory rate constants in Ref. 44. However, the initial rate coefficient in the rigid bent triad is

higher than that in the flexible bent triad, which can be traced back to structural differences in the

equilibrated ground state. These observations suggest that this transient CT process is dominated

by the intermolecular (solvent) DOF, rather than by the intramolecular (triad) DOF. Importantly,

the results in Fig. 2 show that the intermolecular solvent DOF also dominate the photoinduced CT

processes when the system starts out in a nonequilibrium state.

The nonequilibrium nature of the initial state is seen to have a very different effect on the

ππ∗ → CT1 transition rate in the linear conformation (see Fig. 2(c) and (d)). In this case, the

deviations between the E-FGR and NE-FGR rates are rather modest in the transient period. It

should also be noted that the NE-FGR plateau value in the case of the rigid linear triad is somewhat

different from the Marcus theory rate constant. This suggests either deviations from the Marcus

limit or that equilibrium on the donor PES has not been reached yet within the 4 ps simulation time

window. However, the deviations from thermal equilibrium do not lead to significant deviations in

CT rates and exponential kinetics in this case.

The fact that both the time scale and kinetics of the ππ∗ → CT1 transition are strongly

conformation-dependent can be viewed as a structure–function relation, where molecular structure

(triad conformation) is seen to have a rather dramatic effect on function (the CT rate). Thus, the

triad provides a relatively simple demonstration for the potential importance of such structure-

functions relations in more complex systems, such as the correlation between interfacial structure
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Table 1: Comparison of E-FGR Marcus rate constants kM (s−1) and the NE-FGR plateau
rate kNE,plateau (s−1) for different CT transitions in flexible bent (FB), rigid bent (RB), flexible
linear (FL), and rigid linear (RL) triad solvated in explicit THF. Here, Γ2

DA (eV2) is the
squared electronic coupling coefficient, 〈U〉 (eV) and σ (eV) are the average and standard
deviation of the donor-acceptor potential energy gap, respectively, obtained by sampling on
the equilibrium ground (G) or ππ∗ states.

Transition Conf. Sampling Γ2
DA 〈U〉 σ kM kNE,plateau

ππ∗→ CT1

FB
G

5.8×10−4 0.188 0.160 6.9±0.2×1012

ππ∗ 0.500 0.163 1.6±0.1×1011 1.2±0.3×1011

RB
G

5.8×10−4 0.163 0.161 8.2±0.2×1012

ππ∗ 0.471 0.161 2.5±0.2×1011 1.8±0.7×1011

FL
G

8.1×10−5 -0.175 0.182 1.1±0.1×1012

ππ∗ -0.163 0.181 1.1±0.1×1012 1.4±0.1×1012

RL
G

8.1×10−5 -0.271 0.190 6.0±0.1×1011

ππ∗ -0.218 0.190 8.5±0.1×1011 5.6±0.4×1011

ππ∗→ CT2

FB
G

2.0×10−9 -0.563 0.271 3.9±0.2×106

ππ∗ -0.445 0.273 7.7±0.3×106 6.7±0.3×106

RB
G

2.0×10−9 -0.564 0.271 4.1±0.2×106

ππ∗ -0.416 0.272 8.9±0.2×106 6.9±0.2×106

FL
G

4.0×10−8 -0.409 0.297 2.0±0.1×108

ππ∗ -0.413 0.296 1.9±0.1×108 1.8±0.1×108

RL
G

4.0×10−8 -0.357 0.295 2.5±0.1×108

ππ∗ -0.365 0.295 2.4±0.1×108 2.4±0.1×108
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and interfacial CT rates in OPV materials.13,56,57

Next, NE-FGR transition coefficients, k(t ′), and donor population relaxation profiles, PD(t),

as calculated for the ππ∗→ CT2 transition via the LSC approximation at the C-D level, Eq. (7),

are shown in the left and right panels of Fig. 3, respectively. Results are shown for the bent and

linear conformations, with the intramolecular triad DOF frozen (rigid) or flexible. Also shown in

Fig. 3 are the corresponding predictions based on E-FGR at the Marcus theory level, Eq. (9). In

contrast to the ππ∗→ CT1 transition, the nonequilibrium nature of the initial state has a negligible

effect on the ππ∗→ CT2 transition rate. This can be traced back to the fact that the ππ∗→ CT2

transition is much slower, as is evident by the fact that only 10−5 of the donor population is lost

within the initial 4 ps (compare to Fig. 2, where much of the donor population has transferred to

the acceptor state on the same time scale). This means that the equilibration process of the nuclear

DOF on the donor PES, which occurs on the picosecond time scale, would have little effect of the

overall CT rate. In both cases, the extremely minor nonequilibrium effects that can be observed

are more pronounced in the bent conformation.

The above trends in the CT rate coefficients are consistent with and can be understood in terms

of the PESs in Fig. 1, which are drawn to scale for the case of the rigid triad. For the ππ∗→ CT1

process in the bent conformation, one observes that the deviation of the nonequilibrium initial state

of the nuclear DOF from the corresponding equilibrium state is the largest, which would lead to

stronger nonequilibrium effects. Furthermore, the nonequilibrium initial state of the nuclear DOF

is in closer proximity to the crossing region between the ππ∗ and CT1 PESs, which leads to the

observed enhancement in the CT rate. At the same time, the deviation of the nonequilibrium initial

state of the nuclear DOF from the corresponding equilibrium state is much smaller in the case of the

ππ∗→ CT1 process in the linear conformation than in the bent conformation, which leads to less

pronounced nonequilibrium effects. Furthermore, the fact that the nuclear configuration is further

away from the crossing region between the ππ∗ and CT1 PESs in the initial nonequilibrium state

than it is in thermal equilibrium is consistent with the fact that the NE-FGR is in fact somewhat

slower in comparison to the Marcus rate constant.
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For the ππ∗ → CT2 process, the deviations of the nonequilibrium initial state of the nuclear

DOF from the corresponding equilibrium state are rather small in both bent and linear conforma-

tions. This fact, combined with the overall slower rate compared to the ππ∗→ CT1, then leads to

negligible nonequilibrium effects.
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Figure 4: The distribution of energy gap (U) for the ππ∗→ CT1 transition (a) and ππ∗→ CT2
transition (c) in the flexible bent triad at different times after the vertical excitation from the
ground state and the corresponding instantaneous Marcus rate coefficient (cyan) and NE-FGR rate
coefficient (red) (b,d).

The IMT rate coefficients are found to be in excellent agreement with the corresponding LSC

NE-FGR rate coefficients at the C-D level, as shown in Fig. 4(b) and (d), in the cases of ππ∗→

CT1 and ππ∗ → CT2 transitions in the flexible bent case. It should be noted that obtaining the

IMT rate coefficients is also computationally more cost-effective. This can be traced back to the

fact that calculating the rate coefficient based on Eq. (7) requires numerically averaging over an

oscillatory integrand, whereas the same integration can be performed analytically when the energy

gap distribution is Gaussian. Similar excellent agreement between IMT and LSC NE-FGR at the

C-D level CT rate coefficients is shown in Figs. 5, S5, and S6 for the flexible linear, rigid bent,
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and rigid linear cases, respectively. Fig. S7 shows the energy gap distributions at different times

are Gaussian, thereby validating the underlying assumptions in IMT. Fig. 6 shows the excellent

agreement of donor-state population decay between IMT and NE-FGR approaches in all the cases

investigated here.

The IMT also provides a way to interpret the nonequilibrium effects on the molecular level via

the time-dependence of Ut ′ , σt ′ , Er(t ′), ∆E(t ′), and EA(t ′). In the case of the rigid bent triad shown

in Fig. 7(a) and (b), Ut ′ is seen to increase while σt ′ is seen to be a constant with increasing t ′,

which implies that the corresponding instantaneous activation energy, EA(t ′) = kBT
(
Ut ′
)2
/(2σ2

t ′ )

increases and thereby kM(t ′) decreases with increasing t ′. More specifically, for ππ∗ → CT1,

Ut ′ increases from about 0.2 eV to 0.3 eV and σt ′ fluctuates around 0.16 eV, over the first

4 picoseconds. This translates into increasing EA from about 0.015 eV to 0.08 eV, thereby

diminishing the CT rate coefficient with increasing t ′. At the same time, for the ππ∗ → CT2

transition, Ut ′ increases from −0.5 eV to −0.4 eV and σt ′ fluctuates around 0.27 eV, over the first

4 picoseconds, which translates into a decrease in EA from about 0.05 eV to 0.03 eV and thereby

an increase in kM(t ′) with increasing t ′. (see bottom panels in Fig. 7).

The above-mentioned trends in Ut ′ , which corresponds to the center of the distribution over

U at time t ′, are consistent with Fig. 7. For example, since the deviation of the initial value of

〈U〉0 from 〈U〉eq for the ππ∗→ CT1 transition in the bent conformation is larger than that for the

ππ∗→ CT2 transition, relaxation on the donor (ππ∗) PES leads to a larger change in the case of

the ππ∗→ CT1 transition.

The above-mentioned trends in σt ′ can be understood based on the underlying nonequilibrium

solvation dynamics. The phenomenon that σt ′ for ππ∗→ CT2 is in general larger than for ππ∗→

CT1 can be traced back to the fact that CT2 is associated with CT over a longer distance. As a

result, the difference in potential energy relative to the ππ∗ state is larger on average and so is

its fluctuation, because more solvent molecules are directly affected by charge separation over a

longer distance.

The solvation process can be visualized by looking at the time evolution of the corresponding
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radial distribution functions (RDFs) between the triad surface and the THF molecules. As shown in

Fig. 8, for the bent triad, the difference in the RDF between the triad and THF centers of mass right

on the time of the photoexcitation and the RDF at 4 ps after photoexcitation, ∆g(r), shows almost

no changes, while the difference in the RDF between the triad and the negatively-charged oxygen

atom in THF (black lines) shows an incremental shift from ∼ (3.0− 6.0) Å to ∼ (2.0− 3.0) Å

nearby the first solvation shell. This solvation dynamics is driven by the difference in partial

changes of the ground state and the ππ∗ state for the bent triad, as shown in Fig. S3. By examining

the contributions from different parts of the triad, it is evident that a more structured solvation shell

is formed, as can be observed from the increased RDF between the negatively-charged C60 part and

the oxygen in THF (cyan), and the decreased RDF between the positively-charged porphyrin part

and the oxygen in THF (red), respectively (see Fig. 8 right panel). This structural rearrangement

gives rise to a picture of reorientation of the THF molecules so as to align their dipoles in a manner

that leads to stabilization on the ππ∗ PES (see top illustration of Fig. 8), which corresponds to

even lower potential energies on the CT surfaces and thus an increase in the donor-acceptor energy

gap. However, it should be pointed out that the change in the RDF around the first solvation shell

is relatively small compared with the entire first shell total height. The structural reorientation is

rather small effect but would be helpful for understanding the energetic change in the relaxation

process. The linear triad shows no change in the RDFs, therefore no significant change in the

energy gap.

5 Concluding Remarks

We applied the LSC NE-FGR to calculate the photoinduced CT dynamics in the CPC60 molecular

triad dissolved in explicit THF. To the best of our knowledge, this is the first application of the

LSC NE-FGR to a condensed-phase system described by an all-atom anharmonic Hamiltonian.

For this system, we calculated the time-dependent electronic transition rate coefficients from the

porphyrin-localized ππ∗ state (CP∗C60) to the porphyrin-to-C60 charge transfer state (CP+C−60),
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Figure 8: The difference in the radial distribution function ∆g(r) of the distance between the triad
and THF between 4 ps and 0 ps after the photoexcitation, as obtained from nonequilibrium MD
simulations in the flexible bent (a), rigid bent (b), flexible linear (c), and rigid linear (d) triad cases.
Top: illustration of solvent reorientation for bent triad. Left panels: triad surface and oxygen atom
of THF (black), triad surface and center of mass of THF (orange). Right panels: the C60 part
(cyan), the porphyrin (P) part (red), and the carotenoid (C) part (blue) of triad and oxygen of THF
contributions.
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or the carotenoid-to-C60 charge separated state (C+PC−60), in two different conformations (bent

and linear). The initial nonequilibrium state corresponds to impulsive photoexcitation from the

equilibrated ground-state to the ππ∗ state. Our NE-FGR calculations show that the nonequilibrium

nature of the initial state can lead to significant deviations of the CT rate in comparison to the

case where the system is assumed to start out at equilibrium on the donor PES as in E-FGR.

More specifically, we find that the CP∗C60 → CP+C−60 transition rate in the bent conformation

is forty time faster when nonequilibrium effects are accounted for. While we are not aware

of direct experimental evidence for the transient nonequilibrium effects reported in this paper,

we believe that such evidence may be obtainable from pump-probe measurements. We also

showed that the results are consistent with the instantaneous Marcus theory (IMT), which the

LSC NE-FGR rate coefficient can be shown to reduce into for the system under consideration.

Within IMT, the transition rate coefficient is given by a Marcus-like expression, with explicitly

time-dependent donor-acceptor energy gap average and standard deviation, or equivalently time-

dependent reorganization energy and reaction free-energy.

The LSC NE-FGR and IMT open the door to the investigation of nonequilibrium effects

on CT and energy transfer rates in many systems of current technological and biological

interest, including confined molecular systems,58 condensed-phase systems,59 and semiconductor

interfaces.57 Work on such extensions is underway and will be reported in future publications.

A Appendix: Hierarchy of linearized semiclassical NE-FGR

In this appendix, we outline the hierarchy of linearized semiclassical (LSC) approximations to

the nonequilibrium Fermi’s golden rule (NE-FGR) that was developed in the previous work.40

LSC is based on expressing the correlation function as a real-time path integral, and then applying

the linearization approximation to the differences in the forward and backward paths. Adding

additional approximations then leads to more cost-effective approximations, which eventually

leads to the instantaneous Marcus theory (IMT) introduced in the main text.

27



The hierarchy of LSC-based expressions for NE-FGR C(t ′,τ) with arbitrary initial preparation

dictated by ρ̂0 is given by

CW-AV(t ′,τ) =|ΓDA|2
∫

dR0dP0[ρ̂0]W (R0,P0)

× exp
[
− i

h̄

∫ t ′−τ

t ′
dτU(Rav

t )

]
, (A.1)

CW-0(t ′,τ) =|ΓDA|2
∫

dR0dP0[ρ̂0]W (R0,P0)

× exp
[

i
h̄

U(Rt ′)τ

]
, (A.2)

CC-AV(t ′,τ) =|ΓDA|2
∫

dR0dP0ρ0(R0,P0)

× exp
[
− i

h̄

∫ t ′−τ

t ′
dτU(Rav

τ )

]
, (A.3)

CC-D(t ′,τ) =|ΓDA|2
∫

dR0dP0ρ0(R0,P0)

× exp
[
− i

h̄

∫ t ′−τ

t ′
dτU(RD

τ )

]
, (A.4)

CC-0(t ′,τ) =|ΓDA|2
∫

dR0dP0ρ0(R0,P0)

× exp
[

i
h̄

U(Rt ′)τ

]
. (A.5)

Here, “W” denotes Wigner sampling for nuclear DOF:

[ρ̂0]W (R0,P0) =

(
1

2π h̄

)N ∫
dZeiZ·P/h̄ 〈R−Z/2| ρ̂0 |R+Z/2〉 , (A.6)

“C” denotes classical nuclear sampling via the corresponding classical distribution ρ0(R0,P0);

following the initial sampling. In the all-atom simulations, after sampling initial conditions

(R0,P0) via Wigner or classical nuclear densities, the system is propagated on the donor surface

forwardly for time t ′ arriving at Rt ′ , and then backwardly from time t ′ to t ′− τ (τ = 0 → t ′)

integrating the energy gap in the phase factor, for each point in C(t ′,τ), where“AV” denotes the

τ-dynamics is propagated on the average surface Vav = (VD+VA)/2 resulting in trajectories of Rav
τ ,

“D” denotes the τ-dynamics on the donor surface resulting in trajectories of RD
τ , “0” denotes no
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τ-dynamics beyond the relaxation on donor PES till Rt ′ .
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