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Abstract 
 
Biomolecular NMR spectroscopy has greatly benefited from the development of TROSY-type 
pulse sequences, in pair with specific labeling. The selection of spin operators with favorable 
relaxation properties has led to an increase in the resolution and sensitivity of spectra of large 
biomolecules. However, nuclei with a large chemical shift anisotropy (CSA) contribution to 
relaxation can still suffer from large linewidths at conventional magnetic fields (higher than 9 
T). Here, we introduce the concept of two-field TROSY (2F-TROSY) where the chemical shifts 
of nuclei with large CSA is labeled at low fields (ca. 2 T) dramatically reducing the contribution 
of CSA to relaxation. Signal detection is performed at high field (> 9 T) on a nucleus with 
efficient TROSY interference to yield high-resolution and sensitivity. We use comprehensive 
numerical simulations to demonstrate the power of this approach on aromatic 13C-19F spin pairs 
for which a TROSY pulse sequence has recently been published. We predict that the 2F-
TROSY experiment shall yield good quality spectra for large proteins (global tumbling 
correlation times as high as 100 ns) with one order of magnitude higher sensitivity than the 
single-field experiment. 
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1. INTRODUCTION 

Nuclear Magnetic Resonance (NMR) is a powerful tool to investigate the structure, dynamics 

and function of complex biomolecular systems at atomic resolution. The use of advanced 

isotopic labeling methods has facilitated the study of large biomolecules and biomolecular 

complexes by focusing on a limited number of well-defined spin systems, such as methyl 

groups in aliphatic side-chains.1,2 Selective isotope labeling is optimally suited to the 

investigation of large systems when combined with transverse relaxation-optimized 

spectroscopy (TROSY) methods. First introduced for backbone 15N-1H pairs in deuterated 

proteins,3 and a variety of similar two-spin one half systems in protein sidechains and nucleic 

acids,4–6 the concept of TROSY was later successfully extended to methyl groups as 

encountered in protein side-chains7,8 or methylated nucleic acids.9 

The NH- and methyl-TROSY both rely on interference between relaxation mechanisms. The 

methyl-TROSY experiment is based on the cancellation between intra-methyl dipole-dipole 

(DD) interactions while the NH-TROSY exploits interference between DD and Chemical Shift 

Anisotropy (CSA) interactions.7,10–12 The amplitude of the dipolar interaction is field-

independent so that the methyl-TROSY effect is ubiquitous at conventional magnetic fields (B0 

> 9 T) and even at lower magnetic fields, down to a fraction of a Tesla.13 The CSA interaction 

scales linearly with the magnetic field and, consequently, TROSY effects based on DD/CSA 

interference mechanisms are optimal at magnetic fields where the CSA interactions has the 

same magnitude as the DD interactions.3 However, recent theoretical work showed that the 

optimal field in terms of signal-to-noise ratio for NH-TROSY is 1.5 GHz proton Larmor 

frequency, whereas optimal DD/CSA interference is around 950 MHz, as higher fields lead to 

better intrinsic sensitivity.14 In two-spin systems, an essential component to obtain increased 

resolution is the selection of the appropriate operator (the TROSY single-transition operator) at 

the optimal field. 

The set of two-spin TROSY pulse sequences used for the study of biomolecules has mainly 

been applied on pairs of the type X-1H (X=backbone-15N in proteins or aromatic-15N and 13C 

in proteins and nucleic acids).3–6 In these spin systems, the CSA of the protons is either small 

or comparable to the amplitude of the DD interaction at magnetic fields currently accessible 

(between 9 and 28 T) and leads to field-dependence of the proton transverse relaxation rate 

usually less pronounced than for the relaxation of backbone-15N and aromatic-13C nuclei.14 

Thus, the optimal field for the associated TROSY experiment depends mostly on the relaxation 

properties of the heteronucleus. This is not the case in the recently developed two-dimensional 
13C-19F-TROSY experiment for the study of specifically 19F-labeled protein aromatic side-
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chains and nucleic acid bases.15,16 The potential of this approach cannot be overstated, as the 

study of aromatic side chains by NMR is one of the biggest challenges in large biomolecules. 

The interference between the 13C-19F DD and the 13C-CSA relaxation mechanisms is strong, 

leading to favorable relaxation properties of the TROSY component of the 13C polarization. On 

the other hand, because of the large 19F-CSA, the interference between the 13C-19F DD and the 
19F-CSA relaxation mechanisms is far from optimal at conventional magnetic fields for 

biomolecular NMR (higher than 9.4 T). The unfavorable 19F relaxation properties originating 

from its large CSA lead to two drastically different optimal fields for the relaxation of 19F and 
13C coherences.15 Is it nevertheless possible to define a magnetic field that would be a good 

compromise for aromatic 13C-19F-TROSY experiments in large proteins (with a correlation time 

for overall rotational diffusion tc > 25 ns) ? Numerical simulations (see below) show that there 

will likely be no good single magnetic field compromise for the investigation of large systems 

by 13C-19F-TROSY. Then, would it be possible to exploit the optimal relaxation properties of 

both 13C and 19F within the same experiment? 

Here, we introduce the concept of two-field transverse relaxation-optimized spectroscopy (2F-

TROSY) where we exploit the different optimums for the transverse relaxation in multiple-spin 

systems by visiting two vastly different magnetic fields within a single experiment. The 2F-

TROSY experiment can be implemented on a two-field NMR spectrometer, where two 

magnetic centers equipped with probes are coupled by a sample shuttle. A prototype of two-

field NMR spectrometer17 has already been used to overcome chemical exchange broadening,18 

obtain broad-band correlations throughout aliphatic and aromatic 13C resonances19 and measure 

accurate relaxation rates at low field.20,21  

We use numerical simulations to illustrate the concept of 2F-TROSY on aromatic 13C-19F spin 

systems. We calculate the expected spectra of aromatic fluorinated protein side-chains in a two-

field experiment where the 19F coherence evolves at low field, while the 13C-TROSY 

component is detected at high field, and compare them with the reported single-field 13C-19F 

TROSY experiment.15 We predict that 13C-19F 2F-TROSY will offer better sensitivity and 

resolution in medium and large-size proteins (tc > 25 ns). We expect that 2F-TROSY will 

enhance NMR of large biomolecules by making a diversity of new spin systems accessible, 

starting with 13C-19F pairs in aromatic side-chains. 

 

2. THEORY AND CALCULATIONS 

Relaxation theory. We considered pairs of directly bound 13C and 19F nuclei, with the physical 

properties of a specifically labelled side chain of 3-Fluorotyrosine (3F-Tyr) as previously 
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used.15 Analytical calculations of the relaxation rates (reported in the Supplementary Materials) 

for an isolated 13C-19F spin pair were performed using the program RedKite22 with a bond length 

of 133.8 picometers.15 The 13C- and 19F-CSA tensors from Ref.15 were used and are given in 

Table S1. We used the model-free approach23 for the spectral density function, which includes 

the effect of internal motions and global tumbling: 

𝐽"⃗,%⃗(𝜔) =
2
5𝑃- .𝑐𝑜𝑠

2𝜃"⃗,%⃗45 6𝑆-
𝜏9

1 + (𝜔𝜏9)-
+ (1 − 𝑆-)

𝜏=′
1 + (𝜔𝜏=′)-

>, 

where i and j are vectors pointing along the principal axes of interactions i and j in the molecular 

frame, P2(x) is the second order Legendre polynomial 𝑃-(𝑥) = (3𝑥- − 1) 2⁄ , 𝜏=BCD = 𝜏9CD +

𝜏=CD with tc the isotropic global tumbling correlation time and tl the correlation time associated 

with local motions of order parameter S2. We set the parameters of local dynamics to those of 

a rigid side chain, with S2 = 0.8 and tl = 100 ps. Evolutions of the relaxation rates with the 

magnetic field are shown in Fig. S1. 

Simulation of two-dimensional spectra. A detailed description of the simulations of the 

spectra can be found in the Supplementary Materials. To accurately account for polarization 

losses, lineshapes, and pathways, the evolution of the magnetization throughout the full pulse 

sequence was simulated by integrating the complete master equation24 and generate the free 

induction decays (FID) using Python and the numpy25 and scipy26 packages. FIDs were 

processed with standard methods using the nmrglue package27 (see Supplementary Materials). 

All recycling delays were optimized to yield the maximum signal per unit of experimental time. 

Simulating a two-field NMR spectrometer. The simulation of the evolution of the density 

operator during the shuttle transfers was performed as previously described.22 Briefly, we used 

the existing prototype of a two-field NMR spectrometer operating at 14.1 T and 0.33 T to model 

the design of other two-field NMR systems. The field profiles were assumed to be identical to 

the one of our current system apart from a scaling factor 𝛼(𝐵G) where B0 is the high-field value 

and a is a dimensionless function of the magnetic field B: 𝛼(𝐵) = 𝐵 14.1	𝑇⁄  (Fig. S2). In this 

design, the sample is shuttled at constant speed until it reaches the desired low field. The 

computation of the density operator is performed every 1 ms during the sample shuttle transfers.  

Scaling in noise-free spectra. To take into account the dependence of the signal-to-noise ratio 

(SNR) with the experimental time when comparing the different experiments, FIDs were scaled 

by L𝑡NO 𝑡PQR⁄ , with tPS the experimental time to record one scan without evolution in the indirect 

dimension and tref the duration of the experiment used as a reference. We choose as reference 

experiment the single-field TROSY pulse sequence15 (Fig. S3) used on a protein of global 
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tumbling correlation time tc = 25 ns labelled with 3F-Tyr. The proportionality of the 

polarization with B0 was considered by including a field-dependent thermal correction28 in the 

Liouvillian (see Supplementary Materials), while the effect of the magnetic field on the SNR 

was included by multiplying the FID by L𝛼(𝐵G). 

Scaling spectra with noise. When mentioned, Gaussian white noise was added to the simulated 

FID. In these cases, FID and random noise were scaled with 𝑛 × 𝛼(𝐵G)  and L𝑛 × 𝛼(𝐵G) 

respectively, where n is the number of scans needed for the experimental time to be identical to 

the reference single-field TROSY experiment with 80 scans and t1,max given by 1.25xT2(19F-

TROSY) with T2(19F-TROSY) the relaxation time for the 19F-TROSY component (see Section 

1.3 of the Supplementary Materials). 

3. RESULTS AND DISCUSSION 

Relaxation properties of aromatic 13C-19F groups. The large CSA (Table S1) is the dominant 

source of 19F nuclear spin relaxation at high magnetic fields (i.e. higher than 10 T). The CSA 

contribution to transverse relaxation scales with the square of the magnetic field and becomes 

a minor contribution at fields lower than a few Tesla (7% at 1 T vs 95% at 14.1 T for the 3F-

Tyr and tc = 25 ns) where relaxation is mainly caused by the dipole-dipole (DD) interaction. 

Fast 19F transverse relaxation, both for an in-phase coherence and TROSY single-transition, 

precludes the observation of intense and well-resolved peaks at magnetic fields that are 

commonly used for biomolecules (Fig. 1.a). The 13C-TROSY component displays very 

favorable relaxation properties at high-field: at 14.1 T, the TROSY effect is strong with a 

relaxation rate for the TROSY component about 6 times lower than the in-phase transverse 

relaxation rate (Fig. 1.b). The most favorable transverse relaxation properties are found at low 

magnetic fields (B0 ~ 1 T) for 19F and at high magnetic field (B0 ~ 15 T) for 13C for proteins 

with correlation times in the range 1 to 200 ns. These two drastically different optimal magnetic 

fields suggest that any single field14 for the 13C-19F TROSY experiment15 (hereafter referred to 

as 1F-TROSY) will likely be a bad compromise between irreconcilable constraints (Fig. S4). 

By contrast, two-field NMR offers in principle the possibility to reach two independently 

optimized magnetic fields within the course of a single experiment. This approach should be 

particularly well suited to record the spectra of aromatic 13C-19F groups. 
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Figure 1: Transverse relaxation rates of an isolated 13C-19F aromatic spin pair. Fluorine-19 (a) and carbon-13 (b) relaxation 
rates of the in-phase coherences (dash) and TROSY component (plain) for tc = 25 ns (blue) and tc = 100 ns (orange). 
Calculations were performed using the parameters for the CSA tensors of 3F-Tyr. 

Pulse sequence for two-field TROSY. The two-field two-dimensional heteronuclear 

correlation pulse sequence (referred to as 2F-TROSY) proposed here is presented in Fig. 2. 

Nuclear spin systems are controlled using radiofrequency pulses and pulsed field gradients at 

both high- and low-field magnetic centers. Additional delays corresponding to sample shuttle 

transfers from one magnetic center to the other (tSh) and waiting delays needed by the shuttle 

apparatus before (tHF,1 and tLF,2) and after shuttling (tLF,1 and tHF,2) were included when 

simulating the pulse sequence.17 

The sample is polarized at high field before shuttling to low field. At point a of the pulse-

sequence, Fz is the only operator with a non-zero expectation value. The 19F chemical shift is 

labeled at low field in a semi-constant time fashion29 with an effective evolution under the 13C-
19F scalar-coupling for a duration T = (2|JXY|)CD. Depending on the phase j1, either the cosine 

or sine t1-evolving components are stored as a two-spin order 2FzCz (point b) and preserved 

during the transfer from low to high magnetic field (from b to c). The spin-state-selective 

excitation (S3E) block30 allows for efficient selective excitation of the 13C-TROSY component 

at high field (point d). The use of two inversion pulses on 19F at high field preserves the 

longitudinal magnetization recovered between points b and c. This scheme allows to reduce the 

subsequent recycling delay and make the experiment more time efficient. When 19F broadband 

excitation is needed, composite p-pulses can be used, keeping in mind that transverse relaxation 

may not be negligible during 19F pulses (Fig. 1a). 

Throughout the phase cycle, the nature of the evolving operators during the S3E30 element is 

the same, ensuring identical relaxation properties of the different pathways during the S3E30 

block and the effective cancellation of undesired components of the density operator. This is 
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not the case for the 1F-TROSY pulse sequence15 for which the single transition-to-single 

transition polarization transfer block31 (ST2-PT) creates alternatively a single-quantum anti-

phase 13C coherence and a multiple-quantum transition coherence which relax with drastically 

different rates at high fields because of the strong 19F-CSA (see Supplementary Materials for a 

derivation of the pulse sequence and Fig. S1). This leads to poor selection of the TROSY line 

in the original 13C-19F TROSY experiment (Fig. S5). Similarly, an alternative 2F-TROSY pulse 

sequence could select the 19F-TROSY component with an ST2-PT31 block at low field (Fig. 

S6). Efficient cross-relaxation between the two 13C single-transition longitudinal polarization 

operators during the shuttle transfer and stabilization delays would lead to poor TROSY 

selection and thus the use of ST2-PT for 2F-TROSY is not recommended (Fig. S7 and S8). 

 

 
Figure 2: Two-field transverse relaxation-optimized spectroscopy pulse sequence for the study of aromatic 13C-19F groups (2F-
TROSY). Black narrow (respectively wide white) rectangles represent 90° (respectively 180°) pulses. Phases are aligned along 
the x-axis of the rotating frame unless otherwise stated. Phase cycles are as follows: 𝜑D = (𝑥,−𝑥, 𝑥, −𝑥, 𝑥, −𝑥, 𝑥, −𝑥), 𝜑- =
(𝑦, 𝑦, 𝑦, 𝑦, −𝑦,−𝑦,−𝑦,−𝑦), 𝜑\ = .]

^
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5 and 𝜑PQ9 = (𝑥,−𝑥,−𝑥, 𝑥, −	𝑥, 𝑥, 𝑥, −𝑥). The sign discrimination 

of the frequency in the indirect dimension is achieved using the States method by changing the phase j1 to 
(𝑦,−𝑦, 𝑦, −𝑦, 𝑦, −𝑦, 𝑦, −𝑦). For the semi-constant time indirect evolution period, 𝑡D` =

a
-
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, N and t1,max the number of points and maximum evolution delay in the indirect 
dimension respectively, n1 the increment number. The pulse sequence can be modified to include proton decoupling during the 
t1 and t2 evolution periods. The horizontal line breaks represent the shuttling transfers from one field to the other. tSh is the 
shuttling delay to and from the desired position. tHF,1 and tHF,2 are waiting delays at high field, respectively before and after 
shuttling. tLF,1 and tLF,2 are waiting delays at low field, respectively after and before shuttling. In our simulations, we set tSh = 
100 ms, tHF,1=25 ms, tLF,1 = 40 ms, tLF,2 = 5 ms and tHF,2 = 350 ms. 

What are the optimal magnetic fields to record the TROSY experiments? In order to 

account for all sources of polarization loss in the course of an experiment, accurate 

determination of the optimal magnetic fields requires the full simulation of the pulse-sequences. 

We compared the expected peak height at each magnetic field (or pairs of magnetic fields in 

the case of the 2F-TROSY sequence) assuming ideal sampling in both dimensions so that the 

linewidth in both dimensions is directly linked to their associated transverse relaxation rate and 

does not depend on the number of points in the time dimensions and apodization function (see 
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Supplementary Materials for more details). In these calculations, peak heights are scaled by 

L𝛼(𝐵G)𝑡NO 𝑡PQR⁄  (see method section), a factor proportional to the expected evolution of the 

SNR with the magnetic field and experimental time. Note that the effect of signal accumulation 

arising from indirect dimension acquisition is not taken into account and, therefore, peak 

heights do not fully reproduce expected SNR variations. 

 
Figure 3: Magnetic field optimization of the 1F-TROSY and 2F-TROSY experiments. Expected peak heights for the 1F-
TROSY (a, b) and 2F-TROSY (c, d) experiments, for 3F-Tyr and a global tumbling correlation time tc = 25 ns (a, c) and tc = 
100 ns (b, d). The color scale is identical for all pannels. The conventional magnetic fields closest to the optimal fields are 
indicated with an arrow (a, d) or a cross (c, d). The highest peak-height position is indicated with a star in pannels c and d. In 
pannels a and b, points are connected by a solid line for visual clarity. 

The optimal field for the 1F-TROSY is lower than the optimal field for 13C-TROSY (Fig. 3a,b) 

because of the losses from fast relaxation of 19F-coherences during the ST2-PT31 block, as well 

as the broadening in the fluorine dimension caused by fast relaxation of the TROSY single-

transition 19F-coherence (Fig. 1a). The optimal conventional fields are predicted to be 11.75 T 

for medium sized proteins (tc = 25 ns), and 9.4 T for larger systems (tc = 100 ns). The optimal 

magnetic field for detection of the 13C-TROSY operator is higher in the 2F-TROSY experiment 

(Fig. 3c,d) since no fluorine coherence is generated at high field. For this experiment, we 

recommend a high field of 21.15 T and a low field of 2.5 T for the 3F-Tyr. 



 9 

In the 2F-TROSY experiment, the optimal high-field strongly correlates with the orientation of 

the 13C-CSA tensor with respect to the C-F bond (Fig. S9 and S10). A perfect alignment of the 
13C-CSA with the C-F bond leads to an optimal interference between the CSA and DD 

interaction. In this case, the 13C-TROSY effect is strong and signal detection at higher magnetic 

field (leading to higher sensitivity) does not counter-balance the less efficient TROSY effect. 

The optimal low field for 19F chemical shift evolution inversely correlates with the value of the 

orthogonal component of the 19F-CSA tensor (i.e. the larger component of the tensor). This 

leads to a higher reduction of the 19F-CSA contribution to the relaxation of the evolving fluorine 

in-phase coherence for compounds having the larger orthogonal component of the 19F-CSA 

tensor. 

  
Figure 4: Expected signal-to-noise ratio (SNR) for the 1F-TROSY and 2F-TROSY experiments.  The SNR was estimated for 
proteins with global tumbling correlation times tc = 25 ns (a) and tc = 100 ns (b) labeled with 3F-Tyr. The value of t1,max is 
calculated as 𝑡D,j`k(𝐶) = 𝐶 × 𝑇-( 𝐹Dq ) where C is a multiplication factor, ranging from 0.5 to 3.0, and T2(19F) is the transverse 
relaxation time for the fluorine TROSY single-transition coherence (resp. the in-phase single-quantum coherence) in the 1F-
TROSY (resp. 2F-TROSY) experiment. The experimental time is the same for each simulated experiment (4.9 hours), leading 
to a higher number of scans for experiments with shorter t1,max. 

2F-TROSY offers increased sensitivity and resolution. We compared the expected SNR 

from the 1F-TROSY and 2F-TROSY experiments at their optimal magnetic field(s) by 

simulating the full two-dimensional spectra with Gaussian noise with scaled intensity from one 

field to the other (see Methods). The level of noise was chosen to approximately reproduce the 

SNR on MBP spectra already published15 (SNR ca. 30 for 80 scans of 700 µM MBP, recycling 

delay of 2 sec, 116 complex points in the indirect dimension and t1,max= 10 ms, see Fig. S11, 

and Section 1 of  the Supplementary Materials for more details). Peak intensities depend, among 

other parameters, on the number of points in the indirect time dimension, which is usually set 

to reach a desired resolution for a given spectral width (SW). To take different options into 

account, we simulated the pulse sequences for different values of t1,max (Fig. S12-S13). For 

moderate protein sizes (tc = 25 ns), the 2F-TROSY experiment offers better sensitivity by a 
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factor ca. 5 for t1,max = T2(19F) (Fig. 4.a). For a large system (tc = 100 ns), no visible peak is 

expected at the chosen level of noise for the 1F-TROSY experiment, while good SNR for the 

2F-TROSY experiment can be achieved in similar experimental time (Fig. 4.b). Similar results 

are obtained for compounds with better 13C-TROSY efficiency (i.e. lower optimal field for 

carbon detection) such as the 4F-Phe (Fig. S14). In the following, we consider 

t1,max=1.25T2(19F).32 

 
Figure 5: Simulated noise-free two-dimensional 13C-19F TROSY spectra with 3 peaks. Spectra for the 1F-TROSY (a, c) and 
2F-TROSY (b, d) experiments simulated with global tumbling correlation times tc = 25 ns (a, b) and tc = 100 ns (c, d) for 
t1,max = 1.25 T2(19F) where T2(19F) is the transverse relaxation time of the coherence edited in the indirect dimension. In each 
spectrum, 10 contour levels are shown, starting from the maximum intensity and with a factor 1.2 between two consecutive 
levels. Spectra were simulated without noise. Cross-sections for one peak are shown in orange. In panels a and b, the carbon 
anti-TROSY peak is shown with the red arrow. The number of recorded points in the indirect dimension is indicated on the top 
left corner of each panel. 

Having two distinct magnetic centers allows one to carry the evolution of the 19F and 13C-

TROSY coherences where their respective relaxation properties are most favorable. We have 

chosen conventional magnetic fields that lead to near-optimal sensitivity. The 2F-TROSY 

experiment not only leads to better sensitivity but also to better resolution in both dimensions 

as compared to the 1F-TROSY experiment (Fig. 5). The resolution in the carbon dimension 

would be the same for the two experiments if the detection is done at the same field. However, 

recording both experiments at 14.1 T to obtain a strong 13C-TROSY effect leads to sensitivity 
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losses. The sub-optimal TROSY relaxation interference in the 1F-TROSY leads to large carbon 

linewidth in the spectra of large protein (tc = 100 ns). For a medium-size system (tc = 25 ns), 

the 1F-TROSY experiment provides good peak separation in spite of the broadening in the 

fluorine dimension, but the spectra of larger proteins (tc = 100 ns) show ca. 2 ppm broad peaks. 

The 2F-TROSY experiment gives rise to a lower fluorine linewidth, even for large systems (ca. 

1 ppm). Combined with the optimal 13C-TROSY detection, satisfactory peak separation can be 

obtained in situations where peak overlap and a low SNR would prevent quantitative analysis 

in the 1F-TROSY pulse sequence.  

4. CONCLUSION 

We have introduced the concept of two-field transverse relaxation-optimized spectroscopy (2F-

TROSY). It takes advantage of the development in two-field NMR spectroscopy17,18 to increase 

the sensitivity in multidimensional spectra. By optimizing the magnetic field of different parts 

of the pulse sequence, the transverse relaxation rates of the evolving operators are decreased to 

their minimal values. We have illustrated the potential of this new type of pulse sequences on 
13C-19F aromatic spin pairs, where optimal magnetic fields are in a range that will be accessible 

in future designs of two-field NMR. Our calculations show that the investigation of aromatic 

residues could greatly benefit from two-field TROSY methods. 

We expect a new generation of two-field NMR spectrometers to offer sufficiently high 

homogeneity to allow the evolution of single-quantum coherences at low field, an essential 

feature to obtain high-resolution spectra and develop a new toolbox of pulse sequences. We 

expect 19F aromatic side-chain specific labeling15 combined with 2F-TROSY will open the way 

for the investigation of structure, dynamics and function of aromatic side chains in proteins, as 

well as purine and pyrimidine bases in nucleic acids. This would provide new probes for NMR 

of large proteins and nucleic acids. Further benefits are expected in systems with line 

broadening due to chemical exchange.18,33 Beyond the scope of 13C-19F, two-field NMR 

approaches that exploit favorable relaxation properties at low field can be adapted to the NMR 

investigation of a variety of nuclei with large CSAs (such as the carbonyl carbon of peptide 

bonds) to increase the sensitivity and resolution of NMR of large complex systems. 
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1 Method details

1.1 Relaxation rates

The basis formed by a 13C-19F contains 16 terms:

{Ê, F̂x, F̂y, F̂z, Ĉx, Ĉy, Ĉz, 2F̂xĈz, 2F̂yĈz, 2F̂zĈx, 2F̂zĈy, 2F̂xĈx, 2F̂xĈy, 2F̂yĈx, 2F̂yĈy, 2F̂zĈz}

We report here relaxation rates of each of these operators and cross-relaxation between them, as calcu-

lated using RedKite [1]. They are also shown in Fig. S1.

In the following, dCF = −µ0h̄γCγF
4πr3CF

is the dipolar coefficient for the interaction between the carbon and

fluorine, γC and γF are their respective gyromagnetic ratios, rCF is the internuclear distance, µ0 is the

permability of free space and h̄ the Planck’s constant devided by 2π. The chemical shift anisotropy

(CSA) tensors of the carbon and fluorine are asymmetric with σ‖,i being the longitudinal component

aligned in the direction of the CF bond with angle reported in Ref. [2] and Table S1 and σ⊥,i the or-

thogonal component perpendicular to the ring plane.

Table S1: CSA tensor parameters as reported in Ref. [2] and TROSY operators. The parallel components

of the CSAs lay in the aromatic ring plane at an angle α with respect to the C-F bond, while the

perpendicular components are oriented perpendicular to this plane.

19F-CSA, ppm 13C-CSA, ppm α, ◦ TROSY operator

Molecule σF‖ σF⊥ σC‖ σC⊥
19F 13C Fluorine Carbon

3F-Tyr 3-fluorotyrosine 43 157 -75 54 17 16 F̂+ − 2F̂+Ĉz Ĉ+ − 2F̂zĈ
+

4F-Phe 4-fluorophenylalanine 81 139 -111 51 0 0 F̂+ + 2F̂+Ĉz Ĉ+ − 2F̂zĈ
+

We used the following spectral density function evaluated at frequency ω when describing the dy-

namics of the aromatic 13C-19F group:

J ~A, ~B(ω) =
2

5
P2(cos(θ ~A, ~B))

(
S2 τc

1 + (ωτc)2
+ (1− S2)

τ ′int
1 + (ωτ ′int)

2

)
,

with ~A and ~B are the vectors along the interactions A and B (in the case of auto-correlation, A=B),

θ ~A, ~B is the angle between interactions A and B, P2 is the second order Legendre polynomial, S2 is

the order parameter of the CF group, τc is the global tumbling correlation time of the protein and

τ ′−1
int = τ−1

int + τ−1
c with τint an internal correlation time to describe the local motions of the CF bond.

Here, we set S2 = 0.8 and τint = 100 ps. Notations reported in Table S2 will be used in the expressions

of relaxation rates. Table S2 also reports the value of the angles θ ~A, ~B .
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Table S2: Spectral density functions used in the expressions of relaxation rates for a 13C-19F group

and associated value of θ ~A, ~B . The CSA auto-correlation spectral density function is equal to JCF. DD:

Dipole-Dipole. CSA: Chemical Shift Anisotropy. αi: angle of the principal CSA tensor with the z-axis

for nuclei i (Table S1).

Notation Correlation Interaction θ ~A, ~B

JCF auto-correlation C-F DD 0

Jcsa cross-correlation between homonuclear components of CSA tensor σ‖,i/σ⊥,i π/2

JCFF‖ cross-correlation between the 19F longitudinal CSA and C-F DD/σ‖,F αF

JCFC‖ cross-correlation between the 13C longitudinal CSA and C-F DD/σ‖,C αC

JCFσ⊥ cross-correlation between the orthogonal CSA and C-F DD/σ⊥,i π/2

JσF‖ ,σC‖ cross-correlation between heteronuclear components of CSA tensor σ‖,F /σ‖,C αF − αC

JσF‖ ,σC⊥ cross-correlation between heteronuclear components of CSA tensor σ‖,F /σ⊥,C π/2

JσF⊥,σC‖ cross-correlation between heteronuclear components of CSA tensor σ⊥,F /σ‖,C π/2

JσF⊥,σC⊥ cross-correlation between heteronuclear components of CSA tensor σ⊥,F /σ⊥,C 0

1.1.1 Auto-relaxation rates

R2(F) =R(F̂x) = R(F̂y)

=
d2

CF

8
(4JCF(0) + JCF(ωF − ωC) + 6JCF(ωC) + 3JCF(ωF) + 6JCF(ωF + ωC))

+
ω2

F

18

(
(σ2
‖,F + σ2

⊥,F ) (4JCF(0) + 3JCF(ω
F
)) + 2σ‖,Fσ⊥,F (4Jcsa(0) + 3Jcsa(ω

F
))
)

R1(F) =R(F̂z)

=
d2

CF

4
(JCF(ω

F
− ω

C
) + 3JCF(ω

F
) + 6JCF(ω

F
+ ω

C
))

+
ω2

F

3

(
(σ2
‖,F + σ2

⊥,F )JCF(ωF) + 2σ‖,Fσ⊥,FJcsa(ωF)
)

R2(C) =R(Ĉx) = R(Ĉy)

=
d2

CF

8
(4JCF(0) + JCF(ω

F
− ω

C
) + 6JCF(ω

F
) + 3JCF(ω

C
) + 6JCF(ω

F
+ ω

C
))

+
ω2

C

18

(
(σ2
‖,C + σ2

⊥,C) (4JCF(0) + 3JCF(ω
C

)) + 2σ‖,Cσ⊥,C (4Jcsa(0) + 3Jcsa(ω
C

))
)

R1(C) =R(Ĉz)

=
d2

CF

4
(JCF(ωF − ωC) + 3JCF(ωC) + 6JCF(ωF + ωC))

+
ω2

C

3

(
(σ2
‖,C + σ2

⊥,C)JCF(ω
C

) + 2σ‖,Cσ⊥,CJcsa(ω
C

)
)
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ρF =R(2F̂xĈz) = R(2F̂yĈz)

=
d2

CF

8
(4JCF(0) + JCF(ω

F
− ω

C
) + 3JCF(ω

F
) + 6JCF(ω

F
+ ω

C
))

+
ω2

F

18

(
(σ2
‖,F + σ2

⊥,F ) (4JCF(0) + 3JCF(ωF)) + 2σ‖,Fσ⊥,F (4Jcsa(0) + 3Jcsa(ωF))
)

+
ω2

C

3

(
(σ2
‖,C + σ2

⊥,C)Jcsa(0) + 2σ‖,Cσ⊥,CJcsa(0)
)

ρC =R(2F̂zĈx) = R(2F̂zĈy)

=
d2

CF

8
(4JCF(0) + JCF(ω

F
− ω

C
) + 3JCF(ω

C
) + 6JCF(ω

F
+ ω

C
))

+
ω2

C

18

(
(σ2
‖,C + σ2

⊥,C) (4JCF(0) + 3JCF(ω
C

)) + 2σ‖,Cσ⊥,C (4Jcsa(0) + 3Jcsa(ω
C

))
)

+
ω2

F

3

(
(σ2
‖,F + σ2

⊥,F )Jcsa(0) + 2σ‖,Fσ⊥,FJcsa(0)
)

λmq =R(2F̂xĈx) = R(2F̂yĈy) = R(2F̂yĈx) = R(2F̂xĈy)

=
d2

CF

8
(3JCF(ω

C
) + JCF(ω

F
− ω

C
) + 3JCF(ω

F
) + 6JCF(ω

F
+ ω

F
))

+
ω2

F

18

(
(σ2
‖,F + σ2

⊥,F ) (4JCF(0) + 3JCF(ω
F
)) + 2σ‖,Fσ⊥,F (4Jcsa(0) + 3Jcsa(ω

F
))
)

+
ω2

C

18

(
(σ2
‖,C + σ2

⊥,C) (4JCF(0) + 3JCF(ω
C

)) + 2σ‖,Cσ⊥,C (4Jcsa(0) + 3Jcsa(ω
C

))
)

RCF =R(2F̂zĈz)

=
3d2

CF

4
(JCF(ωC) + JCF(ωF))

+
ω2

F

3

(
(σ2
‖,F + σ2

⊥,F )JCF(ω
F
) + σ‖,Fσ⊥,FJcsa(ω

F
)
)

+
ω2

C

3

(
(σ2
‖,C + σ2

⊥,C)JCF(ω
C

) + σ‖,Cσ⊥,CJcsa(ω
C

)
)

1.1.2 Cross-relaxation rates

σ =R(F̂z ↔ Ĉz)

=
d2

CF

4
(6JCF(ωF + ωC)− JCF(ωF − ωC))

δF =R(F̂z ↔ 2F̂zĈz)

=dCFωF

(
σ‖,FJCFF‖(ωF) + σ⊥,FJCFσ⊥(ωF)

)
δC =R(Ĉz ↔ 2F̂zĈz)

=dCFωC

(
σ‖,CJCFC‖(ωC) + σ⊥,CJCFσ⊥(ωC)

)
ηF =R(F̂x ↔ 2F̂xĈz) = R(F̂y ↔ 2F̂yĈz) = R(F̂+ ↔ 2F̂+Ĉz)

=
dCF

6
ωF

(
σ‖,F

(
4JCFF‖(0) + 3JCFF‖(ωF)

)
+ σ⊥,F (4JCFσ⊥(0) + 3JCFσ⊥(ωF))

)
ηC =R(Ĉx ↔ 2F̂zĈx) = R(Ĉy ↔ 2F̂zĈy)

=
dCF

6
ω

C

(
σ‖,C

(
4JCFC‖(0) + 4JCFC‖(ω

C
)
)

+ σ⊥,C (4JCFσ⊥(0) + 3JCFσ⊥(ω
C

))
)

µmq =R(2F̂xĈx ↔ 2F̂yĈy) = R(2F̂xĈy ↔ 2F̂yĈx)

=
d2

CF

8
(6JCF(ωF + ωC)− JCF(ωF − ωC))

+
4

9
ω

F
ω

C

(
σ‖,Fσ‖,CJσF‖ ,σC‖ (0) + σ‖,Fσ⊥,CJσF‖ ,σC⊥(0) + σ⊥,Fσ‖,CJσF⊥,σC‖ (0) + σ⊥,Fσ⊥,CJσF⊥,σC⊥(0)

)
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1.2 Simulation, processing and analysis of a spectra

1.2.1 Theory

Pulse sequences were simulated with Python. The free-evolution Liouvillian for a 13C-19F group is:
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Ê
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Ĉ
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Ĉ

z
                                

                                

0
0

0
θ F

0
0

θ C
0

0
0

0
0

0
0

0
θ C

F

0
R

2
(F

)
Ω
F

0
0

0
0

η F
π
J
C
F

0
0

0
0

0
0

0

0
−

Ω
F

R
2
(F

)
0

0
0

0
−
π
J
C
F

η F
0

0
0

0
0

0
0

θ F
0

0
R

1
(F

)
0

0
σ

0
0

0
0

0
0

0
0

δ F

0
0

0
0

R
2
(C

)
Ω
C

0
0

0
η C

π
J
C
F

0
0

0
0

0

0
0

0
0

−
Ω
C

R
2
(C

)
0

0
0

−
π
J
C
F

η C
0

0
0

0
0

θ C
0

0
σ

0
0

R
1
(C

)
0

0
0

0
0

0
0

0
δ C

0
η F

π
J
C
F

0
0

0
0

ρ
F

Ω
F

0
0

0
0

0
0

0

0
−
π
J
C
F

η F
0

0
0

0
−

Ω
F

ρ
F

0
0

0
0

0
0

0

0
0

0
0

η C
π
J
C
F

0
0

0
ρ
C

Ω
C

0
0

0
0

0

0
0

0
0

−
π
J
C
F

η C
0

0
0

Ω
C

ρ
C

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
λ
m
q

Ω
C

Ω
F

−
µ
m
q

0

0
0

0
0

0
0

0
0

0
0

0
−

Ω
C

λ
m
q

µ
m
q

Ω
F

0

0
0

0
0

0
0

0
0

0
0

0
−

Ω
F

µ
m
q

λ
m
q

Ω
C

0

0
0

0
0

0
0

0
0

0
0

0
−
µ
m
q

−
Ω
F

−
Ω
C

λ
m
q

0

θ C
F

0
0

δ F
0

0
δ C

0
0

0
0

0
0

0
0

R
C
F

5



where JCF = −240 Hz is the scalar coupling constant between the 13C and 19F nuclei [2], Ωi is the offset

for nucleus i and:
θF =− 2× 10−10 (ωFR1(F) + ωCσ) ,

θC =− 2× 10−10 (ωCR1(C) + ωFσ) ,

θCF =− 2× 10−10 (ωCδC + ωF δF ) ,

account for thermal equilibrium. Thus, the effect of the magnetic field on the available polarization is

included in the Liouvillian. The factor 10−10 is used to avoid calculations overflow.

The propagator during a free evolution period is calculated as:

Pfree(τ) = e−τL,

with τ being the evolution delay. The propagator during an rf pulse is:

Prot(τpulse) = e−τpulse(L+Lpulse),

with τpulse being the pulse length and the Liouvillian for the pulse is:

Lpulse =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −ωFy 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ωFx 0 0 0 0 0 0 0 0 0 0 0 0

0 ωFy −ωFx 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −ωCy 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ωCx 0 0 0 0 0 0 0 0 0

0 0 0 0 ωCy −ωCx 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ωCy −ωCx 0 0 −ωFy
0 0 0 0 0 0 0 0 0 0 0 0 0 ωCy −ωCx ωFx
0 0 0 0 0 0 0 0 0 0 0 ωFy 0 −ωFx 0 −ωCy
0 0 0 0 0 0 0 0 0 0 0 0 ωFy 0 −ωFx ωCx
0 0 0 0 0 0 0 −ωCy 0 −ωFy 0 0 0 0 0 0

0 0 0 0 0 0 0 ωCx 0 0 0− ωFy 0 0 0 0 0

0 0 0 0 0 0 0 0 −ωCy ωFx 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ωCx 0 ωFx 0 0 0 0 0

0 0 0 0 0 0 0 ωFy −ωFx ωCy −ωCx 0 0 0 0 0

,

with:
ωFx =

π

τFπ
cos(

π

2
φF ) ωFy =

π

τFπ
sin(

π

2
φF ),

ωCx =
π

τCπ
cos(

π

2
φC) ωCy =

π

τCπ
sin(

π

2
φC),

with τ i
π being the pulse length for a 180◦-pulse on nucleus i with phase φi. φi equals 0, 1, 2 or 3 for a

pulse along x, y, -x or -y respectively. Pulse lengths used in the simulations are reported in Table S3.

The gradients used during the ST2-PT block of the single-field experiment [2] (Fig. S3) were simulated

by separating the sample into 10,000 slices over 2 cm, modifying the Liouvillian for free evolution in each

slice according to the associated magnetic field, and taking the average signal over the whole sample.

1.2.2 Acquisition details

When acquiring a spectrum, different user-defined parameters affect the signal intensity and signal-to-

noise ratio (acquisition time, sweep width, number of points in the indirect dimension, etc...). In order
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Table S3: Pulse lengths used in the simulation of the experiments. The value of the low-field pulse-lengths

is based on our own two-field system [5,6].

Two-field TROSY Single-field TROSY

Carbon 90◦-pulse Fluorine 90◦-pulse Carbon 90◦-pulse Fluorine 90◦-pulse

Low field 10 µs 6 µs - -

High fields 12 µs 10 µs 12 µs 10 µs

to get relevant comparison between the simulated pulse sequences, and the range of magnetic fields

evaluated in this study, we considered that:

• the spectral width is constant to 10 ppm in both dimension. The number of points is then auto-

matically calculated based on the maximum acquisition time of the associated dimension. Note

that in the case of the indirect fluorine dimension, a very low number of points sometimes leads to

a different spectral width.

• a maximum acquisition time for the direct carbon dimension of t2,max = 3 × T2(13C− TROSY)

where T2(13C− TROSY) is the 13C-TROSY relaxation rate.

We also considered the pulse lengths to be the same at different magnetic fields (see Table S3).

1.2.3 Optimization of the recycling delays and simulation of dummy scans

We define the recycling delay as the sum of the acquisition time and inter-scan delay (d1). This delay

allows spins to return to their equilibrium longitudinal state and determines the available polarization

at the beginning of the next scan. Having a long recycling delay maximizes the amount of polarization

at the expense of experimental time. We optimized the inter-scan delay at each magnetic field for both

experiments when the acquisition time is set to t2,max. For this, we simulated 10 scans, without indirect

dimension editing, and compared the value of Fz(d1)√
t2,max+d1

of the 11th scan for different values of inter-

scans delays. We devide by
√
t2,max + d1 since the signal-to-noise ratio evolves as the square-root of the

experimental time.

In all the simulations presented here, the inter-scan delays were the optimized delays, and 10 dummy

scans were simulated prior to detection to obtain the steady-state fluorine polarization.

1.2.4 Extracting peak heights from noise-free spectra

The comparison of the peak heights from one field to the other was used to optimize the magnetic field

to record each experiment (see main text). The height of a Lorentzian-shaped peak is proportional to:

H =
FID(t = 0)

R2(19F)R2(13C− TROSY)
,

where FID(t = 0) is the signal at time 0 (i.e. the peak area), R2(13C− TROSY) is the carbon-TROSY

relaxation rate and R2(19F) is either the fluorine TROSY single-transition coherence (for the single-field

experiment) or the fluorine transverse (for the two-field experiment) relaxation rate. This relationship

assumes perfect sampling in both dimensions, which is a good approximation for the direct dimension,

but not necessarily in the indirect dimension.

The Liouvillian definition already takes into account the proportionality of the polarization to the mag-

netic field. However, it does not consider the proportionality of the detected signal to the magnetic

field. In addition, at high magnetic fields, the recycling delay becomes longer, leading to potentially
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longer experimental times and lower peak heights per units of time. In order to include these effects, we

multiplied the peak height H by
√

α(B0,i)
β(tPS,i)

with B0,i the magnetic field of detection for the experiment

i, tPS,i the time for one scan of the experiment i without indirect dimension editing and:

α(B) =
B

B0,ref
,

β(t) =
t

tPS,ref
,

with B0,ref and tPS,ref the magnetic field and experimental time for one scan of the reference experiment

without indirect dimension editing. We consider as reference experiment the single-field pulse sequence

recorded at 14.1 T on 3F-Tyr with a global tumbling correlation time τc = 25 ns (in these conditions,

tPS,ref = 1.52 sec). This scaling factor does not consider the effect of accumulating different number of

points in the indirect dimension in order to reach a fixed spectral width at different fields. An accurate

estimate of the noise level is performed by simulating spectra with noise.

1.2.5 Processing of the spectra

The simulated FIDs were processed using the nmrglue Python library [3]. All processing parameters

were the same for all spectra (except phases which were adapted from one pulse sequence to the other):

• zero-filling to double the number of points in both dimensions,

• apodization function using the shifted sine-bell function: sp(n) = sin2 π/2+0.48πn
N−1 with n the data

index and N the number of points in the associated dimension.

1.3 Noise simulation and signal-to-noise assessment

When spectra with noise were simulated, a Gaussian-shaped noise centered on 0 was generated using the

random.normal function from the Python numpy library and was added to the FID before processing. In

each simulation, the same width for the Gaussian distribution was given as input to the random.normal

function. In order to consider the effect of the magnetic field on the level of noise, the noise-free FID and

the noise were scaled with α(B0,i) and
√
α(B0,i) respectively. This accounts for the proportionality of the

noise to
√
B0,i, and the proportionality of the detected signal to B2

0,i (note that the effect of the magnetic

field on the polarization is already accounted for in the Liouvillian with the thermal correction). In order

to take into account the effect of the experimental time on the level of noise, the noise-free FID and the

noise were also scaled with texp,i/texp,ref and
√
texp,i/texp,ref respectively, with texp,i (texp,ref ) the total

experimental time for the experiment i (for the reference experiment). Here, the reference experiment is

the 1F-TROSY pulse sequence used to record spectra of 3F-Tyr at 14.1 T with global tumbling correlation

time τc = 25 ns and an indirect dimension aquisition time t1,max = 1.25 × T2(19F− TROSY) with

T2(19F− TROSY) the relaxation time for the fluorine TROSY component (experimental time of 4.9

hours).

Evaluation of the signal-to-noise ratio was done using two spectra:

• the spectrum corresponding to the sum of the FID and the noise. This spectrum was used to

extract the peak height I;

• the spectrum of the noise only. This spectrum was generated by processing the random noise using

the same parameters as for the complete FID. This spectrum was used to extract the standard

deviation of the noise σnoise.

The signal-to-noise ratio (SNR) is then given by:

SNR =
I

σnoise
.
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This computational procedure ensures that no parts of the peak are considered in the estimation of the

noise (which is particularly critical when the TROSY selection is not optimal) and that sufficient points

are included to obtain an accurate estimate of σnoise (a critical point when a low number of points is

used in the indirect dimension).

The level of noise was choosen such that it would visually reproduce the noise in spectra already published

[2]. We simulated the single-field experiment using the same experimental parameters as the ones used

to record the spectrum of the maltose binding protein (MBP) until the noise was visually similar to the

one reported in the original paper (signal-to-noise ratio of 25, Fig. S11 and [2]). Since the MBP spectrum

was recorded with 80 scans [2], the spectra and noise level were scaled with 80 and
√

80 respectively.

Thus, the scaling of the FID and noise level by 80× texp,i/texp,ref and
√

80× texp,i/texp,ref respectively

leads to spectra with a number of scans leading to the same experimental time for each of them.
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2 Product operator analysis of the pulse sequences

2.1 Single-field TROSY experiment

In the following, relaxation effects are neglected. The pulse sequence [2] is shown in Figure S3. The first

carbon pulse and gradient g1 remove carbon polarization. After the pulse ϕ1:

F̂x
ΩF t1F̂z+2πJCF t1F̂zĈz−−−−−−−−−−−−−−−→F̂x cos(ΩF t1) cos(πJCF t1) + F̂y sin(ΩF t1) cos(πJCF t1)

+ 2F̂yĈz cos(ΩF t1) sin(πJCF t1)− 2F̂xĈz sin(ΩF t1) sin(πJCF t1),

where ΩF is the offset frequency for the fluorine nucleus and JCF the scalar coupling constant between

the carbon and fluorine. The Single Transition-to-Single Transition Polarization Transfer (ST2-PT)

block [4] converts these operators into observable carbon magnetization (recall that the coupling constant

is negative):

F̂x

π
2 Ĉy−−−→ F̂x

π(F̂x+Ĉx)−πF̂zĈz
−−−−−−−−−−−−→ −2F̂yĈz

π
2 (Ĉx−F̂y)
−−−−−−−→ 2F̂yĈy

π(F̂x+Ĉx)−πF̂zĈz
−−−−−−−−−−−−→ 2F̂yĈy

π
2 F̂x−−−→ 2F̂zĈy,

F̂y

π
2 Ĉy−−−→ F̂y

π(F̂x+Ĉx)−πF̂zĈz
−−−−−−−−−−−−→ −2F̂xĈz

π
2 (Ĉx−F̂y)
−−−−−−−→ 2F̂zĈy

π(F̂x+Ĉx)−πF̂zĈz
−−−−−−−−−−−−→ Ĉx

π
2 F̂x−−−→ Ĉx,

2F̂xĈz

π
2 Ĉy−−−→ 2F̂xĈx

π(F̂x+Ĉx)−πF̂zĈz
−−−−−−−−−−−−→ 2F̂xĈx

π
2 (Ĉx−F̂y)
−−−−−−−→ 2F̂zĈx

π(F̂x+Ĉx)−πF̂zĈz
−−−−−−−−−−−−→ Ĉy

π
2 F̂x−−−→ Ĉy,

2F̂yĈz

π
2 Ĉy−−−→ 2F̂yĈx

π(F̂x+Ĉx)−πF̂zĈz
−−−−−−−−−−−−→ −2F̂yĈx

π
2 (Ĉx−F̂y)
−−−−−−−→ −2F̂yĈx

π(F̂x+Ĉx)−πF̂zĈz
−−−−−−−−−−−−→ 2F̂yĈx

π
2 F̂x−−−→ 2F̂zĈx.

During the acquisition time t2, the signal has the form:

SEy,x(t1, t2) ∝ sin(ΩF t1 − πJCF t2)ei(ΩCt2−πJCF t1),

where the notation SEy,x denotes the signal recorded for the set of phases ϕ1 = y and ϕrec = x during

the echo part of the sequence. The second cycle (ϕ1 = −y, ϕrec = −x) produces the same FID. The last

two cycles (ϕ1, ϕrec) lead to the signal:

SEx,−y(t1, t2) =SE−x,y(t1, t2),

SEx,−y(t1, t2) ∝− i cos(ΩF t1 − πJCF t2)ei(ΩCt2−πJCF t1).

In the echo part of the experiment, this leads to a signal of the form:

SE(t1, t2) =
∑

(ϕ1,ϕrec)E

SE(ϕ1,ϕrec)(t1, t2),

∝− iei(ΩF−πJCF )t1ei(ΩC−πJCF )t2 ,

where the factor -i only introduces a -90◦ phase shift.

During the anti-echo acquisition, the ST2-PT block converts the operators into:

F̂x
ST2PT−−−−→2F̂zĈy,

F̂y
ST2PT−−−−→− Ĉx,

2F̂xĈz
ST2PT−−−−→Ĉy,

2F̂yĈz
ST2PT−−−−→− 2F̂zĈx,

leading to:

SAE(−y,x)(t1, t2) ∝ sin(ΩF t1 + πJCF t2)ei(ΩCt2+πJCF t1),

SAE(x,−y)(t1, t2) ∝i cos(ΩF t1 + πJCF t2)ei(ΩCt2+πJCF t1),

where the exponent AE refers to the anti-echo acquisition of the sequence. Finally:

SAE(t1, t2) ∝ iei(ΩF+πJCF )t1ei(ΩC−πJCF )t2 .

The Rance-Kay processing leads to the final spectrum with selection of the 19F-TROSY component in

the indirect dimension.
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2.2 Two-field TROSY experiment

In the following, relaxation effects are neglected. The pulse sequence is shown in Fig. 2 of the main text.

Polarization occurs at high field and the magnetization is stored and shuttled as F̂z operator. Indirect

dimension evolution is performed in a semi-constant time fashion such that scalar-coupling evolution is

refocussed. The phase cycle on ϕ2 allows selection of the cosine or sine evolving part which is further

transfered back to the 2F̂zĈz operator for shuttling to high field. The first carbon pulse creates anti-phase

carbon magnetization which further evolves under scalar coupling during a time T/2:

2F̂zĈz
πF̂x−−→ −2F̂zĈz

π
2 Ĉx−−−→ 2F̂zĈy

π(F̂x+Ĉx)−π2 F̂zĈz−−−−−−−−−−−−−→
√

2

2

(
2F̂zĈy + Ĉx

)
.

The phase cycle on ϕ3 and the use of two fluorine 180◦ pulses allow selection of the carbon-TROSY

component.

ϕ3 =
π

4
:

√
2

2

(
2F̂zĈy + Ĉx

)
ϕ3−→
√

2

2

[
1

2

(
2F̂zĈx + 2F̂zĈy

)
+

√
2

2
2F̂zĈz +

1

2

(
Ĉx + Ĉy

)
−
√

2

2
Ĉz

]
π
2 Ĉy−−−→

√
2

2

[
−1

2

(
2F̂zĈz − 2F̂zĈy

)
+

√
2

2
2F̂zĈx −

1

2

(
Ĉz − Ĉy

)
−
√

2

2
Ĉx

]
,

ϕ3 =
5π

4
:

√
2

2

(
2F̂zĈy + Ĉx

)
ϕ3−→
√

2

2

[
1

2

(
2F̂zĈx + 2F̂zĈy

)
−
√

2

2
2F̂zĈz +

1

2

(
Ĉx + Ĉy

)
+

√
2

2
Ĉz

]
π
2 Ĉy−−−→

√
2

2

[
−1

2

(
2F̂zĈz − 2F̂zĈy

)
−
√

2

2
2F̂zĈx −

1

2

(
Ĉz − Ĉy

)
+

√
2

2
Ĉx

]
.

Changing the receiver phase from -x to +x leads to the selection of the 2F̂zĈx − Ĉx operator before

detection (i.e. the TROSY component). Reconstruction of the indirect dimension is done after Fourier

transform of the direct dimension as:

S(t1, ω2) = Sϕ1=x(t1, ω2) + iSϕ1=y(t1, ω2),

with Sϕ1=k(t1, ω2) being the Fourier-transformed signal in the direct dimension recorded with phase

ϕ1 = k.
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3 Additional Figures
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Figure S1: Magnetic field variations of the auto- and cross-relaxation rates of the fluorine and carbon

operators forming the Liouville space for different values of correlation time τc and for an isolated 13C-19F

spin pair. Calculations were performed using the 3-fluorotyrosine CSA tensor parameters.
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Figure S2: Examples of magnetic field profiles used in the simulations. The field profile for a spectrometer

operating at 14.1 T (orange) is taken as a reference and matches our own 600 MHz two-field NMR

spectrometer. The magnetic field profiles for spectrometers operating at 9.4 T (blue) and 18.8 T (green)

are calculated by multiplying the reference profile (orange) by a factor α(B0) = B0/14.1 where B0 is the

operating magnetic field.

T/2 T/2 T/2 T/2

φ1

t2, φrec

t1

13C

19F

G

g1 g2 g2 g3 g3

φ2

φ3

Figure S3: Single-field TROSY pulse-sequence for 13C-19F aromatic groups. This sequence can be

modified to include proton decoupling during the t1 and t2 evolution period as detailed in the original

publication [2]. Black narrow (resp. wide white) rectangles represent 90◦ (resp. 180◦) pulses. Phases

are aligned along x if not otherwise stated. Phase cycles are as follows: ϕ1=(y,-y,x,-x) , and ϕrec=(x,-

x,-y,y). Pulses ϕ2 and ϕ3 select the TROSY component. In the case of the 3-fluorotyrosine, ϕ2=y and

ϕ3=-y, while ϕ2=-y and ϕ3=-y for the 4-fluorophenylalanine. The indirect dimension is recorded in

an Echo/Anti-Echo scheme by recording another set of experiment with following phases: ϕ1=(-y,y,x,-

x), ϕ2=-y (3-fluorotyrosine) or ϕ2=y (4-fluorophenylalanine), ϕ3=y and the same receiver phase. The

duration of the delay T=1/(2J). Gradient g1 is a cleaning gradient and was simulated by setting the

initial Liouvillian to Fz population only. Length of the gradients is 750µs with values 24.75 G.cm−1 for

g2 and 27.5 G.cm−1 for g3.
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Figure S4: Field optimization following the approach of Ref. [7]. The relative signal for a nucleus X at

a magnetic field B0 is given by B
3/2
0 × T2(X) where T2(X) is the transverse relaxation time of X and

scaled so that the relative signal is 1.0 at 14.1 T. These calculations have been performed for a global

tumbling correlation time of 25 ns and the CSA tensor parameters of 3F-Tyr.
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Figure S5: The 1F-TROSY experiment does not perfectly selects the carbon-TROSY peak. Carbon

cross-section of two-dimensional spectra simulated with the 1F-TROSY pulse sequence for 3F-Tyr with

a global tumbling correlation time τc = 25 ns (a) and τc = 100 ns (b).
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Figure S6: Two-field TROSY pulse selection with selection of both 19F and 13C-TROSY compo-

nents in 13C-19F aromatic groups. Black narrow (respectively wide white) rectangles represent 90◦

(respectively 180◦) pulses. Phases are aligned along the x-axis of the rotating frame unless other-

wise stated. Phase cycles are as follows: ϕ1 = (y,−y, x,−x, y,−y, x,−x), ϕ4 = (x, x, x, x, y, y, y, y),

ϕ5 = (−x,−x,−x,−x,−y,−y,−y,−y) and ϕrec = (x,−x,−y, y, x,−x,−y, y). In order to select

for the TROSY peak, phases ϕ2 and ϕ3 have to be adjusted to either y and −y for selection of

F̂+ − 2F̂+Ĉz (3F-Tyr) or to −y and −y for selection of F̂+ + 2F̂+Ĉz (4F-Phe). Frequency discrimina-

tion in the indirect dimension is performed using the Echo/Anti-Echo acquisition scheme, with phases

ϕ1 = (−y, y, x,−x,−y, y, x,−x) and the phases ϕ2 and ϕ3 shifted by 180◦. Length of the gradient g2

and g3 are the same as in the single-field experiment (750µs, and 24.75 G.cm−1 and 27.5 G.cm−1 respec-

tively). This pulse sequence can be modified to include proton decoupling during fluorine and carbon

chemical shift evolution periods. The horizontal line breaks represent the shuttling periods from one

field to the other. Time τSh is the shuttling delay, τHF,1 and τLF,2 are waiting delays before shuttling

and τHF,2 and τLF,1 are waiting delays after shuttling, as detailed in the main text.
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Figure S7: Field optimization of the 2F-ST2PT experiment. Expected peak height for the 3F-Tyr for

a global tumbling correlation time τc of 25 ns (a) and 100 ns (b). The highest peak-height position is

indicated with a star. The optimal low-field remains the same as for the two-field experiment discussed in

the main text (2.5 T). Interestingly, the optimial high field is higher. This is due to an increase in the 19F

longitudinal relaxation rate (Fig. S1) leading to a smaller recycling delay and hence lower experimental

time. We simulated the experiment at the highest commercially available magnetic field at the time of

writing (i.e. 28.2 T).
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Figure S8: The 2F-ST2PT leads to poor selection of the TROSY operators. 3F-Tyr spectra simulated

with correct shuttling delays (a) and virtually cancelling delays for shuttling (1 ms) and high-field sta-

bilization (0 ms) delays (b). These simulations were performed for a global tumbling correlation time

τc = 25 ns. Here, we show 15 contour levels starting from the maximum intensity and with a factor

1.2 between two consecutive levels. Peaks are labelled as Carbon-TROSY/-Fluorine TROSY (CTFT),

Carbon anti-TROSY/Fluorine-TROSY (CATFT), Carbon-TROSY/Fluorine anti-TROSY (CTFAT) and

Carbon anti-TROSY/Fluorine anti-TROSY(CATFAT).
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Figure S9: Correlation plot (a) between the angle between the 13C-CSA and the C-F bond and the

optimal field for carbon-detection in the 2F-TROSY experiment, and (b) the orthogonal component of

the 19F-CSA (σF⊥, see Table S1) and the optimal field for fluorine chemical shift evolution in the 2F-

TROSY experiment. Optimal fields are obtained for τc = 100 ns. Two examples are shown here for the

determination of the optimal fields: the 3F-Tyr in the main text, and the 4F-Phe (Fig. S10).

10 15 20 25 30 35
High field (T)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Lo
w
fie
ld

(T
)

2F-TROSY - τc = 100 ns

P
ea
k
he
ig
ht
(a
.u
)

0.05

0.5

5

50

1.
3

0.
8

0.5 0.3 0.2

Figure S10: Magnetic field optimization of the 2F-TROSY experiment for the 4F-Phe. Expected peak

height for a blobal tumbling correlation time τc = 100 ns . The color scale is identical as in the main

text. The highest peak-height position is indicated with a star and reported in Fig. S9.
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Figure S11: Simulation of the spectrum of MBP labeled on 3F-Tyr using the 1F-TROSY pulse sequence

with experimental parameters identical to Ref. [7]: B0 = 14.1 T, 80 scans, recycling delay of 2 sec,

t1,max=10 ms, t2,max=348 ms, 116 (4,096) complex points in the indirect (direct) dimension. Noise was

added in these simulations. We show 10 contour levels starting from the highest intensity and with a

factor 1.2 between two consecutive levels. The signal to noise ratio is equal to 25.1.
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Figure S12: Simulated 19F cross sections in the presence of noise for the 3F-Tyr. 19F cross sections for

the 1F-TROSY (a, c) and 2F-TROSY (b, d) with a global tumbling correlation time τc = 25 ns (a, b)

and τc = 100 ns (c, d) for different values of t1,max calculated as t1,max(C) = C × T2(19F ) where C is

a multiplication factor, ranging from 0.5 to 3.0, and T2(19F ) is the transverse relaxation time for either

the fluorine TROSY operator (1F-TROSY) or fluorine coherence (2F-TROSY). Panels a and b on one

side, and c and d on the other, have the same ordinate axis scale.
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Figure S13: Simulated 13C cross sections in the presence of noise for the 3F-Tyr. 13C cross sections for

the 1F-TROSY (a, c) and 2F-TROSY (b, d) with a global tumbling correlation time τc = 25 ns (a, b)

and τc = 100 ns (c, d) for different values of t1,max calculated as t1,max(C) = C × T2(19F ) where C is

a multiplication factor, ranging from 0.5 to 3.0, and T2(19F ) is the transverse relaxation time for either

the fluorine TROSY operator (1F-TROSY) or fluorine coherence (2F-TROSY). Panels a and b on one

side, and c and d on the other, have the same ordinate axis scale.
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Figure S14: Signal-to-noise ratio for 13C-19F TROSY spectra of 4F-Phe. Signal-to-noise ratio (SNR)

with a global tumbling correlation time τc = 25 ns (a) and τc = 100 ns (b). The experimental time is the

same in each simulated experiment (4.9 hours).
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