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Abstract

We use the ring-polymer (RP) representation to quan-

tize the radiation field inside an optical cavity to in-

vestigate polariton quantum dynamics. Using a charge

transfer model coupled to an optical cavity, we demon-

strate that the RP quantization of the photon field

provides accurate rate constants of the polariton me-

diated electron transfer (PMET) reaction compared to

the Fermi’s Golden rule. Because RP quantization uses

extended phase space to describe the photon field, it

significantly reduces the computational costs compared

to the commonly used Fock states description of the

radiation field. Compared to the other quasi-classical

descriptions of the photon field, such as the classical

Wigner model, the RP representation provides a much

more accurate description of the polaritonic quantum

dynamics, because it properly preserves the quantum

distribution of the photonic DOF throughout the quan-

tum dynamics propagation of the molecule-cavity hy-

brid system, whereas the classical Wigner model fails

to do so. This work demonstrates the possibility of us-

ing the ring-polymer description to treat the quantized

radiation field in polariton chemistry, offering an accu-

rate and efficient approach for future investigations in

cavity quantum electrodynamics.

Introduction. Coupling molecules to the quan-
tized radiation field inside an optical cavity creates
a set of new photon-matter hybrid states, so-called
polaritons. These light-matter hybrid polaritons
have shown a great promise to control chemical re-
activities1–7 in a general way by tuning the funda-
mental properties of photons and provides a new
paradigm for enabling chemical transformations
that can profoundly impact catalysis, energy pro-
duction, and the field of chemistry at large. The-
oretical investigations have played a crucial role in
unraveling the fundamental principles of polariton
chemistry.4–20 Despite encouraging progress, ac-
curately and efficiently simulating these polariton
quantum dynamics processes opens a brand new
challenge in theoretical chemistry.

In previous works of polariton chemistry, the cav-
ity photon field has been treated quantum me-
chanically through Fock states,8,9,12,13,15,18,19 grid
points,4,11,21 coherent states,7 and Polarized Fock
states.22 These approaches provide an accurate de-
scription of the quantum light-matter interactions.
They are, however, computationally demanding as
they involve full quantum description of the radi-
ation modes and are often limited in terms of how
many modes that can be explicitly quantized.

The similarity (or even the isomorphism) be-
tween the vibrational quantization of nuclei in
molecules and the photonic quantization of the ra-
diation mode inside the cavity has inspired the
quasi-classical description of the photon field. In
fact, quasi-classical quantization (in the action-
angle quasi-classical description) of the photon field
has been historically used to treat molecule-laser
field interaction by Miller and co-workers.23,24 Re-
cent example of the quasi-classical description of
the radiation mode in cavity QED includes the
classical Wigner model25–27 as well as the sym-
metric quasi-classical window approach.27,28 These
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quasi-classical approaches can significantly reduce
the computational cost due to the quasi-classical
treatment of the field. However, the classical
Wigner model25,26 is not expected to preserve the
quantum distribution associated with the photon
field,28 which often leads to the incorrect quantum
dynamics due to the leakage of the zero-point en-
ergy (ZPE).29–31

These shortcomings of the quasi-classical treat-
ment can be readily addressed with the recently
developed state-dependent ring polymer molecu-
lar dynamics (RPMD) approaches.32–37 These ap-
proaches are based upon the imaginary-time path-
integral description of the quantum DOF in the
extended phase space.38–43 The classical evolution
in RPMD preserves its initial quantum distribu-
tion captured by the ring-polymer Hamiltonian,
and it is free of the zero-point energy leaking prob-
lem.29,43 With the recent development of state-
dependent RPMD approaches,32–37 one can accu-
rately capture both non-adiabatic electronic tran-
sitions in molecular systems while explicitly quan-
tizing either the nuclear DOF or even the photonic
mode through the ring polymer description.

In this work, we quantize the photon field

with the ring-polymer description and simulate

the polariton mediated electron transfer reac-

tion through the non-adiabatic RPMD (NRPMD)

approach.31,32,37 We demonstrate that the ring-

polymer quantization of the photon field pro-

vides an accurate polaritonic quantum dynamics

of the molecule-cavity hybrid system, compared

to the quasi-classical description from the classical

Wigner model. We further provide an interesting

interpretation of the influence from the cavity field

on the molecule as a fluctuating (Peierls type) cou-

pling that facilitate the charge transfer.
Theoretical Approach. We start with the

Pauli-Fierz (PF) non-relativistic QED Hamilto-
nian13,20,21,44,45 to describe the molecular system
Ĥm coupled to the radiation field Ĥp = (â†â +
1
2)h̄ωc inside an optical cavity, under the long wave-
length limit.20 The PF Hamiltonian is

ĤPF = Ĥm + (â†â+
1

2
)h̄ωc + χ · µ̂(â† + â) +

(χ · µ̂)2

h̄ωc

= Ĥm +
1

2
P̂ 2

c +
1

2
ω2

c

(
Q̂c +

√
2

h̄ω3
c

χ · µ̂
)2
, (1)

where â† and â are the photonic creation and
annihilation operator, respectively, and Q̂c =

√
h̄/2ωc(â

†+ â) and P̂c = i
√
h̄ωc/2(â†− â) are the

photon field coordinate and momentum operators,
with ωc as the photon frequency inside the cav-

ity. Further, χ =
√

h̄ωc
2ε0V ê characterizes the light-

matter interaction. The unit vector ê is along the
field polarization direction, V is the quantization
volume for the cavity-photon field, and ε0 is the
permittivity inside the cavity. Finally, µ̂ is the to-
tal molecular dipole operator (for both electrons
and nuclei). ĤPF is a pure real Hamiltonian, and
the photonic DOF can be viewed as an additional
“nuclear” DOF, hence computationally treated in
that way.

The central idea of this letter is to quantize the
photonic DOF through the ring-polymer descrip-
tion.39,40,43 We treat both the nuclear DOF R as
well as the photonic DOF Qc on an equal footing,
and denote the “nuclear” DOF in the hybrid sys-
tem as X = {R, Qc}, with the corresponding mo-
menta Π = {P, Pc}. For a given diabatic Hamil-
tonian Ĥ = T̂ + V̂0(X̂) +

∑
ij Vij(X̂)|i〉〈j|, the

NRPMD approach32 suggests that there is an iso-
morphic Hamiltonian31,33,37 as follows

HN =
N∑
α=1

1

2M
Π2
α + V0(Xα) +

M

2β2
N h̄

2 (Xα −Xα−1)2

+
1

2h̄

∑
ij

Vij(Xα)
(
[qα]i[qα]j + [pα]i[pα]j − δij h̄

)
,

(2)

where the coordinate X (with the correspond-
ing mass M) are quantized through the extended
phase space description with N copies (the num-
ber of the imaginary time slices) {Xα} of the
original coordinates that are harmonically cou-
pled to each other. This is commonly referred
to as the ring polymer. The diabatic states
{|i〉} are mapped onto a set of mapping oscilla-
tors {qi, pi} through the Meyer-Miller-Stock-Thoss
(MMST) formalism,46,47 which are then extended
to N copies {[qα]i, [pα]i} as well in the NRPMD
Hamiltonian.31,33,37 The above Hamiltonian pro-
vides accurate non-adiabatic quantum dynamics
and at the same time, explicitly captures nuclear
quantum effects, as demonstrated in several model
systems in previous studies.31,32,37

Fig. 1 illustrates quantizing photon field through
Fock states as well as through the ring polymer
description. Fig. 1A presents the quantum evo-
lution of the light-matter hybrid system under
the Fock state representation of the photon field.
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The nuclear wavepacket evolves among the photon-
dressed electronic states |D, n〉 = |D〉 ⊗ |n〉 (the
donor electronic state with n photons inside the
cavity) and |A,m〉 = |A〉 ⊗ |m〉 (the acceptor elec-
tronic state with m photons inside the cavity),
where |n〉 and |m〉 are the Fock states (eigenstates)
of the vacuum photon field Ĥp = (â†â + 1

2)h̄ωc.
While Fock states provide exact quantum mechan-
ical description of the cavity mode and polariton
quantum dynamics, a lot of them are required to
achieve a converged results for treating the light-
matter interactions, especially when the coupling
strength is in the strong and ultra-strong coupling
regime.21 In addition, the required number of Fock
states will grow exponentially when multiple cav-
ity modes are considered,27 making this approach
computationally expensive.
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Figure 1: Schematic illustrations of the polariton me-
diated electron transfer model. (A) The model sys-
tem described with explicit Fock state quantization of
photon field coordinate Qc, where |D〉 and |A〉 refers
the donor and acceptor electronic states, and |n〉 ∈
{|1〉, |2〉...} represents the vacuum’s Fock states. (B)
Schematic illustration of the ring polymer quantization
(cyan beads) of the photonic (and nuclear) DOFs. The
cavity donor (red) and the acceptor (blue) diabatic sur-
faces are depicted as a function of the solvent coordinate
Rs and the photonic coordinate Qc.

Fig. 1B schematically presents the quantum evo-

lution of a light-matter hybrid system when using

the ring-polymer quantization. Here, the electronic

DOF are described with two diabatic states, |D〉
(red) and |A〉 (blue). The nuclei R and the photon

field coordinate Qc are quantized with the ring-

polymer representation. The ring-polymer evolves

on the 2-dimensional diabatic electronic potential

energy surfaces and undergoes non-adiabatic tran-

sitions between |D〉 and |A〉. Compared to the ex-

ponential scaling of the Fock state quantization,

the computational cost of quantizing photon field

with ring-polymer scales linearly when considering

multiple radiation modes.
Model System. In this paper, we consider

a donor-acceptor charge transfer model for the
molecular Hamiltonian

Ĥm =
P̂ 2

s

2Ms
+
∑
i

Ui|i〉〈i|+ VDA(|D〉〈A|+ |A〉〈D|)

+
∑
i

1

2
Msω

2
s (Rs −R0

i )
2|i〉〈i|+ Ĥsb, (3)

where |i〉 ∈ {|D〉, |A〉} is the diabatic donor or ac-
ceptor state, T̂s = P̂ 2

s /2Ms represents the kinetic
energy operator of the solvent coordinate Rs with
mass Ms and frequency ωs. Further, Ui is the con-
stant diabatic energy associated with the state |i〉,
with UD = 0 and UA = −ε, and VDA is the constant
diabatic electronic coupling. The driving force
(bias) ∆G of the reaction is ∆G = UA−UD = −ε,
and λ = 1

2Msω
2
s(R

0
A − R0

D)2 is the solvent reor-
ganization energy. Further, we take R0

D = 0 and
R0

A =
√

2λ/f0, where f0 is the force constant which
is related to the solvent frequency ωs =

√
f0/Ms.

Throughout this study, we use VDA = 5 meV and
a solvent reorganization energy of λ= 650 meV.

Finally, Ĥsb =
∑

k
P 2
k

2Mk
+

Mkω
2
k

2 (Rk − ck
Mkω

2
k
Rs)

2 de-

scribes the interaction between the solvent mode
Rs and a dissipative bath, where Rk represents the
kth bath mode with a conjugate momentum Pk and
a massMk = Ms. The coupling constant ck and the
frequency ωk is characterized by an ohmic spectral

density J(ω) = π
2

∑
k

c2k
Mkωk

δ(ω − ωk) = ηωe−ω/ωb ,
with a characteristic frequency ωb and a friction
constant η. The details of the bath discretization
and all the above parameters are provided in the
Supporting Information.

We further assume that the transition dipole and
the permanent dipoles of the molecule are con-
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stants, which is not a function of the solvent co-
ordinate.48 We find that within the light-matter
coupling strength considered in this work, the pres-
ence of the permanent dipoles do not impact the
polariton quantum dynamics, because these per-
manent dipoles only couple the states that are en-
ergetically off-resonance, for example, |D, n〉 and
|D, n ± 1〉. Hence, we completely ignore the per-
manent dipoles in our quantum dynamics simula-
tions presented in the main text. In the Supporting
Information, we present the results of the PMET
rate obtained with the explicit permanent dipoles,
which gives visually indistinguishable results from
those obtained with only the transition dipole.

We further assume that the transition dipole mo-
ment µDA = 〈D|µ̂|A〉 is always aligned with the
polarization direction ê, such that

µ̂·ê = µDA·ê(|D〉〈A|+|A〉〈D|) ≡ µ0(|D〉〈A|+|A〉〈D|),
(4)

where we have defined µ0 ≡ µDA · ê.
The light-matter interaction Ĥint = χ·µ̂(â†+â)+

(χ · µ̂)2/h̄ωc in Eq. 1 for the above model system
is then given as

Ĥint = h̄gc(|D〉〈A|+ |A〉〈D|)(â†+ â) +
1

2ε0V
(µ̂µµ · ê)2,

(5)

where the coupling strength h̄gc ≡
√

h̄ωc
2ε0Vµ0, and

the second term in Eq. 5 is referred to as the dipole-

self energy. For a two-state system without any

permanent dipole moment, (µ̂µµ · ê)2 = µ2
0(|D〉〈D| +

|A〉〈A|) which causes a constant energy shift for

both electronic states, and hence is ignored for this

special case.
Polariton Quantum Dynamics with

NRPMD. We aim to compute the reduced den-
sity matrix of the light-matter hybrid system

ρjj(t) = TrRTrQc [ρ̂0e
iĤt/h̄P̂je−iĤt/h̄], (6)

where ρjj(t) is the time-dependent population of
the diabatic state |j〉 ∈ {|D〉, |A〉}, P̂j = |j〉〈j| is
the associated projection operator, and TrR rep-
resents the trace over all nuclear DOF (including
solvent Rs and the bath {Rk}), and TrQc rep-
resents the trace over the photonic DOF. The
initial density operator for the entire system is
ρ̂0 = |D〉〈D| ⊗ ρ̂R ⊗ ρ̂Qc , which is a direct product
of the initial donor electronic state |D〉 with the

initial nuclear density operator ρ̂R = e−βĤR/ZR

where ĤR = 1
2Msω

2
s(R̂s − R0

D)2 + Ĥsb and the

initial distribution of the photon mode is ρ̂Qc =

e−β(â†â+ 1
2

)h̄ωc/ZQc . Further, ZR and ZQc are the
corresponding partition functions for the nuclear
and photonic DOFs. Choosing the initial electronic
state as |D〉, the distribution of the solvent coor-
dinate Rs is centered around R0

D and the distribu-
tion of the photonic coordinate is centered around
Qc = 0.

We use the NRPMD Hamiltonian in Eq. 2 to
simulate the molecule-cavity hybrid system, and
compute the time-dependent reduced density ma-
trix ρjj(t) defined in Eq. 6 through the following
population expression31,35

ρjj(t) ≈
∫
dτP0({qα,pα})ρrp({Xα,Πα}) · P̄j(t),

(7)
where X ≡ {R, Qc}, Π ≡ {P, Pc}, and
dτ ≡

∫
d{Xα}d{Πα}d{qα}d{pα} with a short-

hand notation d{ξα} =
∏N
α=1 dξα. In addition,

P0({qα,pα}) represents the distribution of the
initial electronic variables, ρrp({Xα,Πα}) rep-
resents the initial ring-polymer distribution of
both the nuclear and photonic DOF that corre-
sponds to ρ̂R ⊗ ρ̂Qc . Finally, P̄j = 1

N

∑
α Pj(α) =

1
N

∑N
α=1

1
2([qα]2j + [pα]2j − 1) is the electronic state

estimator that has shown31–33,37 to provide accu-
rate results for non-adiabatic dynamics.

In this work, because of the solvent Rs and the

bath coordinates {Rk} have low vibrational fre-

quencies (hence exhibiting quasi-classical behav-

ior), we use N = 1 bead for these DOFs. Thus,

the initial distribution of the solvent and the bath

DOFs corresponds to a pure classical distribution

ρR = e−βHR/ZR, where HR = 1
2Msω

2
s(Rs−R0

D)2+

Hsb. For the photonic ring polymer, we treat the

number of beads N as a convergence parameter

such that the initial distribution ρrp([Qc]α, [Pc]α)

is converged.31,35 The same number of beads are

used for the mapping variables,31 with the initial

density31,35 P0({qα,pα}) =
∏N
α=1

∏
j=1 δ(Pj(α)−

ρjj(0)) that is properly constrained to represent

the initially occupied state |D〉 through Pj(α) =
1
2([qα]2j + [pα]2j − 1) = δDj . The details of the

sampling procedure are provided in the Support-

ing Information. All DOFs are then propagated

using the Hamilton’s equation of motion according

to the Hamiltonian in Eq. 2. For all of the results

presented in this work, a total of 104 trajectories

are used to ensure the tight convergence of popu-

4



lation (based on Eq. 7), although 103 trajectories

already present the basic trend of the dynamics.

With the converged population dynamics, we use

a rate fitting scheme49,50 (details are provided in

the Supporting Information) to obtain the PMET

rate of the reaction.
Analytical Rate Expressions. For the ET

model system considered in this work, the equi-
librium rate constant for the non-adiabatic elec-
tron transfer reaction between donor and acceptor
states can be accurately described by Marcus the-
ory (MT)51

kMT =
|VDA|2

h̄

√
πβ

λ
exp

[
− β (∆G+ λ)2

4λ

]
, (8)

where ∆G is the ET driving force, λ is the reor-
ganization energy, VDA is the diabatic coupling be-
tween donor and acceptor states, and β = 1/kBT
where kB is the Boltzmann constant and T is the
temperature of the system.

For the molecule-cavity hybridized system, the
polariton mediated electron transfer (PMET) oc-
curs from a set of photon-dressed donor states
|D, n〉 to a set of photon dressed acceptor states
|A,m〉. To explicitly calculate the rates associ-
ated with each photon-dressed channel, we follow
the previous theoretical work8,48,52 and use Fermi’s
Golden Rule (also known as the Jortner theory53–55

in ET) described as follows

k =
∑
n

Pn
∑
m

|Fnm|2

h̄

√
πβ

λ
exp

[
−β (∆Gnm + λ)2

4λ

]
,

(9)

where Fnm = 〈D, n|Ĥpl|A,m〉 = VDAδnm +

h̄gc[
√
m+ 1δn,m+1 +

√
mδn,m−1] is the effective

coupling among photon dressed states, Ĥpl =

ĤPF − T̂s − Ĥsb is the polariton Hamiltonian,

h̄gc is the effective light-matter coupling (see

Eq. 5), ∆Gnm = ∆G + (m − n)h̄ωc is the

driving force between photon-dressed states, and

Pn = exp[−βnh̄ωc]/
∑

m exp[−βmh̄ωc] is the ther-

mal population of the corresponding cavity mode.

Here, we treat n and m as a convergence param-

eter and use large enough Fock states to converge

the rate. Note that, the presence of zero-point en-

ergy (ZPE) of the radiation field exactly canceled

inside Pn, hence not directly impacting the PMET

rate. The quantized nature of the photon states,

on the other hand, indeed significantly influence

the PMET rate through Fnm and ∆Gnm.

Fluctuation Mediated Rate Theory. We
further view the cavity radiation mode as a Peierls
coupling mode,56–69 i.e., a fluctuating off-diagonal
coupling term in the light-matter interaction Ĥint

(Eq. 5), which can modulate the static electronic
coupling (VDA) between the donor and acceptor
state. This, of course, is only valid when the pho-
ton frequency approaching to the classical limit
h̄ωc � kBT .

This Peierls fluctuated electronic coupling for the
model in Eq. 5 is expressed as

VDA(Qc) = 〈D|Ĥm + Ĥint|A〉 = VDA +
√

2ωcgcQc.(10)

The variance σ2
DA characterizes the magnitude

of the fluctuation around the static value of
〈VDA(Qc)〉 = VDA, which is

σ2
DA = 〈V 2

DA(Qc)〉 − 〈VDA(Qc)〉2 = 2ωcg
2
c 〈Q2

c〉, (11)

where 〈Q2
c〉 = 1/βω2

c based upon the classical dis-
tribution of the photon mode Qc. With the pres-
ence of Peierls coupling, the VDA term in the MT
(Eq. 8) needs to be modified as VDA(Qc) (Eq. 10),
and the Marcus theory with the Peierls coupling
can be expressed as

kP
MT =

〈V 2
DA(Qc)〉
h̄

√
πβ

λ
exp

[
− β (∆G+ λ)2

4λ

]
,

(12)

where the mean square coupling 〈V 2
DA(Qc)〉 =

V 2
DA + σ2

DA includes both static contribution and

the fluctuations induced by the photon field. De-

pending on the relative magnitude of V 2
DA and σ2

DA,

the ET rate is controlled by either the averaged

electronic coupling square or the variance squared

term.61

Other Theoretical Approaches. To further
assess the accuracy of the ring-polymer quantiza-
tion of the cavity photon field, we compare it with
the following theoretical descriptions of the cav-
ity photon field, where the non-adiabatic dynam-
ics are propagated with Multi-Trajectory Ehrenfest
approach (see details in the Supporting Informa-
tion).

(i) Classical: using a classical distribution of
the photon field and Ehrenfest dynamics to prop-
agate the non-adiabatic dynamics.

(ii) Wigner: using the Wigner initial distribu-
tion of the photon field25–27 and Ehrenfest dynam-
ics to propagate the non-adiabatic dynamics.

(iii) Fock States: using Fock states to repre-
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sent the polariton Hamiltonian Ĥpl = ĤPF − T̂s −
Ĥsb, then propagate the quantum dynamics in the
diabatic-Fock basis {|D, n〉, |A,m〉}.

For all of the above approaches, 104 trajectories
are used to make sure both convergence and a con-
sistent comparison with the NRPMD calculations.
The details of all the above approaches are pro-
vided in the Supporting Information.
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Figure 2: PMET rate constants of molecule-cavity
hybrid system over a range of -∆G, with (A) h̄ωc =
10 meV and (B) h̄ωc = 200 meV. The rate constants
are obtained from the NRPMD simulations (red dots),
and FGR rate (black solid lines). Marcus theory for
the cavity free ET rate constant (blue dashed lines) is
presented for comparison.

Results and Discussions. Fig. 2 presents the
PMET rate of the molecule-cavity hybrid system
over a range of driving force (−∆G), with (A) the
photon frequency h̄ωc = 10 meV and light-matter
coupling strength h̄gc = 3 meV, as well as (B)
h̄ωc = 200 meV and h̄gc = 5 meV. The NRPMD
approach (red dots) with a total of N = 4 and
N = 8 beads are used to generate a converged re-
sults for panel A and B, respectively. The PMET
rate constants obtained from the NRPMD simu-
lations (red dots) are compared against the FGR
rate when the molecule is explicitly coupled to the
cavity (black solid lines) and when the molecule is
decoupled from the cavity (blue dashed line). For

the model used here, the solvent DOF Rs has a
low vibrational frequency which does not exhibit
any nuclear quantum effects at T = 300 K. As a
result, we can see one single turnover of the ET rate
as −∆G increases when the molecule is decoupled
from the cavity (blue dashed lines in both panels)
where the charge transfer occurs via |D〉 → |A〉,
and the rate peaks at −∆G = λ, known as the
Marcus turnover.51,70

With the presence of the cavity, the charge trans-
fer occurs from the photon dressed donor states
|D, n〉 to the photon dressed acceptor states |A,m〉.
When the cavity has a low photon frequency h̄ωc

= 10 meV (Fig. 2A) such that h̄ωc � kBT , one
needs to explicitly consider reactive channels for
those n,m ≥ 1. This is because the excited photon-
dressed donor states, |D, 1〉,|D, 2〉..., etc, are ther-
mally accessible and as a result, the predominant
reactive channel is not only |D, 0〉 → |A, 0〉, but
there are also a significant contribution from other
high-lying photon-dressed states. As a result, the
PMET rate is significantly enhanced throughout
all ranges of driving force. Quantizing the radiation
mode with a ring-polymer description (through the
NRPMD approach) provides quantitatively accu-
rate results compared to the FGR analytical the-
ory.

Fig. 2B presents the PMET rate for the light-
matter hybrid system with a high photonic fre-
quency h̄ωc = 200 meV, such that h̄ωc � kBT .
In this case, the photon frequency is high enough
such that under the room temperature, only |D, 0〉
has an appreciable amount of thermal population.
At a small driving force −∆G < λ, the predom-
inant reactive channel is |D, 0〉 → |A, 0〉, and the
channel |D, 0〉 → |A, 1〉 is less favorable due to the
large energy difference between these two photon-
dressed states. Hence, the PMET rate constant
in this parameter regime is close to the ET rate
of the molecule (through the |D, 0〉 → |A, 0〉 reac-
tive channel) without the coupling with the cavity.
At a larger driving force, −∆G ≥ λ (Marcus in-
verted regime), the photon dressed acceptor state
|A, 1〉 is energetically closer to the |D, 0〉 state, and
hence, the rate constant is higher than the Mar-
cus ET rate in the inverted regime due to this ad-
ditional channel. Thus, the high frequency radi-
ation mode play a similar role as those high fre-
quency vibrational modes do.54 In this sense, the
PMET process is akin to the proton-coupled elec-
tron transfer reaction (PCET), whereas in PCET,
the presence of quantized vibrational levels of the
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transferring proton mediates the effective vibronic
couplings as well as the effective state-to-state driv-
ing force.71,72 Again, ring-polymer description of
the photon field provides a quantitatively correct
answer compared to the FGR results over almost
three orders of magnitude of the rate constants,
similar to the success of ring polymer quantization
of proton36,73 which provides accurate PCET rate
constant.
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Figure 3: (A) The PMET rate constant of the model
system with h̄ωc = 200 meV, obtained from differ-
ent photon quantization approaches, including the ring
polymer quantization with NRPMD (red filled circles),
the Fock state quantization (cyan open circles), classi-
cal description (green dashed line) and Wigner quanti-
zation (orange dashed line) of photon mode. (B) The
corresponding acceptor state populations.

Fig. 3 presents the detailed comparisons of the
PMET rate constants and polariton quantum dy-
namics obtained from various theoretical treat-
ments of the photon field, including the ring poly-
mer quantization (red dots), Fock state quanti-
zation (cyan open circles), Wigner distribution
(dashed orange line) and the classical distribution
(dashed green line) of the radiation mode.

Fig. 3A presents the PMET rate of the model
system with h̄ωc = 200 meV (same model in
Fig. 2B) obtained from different theoretical ap-

proaches, with FGR rate theory (black solid line)
as a benchmark of the quantum result. It can
be clearly seen that treating the radiation mode
with a classical initial distribution (green dashed
line) does not account the quantum effects asso-
ciated with the high frequency photon modes and
thus, fails to predict accurate PMET rate constant
throughout the entire range of driving force. Fur-
ther, in contrast to the previous results of cavity
QED,25–28 treating the photon mode with initial
Wigner distribution (orange dashed line) also fails
to provide the quantitative results of the rate con-
stants. The breakdown of the classical Wigner
model is likely due to the fact that the classical
equation of motion for the photon field in this cal-
culation does not preserve the Wigner distribu-
tion,29,31,74 a well-known limitation of the classi-
cal Wigner model leading to the incorrect flow of
the photonic energy to the electronic subsystem.
Finally, we also quantize the photon field through
the Fock state description (cyan open circles), and
this description provides the most accurate results
of the PMET rate constant (compared to FGR),
due to the explicit quantum mechanical descrip-
tion of the radiation mode as well as all reactive
channels. While quantizing the photon field with
Fock states provide accurate results, it is limited
in terms of how many radiation modes can be ex-
plicitly treated. The ring polymer quantization,
on the other hand, provides the same level of accu-
racy while significantly reduce the computational
costs by using the extended classical phase space
description.

Fig. 3B presents the population dynamics of ac-
ceptor state for the same molecule-cavity system
presented in Fig. 3A, with a particular driving force
−∆G = 300 meV to further demonstrate the ac-
curacy of ring-polymer quantization compared to
other approaches. We can clearly see that NRPMD
(red dots) provides nearly identical population dy-
namics compared to the Fock state description of
the photon field (cyan solid line), which in prin-
ciple provides the most accurate polariton quan-
tum dynamics (as shown in the rate constant in
panel A) . On the other hand, Wigner quantization
(orange dashed line) and the classical description
(green dashed line) of the photon field fail to pro-
vide quantitatively accurate population dynamics.

Fig. 4 compares the PMET results obtained from
the fluctuation mediated rate (blue dots) in Eq. 12,
the FGR rate (solid black) in Eq. 9, as well as the
classical treatment of photon field (green dashed

7



line). In Fig. 4A, the model system has the same
parameters as the one used in Fig. 2A. At a low
photonic frequency, the classical description of the
radiation mode provides an accurate result, be-
cause the quantum distribution of the photonic
DOF is nearly identical with the classical distribu-
tion. Further, the fluctuation mediated rate the-
ory provides a quantitative agreement with the
FGR rate. In this case, the photon mode can
be viewed as a fluctuating Peierls-type of coupling
(off-diagonal coupling in the {|D〉, |A〉} subspace).
The cavity mode fluctuates the value of the elec-
tronic coupling (see Eq. 11), and significantly con-
tributes in the rate (see Eq. 12). Under this low
frequency regime, the cavity assisted charge trans-
fer mechanism can be purely viewed as the fluc-
tuation of radiation mode that enhance the elec-
tronic coupling term. Similar effects have been
well understood in charge transfer reactions in pro-
tein60,61,64,66,69 as well as in singlet fission.75–77
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Figure 4: PMET rate constants for molecule-cavity
hybrid system over a range of driving force (-∆G), with
(A) h̄ωc = 10 meV and (B) h̄ωc = 200 meV. The rates
are obtained with classical description of photon mode
(green dash line), FGR rate (black solid lines), and fluc-
tuation mediated rate theory (blue dots).

Fig. 4B presents the same comparison of the

model system with a high cavity frequency (same

parameters used in Fig. 2B). Due to the high pho-

tonic frequency h̄ωc, the classical description of

photonic DOF is no longer capable to accurately

capture the quantum effect, especially the rate en-

hancement in the Marcus inverted regime. Further,

the fluctuation mediated rate theory deviates from

the quantum FGR results, but agrees with the clas-

sical description of the radiation mode, since both

of them use the classical treatment of the radiation

mode. On the other hand, both the state-resolved

FGR rate and the ring-polymer quantization of the

radiation field (Fig. 2B) provide accurate PMET

rate constants under the high frequency limit of

the cavity mode.
Conclusion. In this letter, to the best of our

knowledge, we present the first numerical exam-
ple of ring-polymer representation to quantize the
cavity photon field in polariton chemistry. Using
the recently developed non-adiabatic ring-polymer
molecular dynamics approach,31,32,37 we investi-
gate a charge transfer model coupled to an opti-
cal cavity.8,45,48 Our numerical results suggest that
the ring-polymer quantization of photon field pro-
vides an accurate polariton mediated charge trans-
fer rate constants over a broad range of electronic
driving force compared to Fermi’s Golden Rule.48

Our investigation also provides further mechanistic
insights into the polariton mediated electron trans-
fer (PMET) reaction.45,48 With a high photon fre-
quency (h̄ωc > kBT ), the cavity radiation mode
acts like quantized vibrational DOF, and PMET is
analogous to proton-coupled electron transfer re-
actions.71,72 With a low photon frequency (h̄ωc <
kBT ), the cavity mode plays a role of the classi-
cal fluctuating Peierls-type coupling, and PMET is
analogous to ET reactions in a fluctuating environ-
ment such as protein.60,61,64,66,69

Compared to the Fock state description of the
photon field, the ring-polymer quantization pro-
vides the same level of accuracy, and yet offers
a computationally convenient framework to de-
scribe the polariton quantum effects through the
extended phase space description. In contrast to
the unfavorable scaling of Fock states, the extended
phase space (ring-polymer) description can easily
treat multiple quantized modes inside the cavity
and scales linearly with these photonic DOF. Com-
pared to the quasi-classical descriptions (such as
the classical Wigner model) that do not properly
preserve the quantum distribution, ring-polymer
preserves the quantum distribution of the photonic

8



DOF, resulting in more accurate polaritonic quan-
tum dynamics.

We envision that recently developed state-

dependent RPMD approaches32,34–37,78–81 should

be well-suited for the investigation of polariton

chemistry27 and atomic cavity QED25,26 when

multiple photonic modes play a crucial role in

polariton quantum dynamics.27 In fact, because

{P̂c, Q̂c} in ĤPF (Eq. 1) can be viewed as an

effective “nuclear” DOF that exhibits quantum

effects, we conjecture that any approach in theo-

retical chemistry that can accurately treat nuclear

quantization41,43,82–85 will have a chance to be ap-

plicable to investigate polariton chemistry when

explicit quantization of the cavity radiation mode

is necessary. This “isomorphism” between the nu-

clear vibrations and cavity photonic modes could

also provide further insights into understanding

new reactivities86 in polariton chemistry.
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