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ABSTRACT: Polysulfide anions are endowed with unique redox properties, attracting considerable attentions 
for their applications in alkali metals-sulfur batteries.  However, employment of these anionic species in redox 
catalysis for small molecule synthesis remains underdeveloped due to their poor electrochemical potential in the 
ground state, whereas some of them are characterized by photo-absorptions in visible spectral regions.  Herein, 
we disclose the use of polysulfide anions as visible light photoredox catalysts for aryl cross-coupling reactions. 
The reaction design enables single-electron-reduction of aryl halides upon photo-excitation of tetrasulfide 
dianions (S42–). The resulting aryl radicals are engaged in (hetero)biaryl cross-coupling, borylation, and 
hydrogenation in a redox catalytic regime involving S4•–/S42– and S3•–/S32– redox couples. 

Main Text: Visible-light photoredox catalysis has advanced the-state-of-the-art in chemical synthesis, enabling 
to harness low energy visible light to productively drive various types of useful molecular transformations (1-5).  
Homogeneous photocatalysts such as ruthenium/iridium-based polypyridyl complexes or organic dyes could be 
excited under irradiation of visible light, inducing single-electron-transfer (SET) to or from organic substrates to 
provide reactive open-shell radical intermediates.  Employment of heterogeneous semiconductors as a redox 
active chromophore for synthesis of complex molecules has recently offered another contemporary trend in 
photoredox catalysis (6-8).  Nonetheless, further development of new photocatalysts based on inexpensive and 
abundant elements that can perform productive bond formation processes in a highly efficient fashion is of 
prominent interests.   

  Sulfur is known to form various catenated homoatomic polysulfide dianions Sx2– (typically, x = 2-8) and a 
persistent radical anion S3•– which is known as a blue chromophore in ultramarine blues (9, 10).  In seeking for 
the development of alkali metals-sulfur batteries, chemical reactivity and redox characters of polysulfide anions 
have been elucidated in details (11).  Polysulfide anions undergo complicated redox, dissociative and 
disproportionation processes in the solution states to afford an equilibrium mixture of multiple polysulfide 
anions and their steady states depend majorly on the solvents.  The in situ spectroelectrochemical studies on the 
reduction of octasulfur (S8) identified the ground state redox couples of S3•–/S32– and S4•–/S42–, and their 
electrochemical potentials are estimated as around –1.35 V and –0.85 V, respectively, versus saturated calomel 
electrode (SCE) in dimethylformamide (DMF) (12-14) (Fig. 1A). However, employment of these homoatomic 
sulfide anions in redox catalysis that engages organic electrophores in the radical-mediated reactions remains 



 

unmet challenge.  Nonetheless, their electrochemical potentials dictate that they are incapable of inducing 
single-electron-reduction of unactivated organic electrophores of highly negative reduction potentials such as 
aryl halides [Ered < –1.9 V (vs SCE)] (15).  On the other hand, these species show characteristic absorbance in 
the ultraviolet-visible (UV-vis) spectroscopy and some of them are observed in the visible spectral regions.  For 
example, a degassed DMSO solution of cheap and readily available potassium polysulfide (K2Sx, US$0.12 per 
gram) shows blue color and its steady-state UV-vis absorption spectrum indicates the presence of persistent S3•– 
(lmax at 618 nm with a wide bandwidth ranging from 450 nm to 800 nm), S42– (lmax at 436 nm and 333 nm) and 
S32– (lmax at 273 nm) (Fig. 1B).  We posited that based on the redox potentials and visible photon absorptions of 
S42– and S3•– in their ground state, oxidizible S42– could potentially serve as a photo-excited reductant, whereas 
reducible S3•– could function as a photo-excited oxidant (4).  Therefore, we anticipated that these polysulfide 
anions could be engaged seamlessly in SET-driven radical-mediated processes in a redox catalytic manifold 
under visible light irradiation. Herein, we report the use of polysulfide anions S42– and S3•– as photoredox 
catalysts for aryl cross-coupling reactions. The reaction design leverages photo-excitation of S42– to induce 
single-electron-reduction of aryl halides having reduction potentials (Ered) as low as –2.4 V (vs SCE). The 
resulting aryl radicals are engaged in (hetero)biaryl cross coupling, borylation, and hydrogenation in a redox 
catalytic regime where redox interplay between S4•–/S42– and S3•–/S32– redox couples enables the redox-neutral 
catalytic turnover. 

  At the outset of the project, we explored if the DMSO solution of K2Sx containing S3•–, S42– and S32– could 
engage aryl halides in radical coupling reactions under visible light irradiation.  We selected to investigate a 
heterobiaryl coupling of 4’-bromoacetophenone (1, Ered = –1.89 V vs SCE) as an electrophore with N-
methylpyrrole (2) as a radical acceptor (16). The current state-of-the-art strategies for such a radical-based aryl 
cross-coupling leverage highly reducing photo-excited radical anions of polyaromatic hydrocarbons as a photo-
excited reductant.  In particular, consecutive photoelectron-transfer processes shown by König (17, 18) and 
electrophotocatalytic strategies detailed by Lambert and Lin (19) and Wickens (20) have successfully generated 
excited radical anions.  Leveraging of readily accessible aminoalkyl radicals for halogen-atom transfer agents 
was recently proven useful to promote aryl cross-coupling by Leonori (21), while the inherent net-oxidative 
nature of the process necessitates use of a stoichiometric amount of the oxidant.  Our optimization of the 
reaction conditions revealed that irradiation of blue light (lmax = 440 nm) to the mixture of 1 and 2 in the 
presence of K2Sx (12.5 mol% per S atom), potassium carbonate (K2CO3, 1.5 equiv.) and water (H2O, 2 equiv.) 
in DMSO enabled an efficient coupling to afford heterobiaryl 3 in 86% yield within 1.5 hours (Fig. 1C). The 
control experiments indicated that K2Sx, irradiation of blue light, and buffer (K2CO3) are all essential for the 
process, and the reaction is hampered under an air atmosphere (see table S1).  The following synergistic 
catalytic cycle involving S42–/S4•– and S32–/S3•– redox couples is proposed (Fig. 1D).  Photo-excitation by 440 
nm light endows S42– with highly reducing potential in its excited state (22), allowing for single-electron-
reduction of 1 to form arene radical anion I along with generation of S4•–.  Single-electron-reduction of 
reducible S4•– by concomitant ground state oxidizable S32– allows for regeneration of ground-state S42–.  
Meanwhile, the resulting arene radical anion I undergoes mesolysis of the carbon-halogen bond to afford aryl 



 

radical II (23), that adds onto 2 to form radical intermediate III.  Single-electron-oxidation of III by photo-
excited S3•– followed by deprotonation liberates 3 and ground-state S32–.   

 

Fig. 1. Reaction development.  (A) Redox potentials of S32–/S3•– and S42–/S4•– couples.  (B) UV-vis spectrum of 
potassium polysulfide (K2Sx) in DMSO.  (C) Optimized reaction conditions catalyzed by K2Sx: 1 (0.5 mmol), 2 (20 equiv.), 
K2CO3 (1.5 equiv.), K2Sx (12.5 mol% per S), H2O (2 equiv.), DMSO (2.5 mL), 440 nm light (Kessil lamp), 1.5 hours.  (D) A 
proposed catalytic cycle.  Ac = acetyl.   

 

  We next screened the precatalysts of the polysulfide anions in the cross-coupling between 1 and 2 (Fig. 2A, 
table S2).  Top-down generation of polysulfide anions through reductive fragmentation of octasulfur (S8) (24, 
25) in the presence of sodium tert-butoxide (NaOt-Bu) in DMSO was amenable for the productive cross-
coupling.  We also found that bottom-up generation of polysulfide anions from mono-sulfide species is suitable 
for the catalysis.  For example, use of dilithium sulfide (Li2S, 10 mol%) as a precatalyst led to a full conversion 
of 1 within 2 h to afford 3 in 88% yield.  Similarly, neutral triisopropylsilylthiol (i-Pr3SiSH), which has 
commonly been utilized as a hydrogen-atom-transfer catalyst (26), could also perform as a promising 
precatalyst.  These monosulfides neither showed absorption at the visible region nor facilitated the cross-
coupling reaction under the dark conditions due to insufficient oxidation potential of monosulfide ions (Eox of 
S2– = –0.76 V vs SCE) (27) (fig. S13-S15).  On the other hand, a charge-transfer absorption band was observed 
from the mixture of 1 and Li2S (Fig. 2B) and irradiation of blue light (440 nm) to a mixture of 1 and Li2S (in 
1:1 molar ratio) in DMSO formed acetophenone (4), biaryl 5 and diaryl sulfide 6, all of which could be derived 
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from the corresponding aryl radical (Fig. 2C, fig. S4). We propose that Li2S triggers the cross-coupling process 
through the formation of electron-donor-acceptor (EDA) complex V with 1, that induces single-electron-
transfer upon irradiation of visible light to produce a radical ion pair (28, 29) (Fig. 2D).  The resulting radical 
anion of 1 undergoes cleavage of the C-Br bond to form the aryl radical, whereas a simultaneously formed 
monosulfide anion radical (S•–) undergoes dimerization to form disulfide dianion (S22–) and its subsequent 
disproportionation generates the higher order photoredox active polysulfides (30), which promote the photo-
catalytic turnover further.  Interestingly, i-Pr3SiSH might initiate the bottom-up formation of polysulfide anions 
in a different manner.  We observed that treatment of i-Pr3SiSH with K2CO3 in DMSO immediately stains the 
solution blue and the UV-vis absorption spectroscopy unambiguously indicated the generation of polysulfide 
anions (S3•–, S42– and S32–) (fig. S16). The nuclear magnetic resonance (NMR) spectroscopy showed the 
formation of disulfide (i-Pr3SiS)2 VI in the solution (fig. S5). Therefore, we postulated that DMSO functions as 
an oxidant (31) to promote desilylative oligomerization of i-Pr3SiSH to the higher order polysulfides via 
disulfide VI (Fig. 2E).  Capability of disulfide VI as the catalyst was ascertained as it performed the productive 
cross-coupling (table. S2). 

 

Fig. 2. Investigation of precatalysts.  (A) Evaluation of other precatalysts: 1 (0.5 mmol), 2 (20 equiv.), precatalysts (10 
mol%), K2CO3 (1.5 equiv.), DMSO (2.5 mL), 440 nm light (Kessil lamp), <30 °C.  NMR yields of 3 were shown.  (B) UV-vis 
spectra for charge-transfer complex of 4’-bromoacetophenone (1) with dilithium sulfide (Li2S).  (C) A stoichiometric 
reaction of 4’-bromoacetophenone (1) with dilithium sulfide (Li2S): 1 (0.5 mmol), Li2S (1 equiv.), DMSO (2.5 mL), 440 nm 
light (Kessil lamp), 1.5 hours.  NMR yields of the products were shown.   (D) Bottom-up generation of polysulfide anions 
from Li2S.  (E) Bottom-up generation of polysulfide anions from i-Pr3SiSH. 
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We found that this photoredox protocol with polysulfide anions is capable of engaging a wide range of aryl 
halides for the (hetero)biaryl coupling (Fig. 3A).  We first studied the reactivity of 4’-chlolroacetophenone (7), 
having a reductively inert C-Cl bond (32).  We observed diminished efficiency in the reaction with K2Sx (12.5 
mol% per S atom), resulting in premature conversion of 7 (60%) even after irradiation for 22 h (table S3).  We 
found that use of Li2S and i-Pr3SiSH results in completion of the process within 4 h to give coupling product 3 
in 80% and 75% yields, respectively.  These outcomes suggested that bottom-up preparation of the polysulfide 
anions from mono sulfides would provide more productive reactivity especially for reductively recalcitrant aryl 
halides.  The method allows for installation of various polar-p electron-withdrawing groups susceptible to 
reductive reaction conditions, such as ketone (7-10), aldehyde (11-13), nitrile (14) and ester (15).  The protocol 
could successfully engage five-membered ring heteroaryl halides based on furan (16), thiophene (17, 18), and 
thiazole (19).  The chemistry was also extended to functionalize six-membered ring heteroaryl halides such as 
pyridine (20, 21), quinoline (22) and pyrazine (23).  We also found that non-activated aryl halides having a 
highly negative reduction potential (Ered > –2.4 V vs SCE) are suitable substrates (24-27).  In these cases, 
employment of Li2S or i-Pr3SiSH (10 mol%) as a precatalyst was optimal.  However, the reaction of reductively 
more inert 4-bromoanisole (28) (Ered = –2.9 V vs SCE) (33) was found to be sluggish.  This protocol was found 
to be capable in functionalization of nicegoline (29) and indomethacin methyl ester (30) without damaging of 
other functional groups in these substrates.  Finally, we explored if polyhalogenated aromatic substrates could 
be engaged in chemoselective cross-coupling processes.  We were pleased to observe that 2-bromo-4-
chlorobenzaldehyde (31) was selectively functionalized on the C-Br bond.  Similarly, the coupling reaction of 
4-bromo-2-fluoro-1,1’-biphenyl (32) occurs selectively at the C-Br bond.  A more reactive C-I bond (34) could 
be functionalized selectively in the reactions of methyl 3-bromo-5-iodobenzoate (33) and 1-bromo-4-
iodobenzene (34). Moreover, 3,5-dibromobenzonitrile (35) was found to undergo single functionalization at one 
of the C-Br bonds.  The scope with respect to the trapping (hetero)arenes was next evaluated (Fig. 3B).  Use of 
N-H pyrrole (36) and indole (37) was found to be optimal, while the coupling with thiophene (38) resulted in 
moderate efficiency.  The protocol enables the Minisci type-coupling with pyrazine (39).  Electron-rich 
benzenes (40, 41) were also found to be compatible as a coupling partner. 

  



 

 

Fig. 3. Reaction scope on (hetero)biaryl cross coupling.  (A) Scope of aryl halides. (B) Scope of arene coupling 
partners: aryl halides (0.5 mmol), coupling partners (20 equiv.), precatalysts (10-20 mol%), K2CO3 (1.5 equiv.), DMSO 
(2.5 mL), 440 nm light (Kessil lamp), <30 °C.  Isolated yields of the products were recorded.  * Precatalyst: K2Sx (12.5 
mol% per S) with H2O (2 equiv.).  † Precatalyst: Li2S (10 mol%).  ‡ Precatalyst: i-Pr3SiSH (10 mol%).  § 390 nm light.  ‖ 
10 equiv of 3-methylindole was used.  ¶ The reaction was run with 5 equiv of 4-methoxyphenol and 5 equiv of NaOt-Bu.  
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Synthetic utility of this polysulfide anions-based photoredox catalysis was further extended to the dehalo-
borylation reaction by employing bis(pinacolato)diboron (B2pin2) as the radical trapping reagents (Fig. 4A, 
table S4) (35).  Optimization for the borylation of 4’-bromoacetophenone (1) with K2Sx as a precatalyst led to 
the identification of tetramethylguanidine (TMG) and acetonitrile (CH3CN) as the optimal base and solvent, 
respectively, delivering pinacol arylboronate 42 in 84% yield within 1.5 h.  This protocol was found to be 
applicable to the borylation of various functionalized haloarenes (43-47).  We also found that the protocol is 
amenable to hydrodebromination of 1 using diisopropylethylamine (i-Pr2NEt) as a hydrogen donor, providing 
acetophenone (4) in 96% yield within 2 hours (Fig. 4B, table S5) (36).  The identified reaction conditions were 
capable of reductive radical cyclization of 48 to dihydrobenzofuran 49 and hydrodeiodination of secondary 
alkyl iodide 50 to 51. 

These batch photo-redox processes driven by the polysulfide anions stimulated us to explore the scalability of 
the heterobiaryl cross-coupling and borylation in flow (Fig. 4C). The cross-coupling between 1 and 2 was 
efficiently promoted in a homogeneous system using i-Pr3SiSH as a precatalyst and tetramethylguanidine (TMG) 
as a base in an operationally simple micro-tubing continuous-flow reactor (37) (fig. S8).  The desired product 3 
was delivered at 1.75 g/hour production rate (78%) with 30 mins as residence time. The debromo-borylation of 
1 could also be performed in the same flow reactor to afford 42 at 6.9 g/hour production rate (83%) with 20 
mins as residence time. 

The polysulfide anions-based photoredox catalysis presented herein conveniently engages a wide range of aryl 
halides in productive cross-coupling chemistry.  We anticipate that the broad scope with wide functional group 
compatibility, operational simplicity and scalability in flow would bring useful and practical applications of this 
strategy in various fields. 
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Fig. 4. Application to borylation, hydrogehalogenation and scale-up in flow.  (A) Borylation: substrate (0.5 mmol), 
B2pin2 (2 equiv.), precatalysts (10-12.5 mol%), TMG (1.5 equiv.), CH3CN (5 mL), 440 nm light (Kessil lamp), <30 °C.  (B) 
Hydrodehalogenation: substrate (0.5 mmol), i-Pr2NEt (2 equiv.), i-Pr3SiSH (10 mol%), H2O (20 equiv.), CH3CN (5 mL), 
440 nm light (Kessil lamp), <30 °C.  Boc = tert-butoxycarbonyl.  (C) Scale up of heterobiaryl cross-coupling and borylation 
in flow.  O’D’ = outer diameter; I’D’ = inner diameter; TR = residence time; V = volume of the micro-tubing reactor; BPR = 
back pressure regulator.  * Precatalyst: K2Sx (12.5 mol% per S) with H2O (2 equiv.).  † Precatalyst: i-Pr3SiSH (10 mol%).  
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