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Abstract

Electrochemical reduction of O2 provides a clean and decentralized pathway to pro-

duce H2O2 compared to the current energy-intensive anthraquinone process. As the

electrochemical reduction of O2 proceeds via either two-electron or four-electron path-

way, it is thus essential to control the selectivity as well as to maximize the catalytic

activity. Siahrostami et al. demonstrated a novel approach to control the reaction

pathway by optimizing an adsorption ensemble to tune adsorption sites of reaction

intermediates, and identified Pt-Hg catalysts from density functional theory (DFT)

calculations and experimentally validated this catalyst (Nat. Mater. 2013, 12, 1137 ).

Inspired by this concept, in this work, we apply a state-of-the-art high-throughput

screening to develop O2 reduction catalyst for selective H2O2 production. Starting

from Materials Project database, we evaluate activity, selectivity and electrochemi-

cal stability. To efficiently perform the screening, we introduce an active motif based

approach which pre-screens unpromising materials and only performs DFT calcula-

tions for promising materials, which significantly reduce the number of the required

calculations. We not only provide a list of promising candidates identified by DFT cal-

culations, but also suggest element species to achieve high catalytic activity or H2O2

selectivity for future experimental attempts. Finally, we discuss a strategy for effi-

cient future high-throughput screening using a machine learning pipeline consisting of

a non-linear dimension reduction and a density-based clustering.
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1. Introduction

A direct production of hydrogen peroxide (H2O2) through an electrochemical oxygen (/rmO2)

reduction reaction (ORR) under ambient conditions is a desirable pathway to replace energy-

intensive and centralized anthraquinone process.1 Further, this process can resolve an energy

storage issue of intermittent renewable energy sources such as solar or wind power, by storing

renewable-source-derived electricity as chemical bonding energies of the liquid fuel.2 The pro-

duced H2O2 could also be utilized in paper industry and water treatment.3 Several types of

electrocatalysts have been reported so far, including intermetallic alloys (PtHg4,
4 Pd2Hg5

5),

defective/oxidized carbon-based materials,6–9 and single atom catalysts.10,11

Two-electron pathway (E◦
O2/H2O2

=0.7 VRHE):

∗+O2 + (H+ + e−)↔ OOH∗ (1a)

OOH ∗+(H+ + e−)↔ ∗+H2O2 (1b)

Four-electron pathway (E◦
O2/H2O

=1.23 VRHE):

∗+O2 + (H+ + e−)↔ OOH∗ (2a)

OOH ∗+(H+ + e−)↔ O ∗+H2O (2b)

O ∗+(H+ + e−)↔ OH∗ (2c)

OH ∗+(H+ + e−)↔ ∗+H2O (2d)

The electrochemical O2 reduction could follow two different pathways depending on the

properties of catalyst surfaces, i.e., two- ((1a) and (1b)) and four-electron ((2a)-(2d)) path-

ways to produce H2O2 andH2O, respectively. Thus, improving the product selectivity toward

H2O2 is of significant importance as well as maximizing the catalytic activity. As shown in

Eqn (1a) and (2a), two- and four-electron pathways share the initial step, the protonation
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of O2 to make OOH* on the surface, and the following protonation of OOH* determines

the product selectivity. Thus, to enhance the product selectivity for H2O2, adsorbed O*

should be destabilized, so that H2O2 formation becomes energetically more favorable (Fig-

ure 1A), assuming that a kinetic barrier of a proton transfer from H3O
+ (acid) or H2O

(base) to adsorbate is proportional to the reaction energy.12 However, binding strength of

ORR intermediates (O*, OH*, OOH*) is correlated with each other on catalyst surfaces

through so-called “scaling relation”, making it challenging to control the binding strength

of adsorbates independently.13–16

Toward a rational catalyst design, Siahrostami et al. suggested that an ensemble effect,

i.e., arrangements of surface atoms to change adsorption sites of reaction intermediates, is

the key to control the product selectivity.4 For example, O* adsorbate generally prefers to

adsorb at the face centered cubic (FCC) hollow site of FCC metal [111] surfaces, interacting

with three surface metal atoms (Figure 1B). In the case of PtHg4 intermetallic alloy surface

found to be selective for H2O2 production,4 however, surface Pt atom is surrounded by

four inactive Hg atoms removing the Pt-Pt-Pt active motif and substantially weakening O*

adsorption by changing the adsorption site to the top site. On the other hand, the adsorption

site and energy of OOH* remained nearly unchanged, thus making PtHg4 very active and

selective toward H2O2 production (Figure 1B). To the best of our knowledge, however, there

has been no attempt to systematically discover active, selective and stable catalysts from

large materials databases, mainly due to the difficulty of modelling many possible surfaces

and active sites, and computational cost of performing DFT calculations for all those sites.

In this work, we present an active motif screening from the materials database to discover

catalysts that outperform the state-of-the-art catalysts in multiple aspects. We first per-

formed the conventional DFT calculations to compare binding affinities of diverse elements

in the periodic table toward O-species to determine promising bimetallic combinations. We

then screened materials based on the stability under the reaction conditions, and the active

motif to maximize the catalytic activity and H2O2 selectivity simultaneously. We also per-
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formed general non-linear dimension reduction and density-based clustering to increase the

interpretability of fingerprint, which leads to accelerated inverse catalysts design. This work

highlights that the active motif screening could significantly reduce the number of DFT

calculations to accelerate catalysts discovery, and this approach could also be applied to

other catalytic reactions requiring new materials that deviate from the conventional scaling

relations.

2. Computational Details

We performed DFT calculations using VASP code (version 5.4.4.)17,18 with GGA-RPBE19

exchange-correlation functional and projector augmented wave (PAW) pseudopotentials20

with a cutoff energy of 400 eV. Energy and force criteria for the convergence were set to

10−4 eV and 0.05 eV/Å, respectively. We modeled Ag-based single atom alloys using 3-

layered (3 × 3) supercell of [111] facet (9 atoms in each layer), and one surface Ag atom

was replaced by other elements, which include 22 p-block and 29 d-block elements (Table

S1). (2× 2× 1) Monkhorst-pack meshes were used for all single atom alloy calculations. For

high-throughput intermetallic surface calculations, we determined the k-points (k1× k2× 1)

so that an × kn(n = 1, 2) ≈ 15 Å, where a1 and a2 are the sizes of unit vectors in x and y

directions, respectively. For all surface structures, a vacuum of at least 12 Å was included

to avoid an imaginary interaction along the z-axis.

To establish the free energy diagram of electrochemical O2 reduction to H2O2, we first

calculated electronic energies of bare and O*/OOH* adsorbed surfaces. Free energy correc-

tions for adsorbates (zero-point energies, enthalpic and entropic contributions) were then

determined based on the harmonic oscillator approximation at 300 K on Pt [111] surface.

For H2O and H2 molecules, we calculated free energy corrections using the ideal gas ap-

proximation implemented in ASE21 at 3,534 Pa and 101,325 Pa of their partial pressures,

respectively (Table S2). We further added the solvation stabilization of −0.25 eV for OOH*
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assuming a half-dissociated water layer.22 To take into account the effect of the electrode po-

tential, we used the computational hydrogen electrode (CHE) method,23 which assumes an

equivalent chemical potential of a half of H2 gaseous molecule and proton-electron pair, i.e.,

G(H++e−) = 0.5G(H2) at standard conditions (pH=0, and PH2=101,325 Pa) in the absence

of the applied potential. Once the potential U is applied, G(H+ + e−) = 0.5G(H2)− eUelec,

where e is an elementary charge of an electron and U is the electrode potential versus re-

versible hydrogen electrode (RHE), thus enabling to calculate the potential dependent free

energies along the reaction pathway and to estimate theoretical overpotentials for H2O2

production (ηH2O2).
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3. Results and discussions
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Figure 1: (A) Free energy diagram of ORR on Pt [111] and PtHg4 [110] at 0 VRHE. For
PtHg4, we plotted 2e and 4e reaction pathways to produce H2O2 and H2O, denoted as
blue and red lines, respectively. 2e overpotential and selectivity are defined, which will be
used throughout the rest of the paper. (B) Scaling relation between ∆GOOH∗ and ∆GO∗
of pure metal [111] surfaces. Green and orange lines indicate hollow and top site binding
for O* adsorption, respectively. Inset images are top views of O* adsorptions. Note that
∆GO∗ on PtHg4 is located close to the scaling line of top site O* binding. Color codes
in atomic structures: Pt (grey), Hg (orange), O (red). ∆GOOH∗ value to achieve the best
catalytic activity is presented with the dashed horizontal line. For higher H2O2 selectivity
as highlighted with the arrow, weaker ∆GO∗ is preferred.

Figure 1A compares free energies of ORR on the transition metal catalyst, Pt [111],

and the intermetallic catalyst, PtHg4 [110]. The scaling relation generally predicts similar

binding strength of OOH* when O* binding is similar.16 However, ∆GO∗ on PtHg4 (2.87

eV) is much weaker than Pt (1.51 eV) by ∼1.3 eV, although their ∆GOOH∗ are very similar,

making PtHg4 exceptionally selective for the 2e reaction pathway.4 To understand the origin

of such difference, we plotted projected density of states (pDOS) and calculated d-band

center (Figure S1) of Pt [111] and PtHg4 [110] surfaces, which is a descriptor for binding

affinity toward adsorbates.24 Very close d-band center values and similar binding energies at

the top site of OOH* for Pt [111] and PtHg4 [110] indicate that the electronic effect could
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barely affect the product selectivity between two catalysts. We compared O* binding at the

single-fold top site and many-fold sites on the two surfaces. O* binding obviously preferred

many-fold sites consisting of O-affinitive surface Pt atoms for Pt [111] surface, while the top

site is most preferred for PtHg4 [110] surface (Figure S1). This suggests that the change

in the binding sites due to the ensemble effect, where Pt site is isolated by surrounding Hg

atoms, could mainly contribute to the enhanced H2O2 selectivity of PtHg4. In Figure 1B, we

plotted the scaling relation between ∆GOOH∗ and ∆GO∗, where two different O* binding sites

were considered (Figure 1B inset). Interestingly, the top site O* binding on the transition

metals is ∼1.3 eV weaker in average compared to the hollow site binding. This observation

confirms that O* binding became selectively weaker on PtHg4 as the hollow site disappeared

(Figure S1), and highlights the potential of the active motif engineering for selective catalysis

by escaping from the conventional scaling relations.

The active motif engineering can be achieved through alloying two or more elements.

However, it is very challenging to find the ideal catalysts through the conventional computa-

tional screening, which enumerates surfaces, finds unique active sites for all possible crystal

structures and element combinations, and perform DFT calculations. For example, 1,499

intermetallic crystal structures resulted in 17,507 unique surfaces and 1,684,908 unique bind-

ing sites,25 requiring new methods to reduce the number of DFT calculations. To resolve this

computational cost issue, many machine learning approaches have been reported including

fingerprint-based artificial neural network,25 graph-based convolutional neural network,26,27

data-driven automatic machine learning,28 but all those approaches require sufficient training

DFT calculations to guarantee reasonable prediction accuracy. In the following, we discuss

our approach to tackle this challenge in discovering new 2e ORR catalysts through the active

motif screening.
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Filtering Criteria for Bulk Materials

In intermetallic alloys, not only crystal structures but also constituting elements are impor-

tant. For example, alloying two oxygen affinitive elements is not suitable for the selective

destabilization of O* to achieve high H2O2 selectivity, since it cannot remove the most sta-

ble O* hollow sites. Thus, to effectively remove three (or higher)-fold hollow active motifs

for O* binding on, combinations of strong and weak O-binding elements are desirable as

in PtHg4. To determine suitable element combinations, we first compared oxygen binding

strength of elements in the same local environment by constructing Ag-based single metal

alloy systems, where one surface Ag atom is replaced by other elements (51 elements) in

(3 × 3) Ag [111] surface (Figure S2). We calculated ∆GOH∗ on the single atom alloys and

identified active and inactive elements toward O-species based on ∆GOH∗. We collected

elements with ∆GOH∗ weaker than 0.75 eV, the typical value of Pt [111] surface, resulting

in 12 elements (Ag, Au, Hg, S, Tl, Se, Br, C, Cl, F, I, N) (Table S1). Interestingly, Hg binds

OH* most weakly among all elements considered, accounting for the success of PtHg4 and

Pd2Hg5 catalysts.4,5

Figure 2 shows the procedure of bulk material filtering based on various criteria. We first

collected all bulk materials across 48 elements (see the periodic table in Figure 2) from Ma-

terials Project29 (11,476), and only considered binary alloys for simplicity (3,568). We note

that an electrochemical stability (∆GPourbaix) under the reaction conditions (pH and V) is

one of the most important factors for electrocatalysts, which has barely been investigated in

literature.30–32 Using the Pourbaix analysis module,29 we calculated ∆GPourbaix of catalysts

at the reaction conditions with three different pHs, that is, U (V) = 0.7 – 0.0591 ×pH (pH=0,

7, 14). We note that acid-stability is mainly discussed in this paper, but stabilities under

different conditions can be found in Supporting Information. We only collected materials

with ∆GPourbaix less than 1.0 eV/atom with respect to the most stable phases of the com-

binations assuming materials’ metastability and uncertainty of the approach. We note that

∆GPourbaix of experimentally acid-stable PtHg4 and Pd2Hg5 were calculated to be 0.19 and
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Figure 2: Criteria to filter bulk materials from Materials Project.29 Considered p-block
and d -block elements are highlighted as pink and grey shaded box, respectively. (A) We
considered only binary alloys for simplicity. (B) The electrochemical stability was evaluated
and materials with the stability higher than 1.0 eV/atom above the hull were removed. (C)
We chose materials consisting of active and inactive elements, which were identified by DFT
calculations on the single atom alloys (Table S1).

0.26 eV/atom, respectively, at pH=0 and 0.7 V. Even rather loose stability condition filtered

out more than 80 % of the materials considered, highlighting the importance of considering

the electrochemical stability at the reaction conditions to reduce the number of unnecessary

DFT calculations that are considerably unstable under the experimental conditions. Finally,

we collected materials consisting of active and inactive elements, reducing the number of

materials to 231.

Filtering Criteria for Surface Structures

Using 231 materials, we enumerated various unique low index slab structures ([1,0,0], [0,1,0],

[0,0,1], [1,1,0], [0,1,1], [1,0,1], [1,1,1]) and identified all unique active sites in each slab struc-
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Figure 3: (A) Filtering criteria to effectively select active and selective motifs for H2O2 pro-
duction. Tilted views of PtHg4 and Pd2Hg5 with their active motifs (light (Pt) and dark
(Pd) grey) and the first nearest neighbors (orange (Hg)) are shown as examples. (B) A
histogram of structures with different numbers of inactive elements surrounding the active
sites. (C) A histogram of ∆GOOH∗ with colors indicating CNinactive. Vertical dashed lines
denote a range to achieve overpotentials of 0.3 V or less (3.92 ≤ ∆GOOH∗ ≤ 4.52). (D) 2e
ORR selectivity is plotted versus 2e ORR overpotential. 2e ORR selectivity is calculated as
∆GH2O2 − ∆GO∗. The lower in y-direction, the more selective toward the target product,
H2O2. Thus, catalysts close to the bottom left corner are expected to be active and selec-
tive. Marker colors correspond to their acid-stability. PtHg4 and Pd2Hg5 are plotted for
comparison, and materials inside the dashed rectangle are expected to be more active and
H2O2 selective than PtHg4 (x ≤ 0.10, y ≤ 0.7).

ture using GASpy,25 resulting in total 76,346 sites. Since 229,038 DFT jobs (76,346 × 3

considering bare, O* and OOH* adsorbed surfaces) are computationally too intensive, we

reduced the number of structures based on the active motifs of interest, which are expected

to selectively destabilize O* (Figure 3A).

To effectively reduce the number of DFT calculations, we considered multiple criteria.

Since all 231 materials at this stage consist of bimetallic combinations of active and inactive
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ηH2O2
 ≤ 0.3 V

∆GH2O2
−∆GO∗ ≤ 0.7 eV

Figure 4: Bubble sizes representing the number of unique MPIDs consisting of combinations
of active and inactive elements for high activity (ηH2O2 ≤ 0.3 V, upper plot) or selectivity
(∆GH2O2 −∆GO∗ ≤ 0.7 eV, lower plot). Larger bubbles indicate more materials.

elements toward O-species, it is reasonable to assume that reaction intermediates (O* and

OOH*) preferentially interact with more active elements at the top site, which reduced the

number of sites from 76,346 to 12,514 (top site binding) to 4,804 (top site binding at active

elements). We then categorized structures based on CNinactive, defined as the number of the

first nearest neighbor inactive elements surrounding the active elements (Figure 3A and 3B).

Example structures of various CNinactive are presented in Figure S3.

Analysis

We first performed total 3,450 DFT calculations (1725 bare surfaces and 1725 OOH* ad-

sorbed surfaces with 4 ≤ CNinactive ≤ 9) first to calculate ∆GOOH∗. We chose to consider

CNinactive up to 4, since at least four inactive atoms are required to isolate the binding sites.

414 surfaces were found to be active with ηH2O2 ≤ 0.3 V (Figure 3C), where their ∆GO∗ were

subsequently calculated to evaluate H2O2 selectivity. In Figure 3D, we plotted 2e ORR activ-

ity, selectivity and acid-stability simultaneously, and we found 16 materials and 44 surfaces
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that are expected to outperform PtHg4 in terms of the catalytic activity and H2O2 selectivity

(Table S3). We counted the number of unique materials (MPIDs) that are predicted to be

active (upper plot in Figure 4) or selective (lower plot in Figure 4), and plotted histograms

of active and inactive elements as bubbles to identify elements for high catalytic activity

and selectivity that will be helpful for experimental validations in the future. Furthermore,

detailed statistics of ηH2O2 are show in Figure S4. Se and Au elements were found to play an

important role in fine-tuning ∆GOOH∗ in combination with various active elements to min-

imize ηH2O2 . Pd active sites in combination with all considered inactive elements achieved

high catalytic activity. Further, many of Pd active sites were observed to be highly selective

as well. In addition, we note that many structures of Pd-Au, Ni-Se, Cd-Au and Cd-Ag

combinations were found to be promising candidates for experimental validations.

In Figure 5, we present examples of active and selective surfaces found from the active

motif screening, and decompose the ensemble and the ligand effects originated from the

change of binding site and local environment of the active site, respectively. A change of

O* binding site from hollow to top (from B to C in Figure 5) weakened ∆GO∗ by 1.38 eV,

and shifted the point from Ohollow*−OOHtop* scaling (green) to Otop*−OOHtop* (orange).

On the other hand, the ligand effects (from C to D/E) for PdAu3 (0.16 eV) and Pd7Se4

(0.63 eV) were not as significant as the ensemble effect. We note that both PdAu3 and

Pd7Se4 are positioned at the scaling line of top site bindings obtained from the metal [111]

surfaces, indicating that the ensemble effect significantly destabilized O* binding resulting in

the transition to other scaling relation, and the ligand effect fine-tuned the ∆GOOH∗, shifting

along the scaling relation.

We listed promising candidates predicted to be more active, selective and acid-stable than

PtHg4, where they were categorized with respect to the acid-stability (Table S4). In most

cases, materials included noble metals such as Pd, Au, Pt and Rh. This is mainly because

noble metals help to improve the acid-stabilities of the materials, where the effect of noble

and non-noble elements on the acid-stabilities were visualized in our previous work.32 Indeed,
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Figure 5: (A) The scaling relations between ∆GOOH∗ and ∆GO∗ from Figure 1B. Green
and orange lines indicate hollow and top site O* binding, respectively. (B to E) Visual
representations of example surfaces corresponding to the labels in Figure 5A. Color codes in
atomic structures: Pd (grey), Au (yellow), Se (green) O (red).

materials consisting of non-noble metal combinations demonstrated worse acid-stability as

in CuSe2 and NiSe2 although other catalytic properties were satisfactory. PdAu3, Pd7Se4

and CuAu3 were found to satisfy all conditions to outperform PtHg4 in acid, and we note

that some of them were already synthesized and tested for the 2e ORR.33,34 Although we

have focused on the acid-condition in this work, we note that the same analysis can be

done using neutral-stability and base-stability to suggest promising candidates in different

environments. For example, CuSe2 is expected to be unstable under the acidic condition

(∆GPourbaix=0.51 eV/atom), while it showed better stability under the neutral condition
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Figure 6: All surfaces considered in this work of which ηH2O2 were evaluated. (A) Two-
dimensional latent space visualized by UMAP.35 Location in the latent space represents
similarities in active motifs. Several representative cluster indices categorized by DBSCAN36

are highlighted. (B and C) Example atomic structures of catalytically (B) active and (C)
inactive clusters in terms of ηH2O2 . (D to F) Cluster characterization with (D) box plot of
ηH2O2 distribution and occurrence heatmaps of (E) inactive and (F) active elements in each
cluster.

(∆GPourbaix=0.20 eV/atom).

Strategy Towards an Efficient High-Throughput Screening

We used uniform manifold approximation and projection (UMAP)35 to reduce non-linear

dimension of fingerprints. To generate fingerprints consisting of mixed-type of data (cate-

gorical: active and inactive elements for binding site and neighboring sites, numerical: OH

binding energies of single atom alloys (Table S1), coordination numbers, and electrochem-

ical stability), we transformed binding site and neighboring sites into fingerprints using an

one-hot encoder and a multilabel binarizer, respectively, and attached their OH binding en-
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ergies, coordination numbers, and electrochemical stability. An example of the fingerprint

can be found in the Supporting Information (Figure S4). Bray–Curtis dissimilarity37 was

used to quantify a compositional dissimilarity between two different surfaces. Latent vari-

ables in the reduced space express representative information of surfaces in low dimension.

Once the UMAP is learned, it is possible to visualize similarities of surfaces via fingerprint

information which is obtained without DFT calculations (Figure 6A). To categorize surfaces

with respect to their fingerprints, we used density-based spatial clustering of applications

with noise (DBSCAN).36 DBSCAN finds clusters throughout the latent space generated by

UMAP, implying that UMAP-DBSCAN machine learning pipeline can be conducted before

performing DFT calculations. The following results suggest that this approach could be used

to reduce the number of DFT calculations.

After we plot the data on two-dimensional latent space and find clusters with similar

fingerprints (Figure 6A), we analyzed statistics of ηH2O2 of each cluster. The box plot of

catalytic activities (Figure 6D) and the occurrence heatmap of active elements (Figure 6F)

illustrate a clear distinction of active and inactive surfaces. Especially, Figure 6F suggests

that the catalytic activities are mainly affected by the identity of active elements. For

example, we visualized OOH* adsorbed structures of active and inactive surfaces in Figure

6B and 6C, respectively, and the inactive surfaces are characterized by binding sites of early

transition metals or p-block elements whose O-affinities were found to be very strong (Table

S1). We also presented statistics of ηH2O2 with respect to active and inactive elements in

Figure S5. Considering that UMAP-DBSCAN pipeline can successfully categorize similarly

behaving surfaces, we can use this pipeline to reduce the amount of DFT calculations as

follows: (1) we plot data in low-dimensional latent space using fingerprints, (2) we first

calculate the ηH2O2 of subsets (e.g. core points via DBSCAN and a few other points nearby)

of each cluster to find promising clusters and then (3) we perform full DFT calculations

for chosen clusters. Following this procedure, we could avoid DFT calculations of several

clusters of which the core points show poor catalytic activity (too high ηH2O2).
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4. Conclusions

In this work, we systematically identify promising candidates for O2 reduction to H2O2

through the active motif screening starting from Materials Project database. DFT calcula-

tions on the metal surfaces suggested the importance of the change in binding sites originated

from the ensemble effect to tune the reaction pathway toward 2e ORR over 4e ORR. Based

on this concept, we (1) evaluated their electrochemical stability to find stable materials under

the reaction condition, (2) considered bimetallic combinations of active and inactive elements

toward O-species, (3) generated all unique surfaces, and (4) categorized by the number of

inactive elements surrounding the active ones, which allowed us to reduce the number of

DFT calculations from 229,038 to 3,864. By considering multiple aspects of properties of

catalysts, we found various candidates that are predicted to outperform the state-of-the-art

intermetallic PtHg4 and Pd2Hg5 catalysts. For future experimental attempts, we also listed

active and inactive elements to achieve high activity and selectivity. We highlight the ac-

tive motif screening is not limited to the ORR, but can also be applied to other catalytic

reactions, where the ensemble effect helps to escape from the conventional scaling relation,

resulting in significant enhancements in catalytic activity and selectivity. Finally, using

DFT calculation results and the machine learning pipeline, we suggest an efficient strategy

to accelerate high-throughput screening for catalyst discovery.
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