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ABSTRACT: Water is a fundamental substance for the existence of life on earth. 

However, globally there is a freshwater crisis. Hospitals generate exorbitant volumes of 

effluents (5 to 15 times more toxic than urban ones). Hospital laundry is known for 

demanding the highest volumes of water, generating a proportional amount of complex 

effluents with high toxicity and recalcitrance. Adequate treatment for hospital wastewater is 

always an essential solution. Among all treatment methods, coagulation/flocculation 

emerges as one of the best alternatives. However, the use of traditional compounds such 

as aluminium sulfate has caused secondary pollution; its residues are harmful to public 

and environmental health. In this sense, the present study used natural compounds that 

do not cause adverse effects, such as chitosan/hydroxyapatite, to clarify the laundry 

effluents of the largest hospital from the Tocantins. The results showed that the 

hydroxyapatite associated with chitosan, at pH 6 and dosage of 50 mg/L, reduced the 

turbidity and apparent colour of these wastewaters by up to 67 and 55%, respectively. 

With lower performance and higher dosage (60 mg/L), the chitosan gel used (pH 6) 

promoted a maximum reduction of 35% of the apparent colour and 40% of turbidity. 

KEYWORDS: hospital wastewater; hospital laundry effluent; wastewater treatment; 

chitosan; hydroxyapatite; coagulation and flocculation 
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1. INTRODUCTION  

 It is difficult to conceive of any other element that is more central to human 

existence than water.1 It plays a decisive role in all aspects of life and is the defining 

characteristic of our planet.2,3  However, more and more easily accessible water sources 

have already been drained, reserves are approaching their physical limits and new 

supplies for populations, with increasing consumption levels, are only available at higher 

costs than before.3,4 On a global scale, there is a freshwater crisis.5,6 

In a context in which water scarcity combined with surface water pollution represents 

one of the major problems today, the multiple activities that take place in health facilities, 

both medical and auxiliary, generate an exorbitant volume of wastewater,7–11 with varying 

compositions, different types, and concentrations of different pollutants may be being 

released into the environment11–19 through disposal without treatment in public 

sewage.7,18,20–27 

Wastewater generated from health facilities poses a potential threat to the 

environment and public health due to the discharge of toxic chemicals that affect various 

aquatic species.10,28–34 In this sense, hospital effluents are 5 to 15 times more toxic than 

urban effluents.9,28 Lutterbeck et al.35 listed the primary sources of hospital effluents with 

the potential to generate some refractory and persistent products and by-products. Among 

the various sectors, laundry is classified as the sector that demands the highest volumes 

of water that generates a proportional amount of complex effluents with high toxicity and 

recalcitrance.7,22,36–40 

Due to the diversity of chemicals added to the washing processes, hospital laundry 

effluents may contain soap,29,41 detergents,41–44 surfactants,41,45,46 sodium hypochlorite,47,48 

hydrogen peroxide,7,49,50 peracetic acid,49–51 softeners,52,53 neutralizing additives,54 

chlorine,43,44,48 adsorbable organic halogens (AOX),44,55 nitrogen, phosphorus,7,37,56 and 

heavy metals57–60 that give these residues the power to exercise less biodegradable 

characteristics to the effluent generated by the hospital units.9 

However, tissues from different areas such as the operating room, intensive care 

unit, hospitalization, hemodialysis, imaging, emergency room, among others, are sources 

of dirt such as blood, pus, medication residues, secretions and excretions,61–64 which can 

contain pathogenic bacteria,49,51,71,54,61,65–70 fungi or viruses.56,72–74 Besides, a high 

concentration of particulate material, organic matter, proteins, starch, oils and greases40,75 

can be found. 

The correct disposal of hospital wastewater must be done in order to comply with 

environmental legislation and minimize the impacts on watercourses after its ejectment. In 
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this sense, adequate treatment for hospital wastewater is always a necessary solution. 

Various methods are used to treat effluents. Coagulation and flocculation,76–79 ion 

exchange,80,81 precipitation,82 adsorption,83,84 biological85,86 and advanced oxidation87–89 

process are used to remove colloidal particles in the wastewater.90,91 Among all treatment 

methods, the coagulation/flocculation (C/F) process is one of the oldest92 and most 

essential treatment methods for most water and sewage treatment.93–95 

A coagulant-flocculant (C-F) promotes the junction of colloidal and other particles 

suspended in a liquid forming larger particles (or flakes) to promote the settling of 

impurities from the stable suspension.94,96–99 Due to this characteristic, high efficiency in 

reducing turbidity and pollutants can be achieved.76,98,100–104 In general, inorganic C-Fs are 

more commonly used for this purpose,105–109 just as synthetic polymers have also been 

applied. Both have low cost and good efficiency.110,111 

Although cheap and effective, inorganic and synthetic coagulants have distinct 

disadvantages. Among them includes limited availability in certain regions; it is not 

biodegradable; large chemical doses are necessary for the treatment of eutrophic waters, 

and a massive amount of chemical sludge is produced.79,98,112–114 Also, its residues cause 

harmful effects for both animal species115–117 and public health.115,118–121 Hereupon, the 

total or partial replacement of the traditionally used compounds, with natural and 

biodegradable natural substances, is a solution that is being much discussed in the 

literature.122–130 

Chitosan (CS) offers several advantages over traditional compounds, including 

wide availability (higher after cellulose), cost-benefit, respect for the environment, atoxicity, 

biodegradability, biocompatibility, bioactivity, solubility in weak acids, sensitivity at pH, 

better biosorption, they do not produce secondary pollution, they are produced from 

renewable organic biomass, it allows the reuse of sludge as an agricultural fertilizer, 

among others.123,131–135 In the same line, hydroxyapatite (HA), a calcium phosphate-

based136 biomaterial137 is an up-and-coming candidate for water treatment and 

environmental remediation138–141 due to its good thermal stability,142  acid-base 

properties,143 high porosity144 and ion exchange capacity.145,146 Moreover, it is 

biocompatible,147,148 non-toxic,149,150 anti-inflammatory,147 chemically inert143,151 and 

derived from renewable biomass.152,153 HA is also known as a powerful adsorbent,154–157 

widely available and at low cost158 compared to others such as quartz, fluorite and 

calcite.140 

QS alone or HA associated with QS can be a promising substitute in C/F 

processes due to its potential viability in treatment without presenting any health 
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threat,102,121,138,139,144,155,159,160 unlike inorganic and synthetic compounds that, among other 

problems, can cause Alzheimer's disease.119,121,161,162 

In this context, a study was developed to assess the performance of QS and HA in 

the treatment of wastewater from hospital laundries, to reduce the toxic load of discharge 

into the sewer, using C/F techniques to promote the optimized reduction of turbidity and 

apparent colour and indirectly mitigate environmental pollution caused by hospital units. 

2. MATERIALS AND METHODS  
2.1. Characterization of the study area 

The General Hospital of Palmas (GHP) has 472 beds, located in Palmas, the 

central region of the state of Tocantins, Brazil. On average, approximately 376 m3/day of 

wastewater is generated by the hospital. It is estimated that the hospital's laundry 

produces about 156 m3/day of effluents, resulting from washing 5435 kg/day of textile 

items, which represent about 42% of the hospital's wastewater volume. This amount of 

sewage is discarded in the public sewage network after being partially treated by an 

internal sewage treatment plant, equipped with coarse solids retainer (grating), followed by 

an upward flow anaerobic reactor and percolating filter. This system was installed to 

remove only coarse solids and organic matter. 

2.1. Collection and characterization of effluents 

2.2.1. Sample collection 

The effluent samples for carrying out the tests were collected directly in the outlet 

pipe of the washing machines, chosen at random, following the hygiene and safety 

standards of the HGP laundry. No synthetic effluents were used. Depending on the degree 

of soiling, the clothes are separated for washing in two programs – slight and heavy. 

Figure 1 shows the details the collection process until laboratory packaging, as well as the 

types of chemicals added to each stage. The "x3" indicates the number of times that the 

volume (1200 mL) was collected in each step, i.e., in triplicate. 



6 
 

 
Figure 1 – Schematic representation of the sample collection process and main additives added to each 
stage of the heavy washing process. 

2.2.2. Characterization of raw effluent 

The effluent was characterized at the Research Laboratory for Environmental Chemistry 

and Biofuels (LAPEQ) and the Environmental Sanitation Laboratory (LABSAN) – both at 

the Federal University of Tocantins (UFT). Physical, chemical and biological analyzes 

were taken into account only for the washing steps in which more chemicals are added. In 

Table 1 it is possible to check the chosen parameters, the technique used and the 

respective laboratory in which they were performed. 

Table 1 – Parameters of the Initial Characterization Associated with the Technique and Its Respective Laboratory. 
Analytical parameters Technique (APHA 2005)163 Laboratory 

Chemical Oxygen Demand (mg/L) Spectrophotometry LABSAN 

Biochemical Oxygen Demand (mg/L) Differentiation LABSAN 

Total coliforms (MPN/100 mL) Colilert LABSAN 

Escherichia coli Colilert LABSAN 

Electric conductivity (µS/cm) Potentiometry LAPEQ 

Turbidity (NTU) Nephelometry LAPEQ 

Total dissolved solids (PPM) Potentiometry LAPEQ 
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Apparent colour (Pt/L) Spectrophotometry LAPEQ 

True colour (Pt/L) Spectrophotometry LAPEQ 

Oils and greases (mg/L) Solvent extraction LAPEQ 

Ph  Potentiometry LAPEQ 

Total nitrogen (mg/L) Differentiation LAPEQ 

Total phosphorus (mg/L) Spectrophotometry LAPEQ 

Total hardness (mg/L) Titrimetry LAPEQ 

Total alkalinity (mg/L) Titrimetry LAPEQ 

Manganese (mg/L) Spectrophotometry LAPEQ 

Zinc (mg/L) Spectrophotometry LAPEQ 

Chrome (mg/L) Spectrophotometry LAPEQ 

Aluminum (mg/L) Spectrophotometry LAPEQ 

Fixed suspended solids (mg/L) Calcination LAPEQ 

Organic suspended solids (mg/L) Calcination LAPEQ 

Total suspended solids (mg/L) Calcination LAPEQ 

2.3. Materials and equipment 

Two types of natural chitosan-based C-Fs were used, a gel and a biocomposite, both in 

the form of stock solutions. The compound in gel form was the one first studied by 

Martins,164 in which the best CS solution found was the formulation entitled "K10G" and 

object of the patent BR 102016005006-5.131 It was prepared by dissolving 1.0444 g of CS 

in 100 mL of acetic acid (1%). This mixture was subjected to magnetic stirring for 15 

minutes under heating. After that period, 34 mL of glycerol and 206 mL of water were 

added. Stirring and heating were continued for another 50 minutes. Then, the procedures 

were interrupted and the final product was stored at room temperature. The final 

concentration of the CS gel was 10.44 mg/mL. 

The second C-F, a biocomposite produced by Araújo Júnior et al.165 based on 

hydroxyapatite/chitosan (HA/CS), obtained from uçá crab shells (U. cordatus) acquired 

from the Filé do Mangue micro-company. According to the authors, obtaining the 

biocomposite proceeded as follows: after the meat was extracted, the shells were crushed, 

washed with drinking water and exposed to sunlight for seven days. The shells were 

dehydrated in the oven at 60 ° C for 4 hours to remove the water, and then they were 

ground for 2 hours in a ball mill. This powder was washed with 99.7% ethanol, 99% 

sodium hydroxide, both from Alphatec®, and water to remove proteins and lipids. By 

adding sulfuric acid (0.5%, Alphatec®) to the powder of the shells, the HA bioceramics and 

the CS biopolymer were extracted with a weight ratio of approximately 1:0.25 (HA:CS).165 

HA and CS are often insoluble in water.159,166–168 Then, to improve solubility, the HA/CS 

biocomposite was transformed into a stock solution. In this sense, due to its practicality 
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and economy, since no magnetic stirring is required for dissolution, the preparation 

procedure Divakaran and Pillai169 was chosen. It was prepared by mixing 200 mg of the 

HA/CS biocomposite in 10 mL of 0.1 M hydrochloric acid and set aside for two hours until 

completely dissolved. The solution was diluted in 100 mL of distilled water to produce 20 

mg of HA/CS per mL of stock solution. 

The C/F tests were carried out in a six-axis multiple stirrer units with stainless steel 

blades arranged inside 2 L jars (Jar-test model PoliFloc III – rectangular blades: 75 mm × 

25 mm – from PoliControl®, São Paulo, Brazil).170 A digital thermo-hygrometer was used 

(mod. TH50, from Incoterm®) to monitor the room temperature in the execution of the 

experiments. 

2.4. Coagulation/flocculation tests with chitosan 

2.4.1. Experimental procedure 

The efficiency of natural C-Fs was assessed at two pH levels (6 and 8) and the ability to 

reduce turbidity and apparent colour (control parameters). Preliminary experiments 

showed that dosages of the K10G gel below 40 mg/L required more than 24 hours of 

sedimentation time to return palpable results and dosages above 100 mg/L of HA/CS 

caused an increase in initial turbidity. Based on initial data, the values of several factors for 

the execution of the study were established, which are shown in Table 2. 

The isoelectric point of CS is around pH 8.70.171 When the pH rises to values higher than 

this, CS becomes insoluble in an aqueous medium. As a consequence, its main C/F 

mechanisms are considerably impaired. Souza172 points out that the addition of CS in 

effluents with a pH above 9, in addition to not observing the formation of flakes, the 

treatment was ineffective. Thus, before adding coagulant, the pH was adjusted according 

to Table 2. 

Table 2 – Parameters of the experimental procedure, their respective levels and baseline references. 

Study factors 
Levels 

Reference 
Gel K10G HA/CS 

pH 6 6 e 8 

Preliminary experiments 

Concentration of biocomposite (Jar 1) 50 mg/L 50 mg/L 

Concentration of biocomposite (Jar 2) 60 mg/L 60 mg/L 

Concentration of biocomposite (Jar 3) 70 mg/L 70 mg/L 

Concentration of biocomposite (Jar 4) 80 mg/L 80 mg/L 

Concentration of biocomposite (Jar 5) 90 mg/L 90 mg/L 

Concentration in the control jar 0 0 

Room temperature 26 ºC 26 ºC Di Bernardo, Dantas e Voltan (2013)173 
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Ph adjustment time 30 s 30 s Di Bernardo, Dantas e Voltan (2013)173 

Ph adjustment gradient 100 s-1 100 s-1 Di Bernardo, Dantas e Voltan (2013)173 

Coagulation mixing time 2 min 2 min Saritha, Srinivas, Srikanth e Vuppala (2017)174 

Coagulation mixing gradient 80 s-1 80 s-1 Saritha, Srinivas, Srikanth e Vuppala (2017)174 

Flocculation mixing time 20 min 20 min Saritha, Srinivas, Srikanth e Vuppala (2017)174 

Flocculation mixing gradient 20 s-1 20 s-1 Saritha, Srinivas, Srikanth e Vuppala (2017)174 

Sedimentation time 8 h 8 h Preliminary experiments 

The volume of two litres of collected effluent was added to the six jars. A standard 

sample was taken to measure turbidity, apparent colour and pH before the start and at the 

end of each experiment. Different amounts of K10G gel and HA/CS were added to the jars 

and kept under agitation in the Jar-test, obeying the levels established in Table 2, 

according to the standard procedure of the American Society for Tests and Materials 

(ASTM).175 A blank experiment was also carried out simultaneously in the absence of C-F 

to assess the natural decantation of the suspension under similar experimental conditions. 

Figure 2 schematically details the execution of the experimental procedure. 

 
Figure 2 – Schematic  representation of the experimental procedure. 

2.4.3. Data analysis 

The effluents of the studied laundry, without the addition of C-F, showed a small 

reduction in the values of the control parameters (on average 16%). In this sense, the 

percentage of reduction in the control parameters was calculated, taking into account their 

respective value in the control jar, according to Equation 1. 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 = �𝑉𝑉𝑗𝑗−𝑉𝑉𝑗𝑗𝑗𝑗
𝑉𝑉𝑗𝑗𝑗𝑗

� × 100        (Eq. 1) 

Onde: 

 Where: 

 𝑉𝑉𝑗𝑗𝑗𝑗 and 𝑉𝑉𝑗𝑗 represent the values of the control parameters in the control jar and 

the others jar in the test jar, respectively. 

2.4.2. Statistical analysis 

In environmental studies of real effluents, sample degradation is a matter of great 

concern when long periods of experimentation are needed to determine the best 

conditions for a treatment process.7 In this sense, in addition to carrying out the 

experiments with a maximum of 24 hours after collection, each procedure and control 

parameter was repeated five times. The mean value and standard deviation of the five 

repetitions were calculated. Statistical analyzes, graphs and tables were performed using 

the Statistica® 10176 software (5% significance level) aided by Microsoft Excel® 2010.177 

In both software, histograms were elaborated to analyze the normality of the data. 

For data sets N>50 and N<50, the Kolmogorov-Smirrnov & Lilliefors and Shapiro-Wilk's 

parameters were taken into account, respectively. In both statistical analyzes, the data 

distribution was normal. Therefore, two parametric methods were used to statistically 

assess the significant difference (p <5%) of each factor (C-Fs and pH) at different levels: 

Analysis of Variance (ANOVA) of repeated measures and factorial ANOVA. After both 

ANOVA tests, the Tukey test was used to show the best level for each factor. 

3. RESULTS AND DISCUSSIONS 
3.1. Characterization of laundry effluents 

The composition of the effluents produced by the laundry is different from those 

generated by other sectors of the hospital. Several physical-chemical and biological 

characterizations of these effluents were carried out. Before calculating the mean and 

standard deviation of the parameters, the results were separated taking into account 

effluents collected in periods when the dosing of chemicals in the machines was carried 

out manually and automatically. These data and the discharge limits for effluents from 

Brazil (National Environment Council – CONAMA) and Europe (European Economic 

Community – EEC) are shown in Table 3. 
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Table 3 – Characterization of Laundry Effluents from Hospital Geral de Palmas and Effluent Discharge Limit from 
Brazil (CONAMA) and Europe (EEC). 

Analytical parameters 

Mean ± standard 

deviation (manual 

dosage) 

Mean ± standard 

deviation (automatic 

dosage) 

EEC 

91/271
178 

CONAMA 

430179 

Chemical Oxygen Demand (mg/L) 149 ± 109.56 1288.5 ± 88.5 125 – 

Biochemical Oxygen Demand (mg/L) 70 ± 28.71 296.05 ± 17.75 – 120 

Total coliforms (MPN/100 ml) 13.1 ± 8.85 2419.6 ± 0 – – 

Escherichia coli – 248.1 ± 0 – – 

Electric conductivity (µs/cm) 6583.33 ± 7751.94 831.04 ± 827.96 – – 

Turbidity (NTU) 53.5 ± 7.84 29.1 ± 8.9 – – 

Total dissolved solids (PPM) 3290.87 ± 3876.41 1119.5 ± 286.5 – – 

Apparent colour (Pt/L) 179.33 ± 34.5 136.5 ± 25.5 – – 

True colour (Pt/L) 97.33 ± 38.66 33 ± 12 – – 

Oils and greases (mg/L) 153.73 ± 153.28 – – – 

pH  
10.96 ± 2.69 

12.24 ± 0.27 
6.0 – 

9.0 
5.0 – 9.0 

Total nitrogen (mg/L) 9.66 ± 5.55 13.05 ± 3.42 10 20 

Total phosphorus (mg/L) – 18.45 ± 6.05 1 – 

Total hardness (mg/L) 10.78 ± 0.94 8.69 ± 0.96 – – 

Total alkalinity (mg/L) 1210 ± 1006.21 158 ± 56 – – 

Manganese (mg/L) 0.23 ± 0.15 0.09 ± 0.03 – – 

Zinc (mg/L) 0.03 ± 0.02 0.01 ± 0 – – 

Chrome (mg/L) 0.28 ± 0.14 0.01 ± 0 – – 

Aluminum (mg/L) 0.01 ± 0 0.01 ± 0 – – 

Fixed suspended solids (mg/L) 0.53 ± 2.78 13.6 ± 12.4 – – 

Organic suspended solids (mg/L) 44.27 ± 4.59 – – – 

Total suspended solids (mg/L) 44.8 ± 7.35 – 35 – 

 

Several authors have reported high polluting loads in hospital effluents.9,10,28–34 

However, in Tab. 2 it is possible to observe a robust eutrophic load in the effluents of the 

studied laundry, which, in turn, are mixed with the effluents of the hospital. In this laundry, 

high levels of chemical oxygen demand – COD (1288.50 mg/L) and biochemical oxygen 

demand – BOD5 (296.05 mg/L) were found, whose high values are well above those found 

in other studies.180,181 Concerning the European directive EEC 91/271, COD values are 

extrapolated more than ten times. On the other hand, DBO5 values exceed the legislation 

(CONAMA 430 and CEE 91/271) by almost 2.5 and 12 times, respectively. 

Tab. 3 also shows a pH that is highly alkaline – in line with the high total alkalinity 

(1210 mg/L) – and is being launched in disagreement with both laws. The turbidity values 

are high, probably due to the presence of particles, such as blood and cotton fibre. 
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Regarding the nutritional load, the liberation of nitrogen into the sewage is slightly above 

the limit established by EEC 91/271 and as Brazilian legislation is less demanding, the 

disposal does not exceed the value allowed by CONAMA 430. However, the values of 

discarded phosphorus are 18 times higher the limit established by the EEC. 

The load of pathogens was also high and the incidence of E. coli indicates 

contamination of wastewater by human faecal matter. Several studies have reported the 

high incidence of these coliforms in wastewater from hospital laundries.37,66,75 In this 

sense, the scientific community reports several cases of infection in hospital laundries: 

Salmonella,65 rotaviruses, Clostridium difficile,49,51,61 influenza virus (H1N1),73 

Streptococcus spp.,182 Enterococcus spp.,70,71 Acinetobacter spp.,69 Staphylococcus 

spp.,68,183 Pseudomonas,67 Bacillus spp.54 and hepatitis A virus.72 Besides, workers at a 

North American cooperative that washes the tissues of 40 hospitals were infected with the 

new COVID-19.74 

3.2. Evaluation of the coagulation and flocculation process 

Despite being highly polluting, inside a hospital, these effluents can be treated and 

reused at a non-potable level and have the potential to reduce water consumption in these 

institutions, as well as avoid their direct disposal in the untreated urban sewage network.7 

For this purpose, several composite samples were submitted to C/F under different 

conditions of pH and dosage of C-Fs. The results of the study are shown in Figure 3. All 

reduction efficiencies (in percentage) are related to the control jar and negative values 

indicate that the dosage of that jar caused an opposite effect (increase in 

turbidity/apparent colour above that presented in the control jar). 

a)  b)  
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c)  d)  
Figure 3 – a) Turbidity and apparent colour reduction efficiency using K10G gel at pH 6; b) Turbidity reduction 
efficiency using HA/CS at pH 6 and 7; c) Efficiency of apparent colour reduction using HA/CS at pH 6 and 7; d) 
Comparison between turbidity reduction efficiency and apparent colour at different pH levels for the optimal dosage (50 
mg/L) of HA/CS. 

Fig. 3a points out that C/F with K10G at pH 6 provided maximum reductions of 

approximately 35% and 40% in apparent colour and turbidity parameters, respectively, 

with an optimal dosage of 60 mg/L. Martins164 found better results using it in the treatment 

of bovine slaughterhouse effluents, with a high organic load and oils and greases (> 600 

mg/L). Although the effluents in this study have reasonable amounts of oils and greases, it 

was observed that the effluents studied by Martins164 have different characteristics – they 

can contain four times more oils and greases than those from hospital laundries. Also, 

during the laundry washing processes, a large part of the organic matter is eliminated in 

the first rinses and as shown in Fig. 1, to the next steps, chemicals of low biodegradability 

(such as surfactants) are added. The scientific literature36 reports that only C/F with CS is 

not enough to remove surfactants and, in general, adsorption improves the process. 

Souza172 tested the removal of surfactants in hospital laundry effluents by C/F processes 

with CS and two other C-Fs. However, it was not successful. Due to the low performance 

in this study, no experiments were performed using the K10G gel at pH 8. 

On the other hand, Fig. 3b and 3c show that HA/CS was considerably more 

efficient (≅55%) than K10G gel, with a slightly lower dosage and similar sedimentation 

time. This C-F achieved maximum reductions of about 67 and 55% for turbidity and 

apparent colour, respectively. Generally, due to the improvement of adsorbent properties, 

the association of HA and CS has been shown to be more effective in treating effluents 

than with CS alone.141,144,155,184 Herewith, for this study, it is likely that the better 

performance of the HA/CS composite compared to the K10G gel is due to the powerful 

adsorption activity that HA promotes. 
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There is a precise dosage of C-F for significant flake formation to occur due to its 

cationic nature.185 In this sense, a trend is observed in Figs. 3a, b and c: there is a strong 

relationship between C-F dosage and efficiency of reducing control parameters – the 

higher the dosage, the lower the efficiency of the C/F process. A well-known mechanism in 

C/F processes is the formation of a polymer bridge that, in turn, causes destabilization, 

formation of dense flakes 109,186,187 that, consequently, increase the sedimentation and 

solid-liquid separation rates.188 However, an overdose of C-Fs can result in re-stabilization 

because it becomes difficult for the extended polymer molecule to find empty sites 

available for adsorption.122,189 Thus, it is likely that the aforementioned strong relationship 

can be explained by the saturation of the polymer bridge caused by the overdose of C-F. 

Regarding the influence of pH on C/F, in general, Fig. 3b, 3c and 3d point out that 

the experiments carried out with pH 6 were slightly more efficient than with pH 8. However, 

with this slight difference, it is not possible to confirm a significant difference (p <5%) 

between these two pH levels in the treatment of effluents by C/F with the HA/CS 

composite. However, this adjustment is necessary due to the low performance of the 

treatment without adjusting the pH (11.20). 

In agreement with these results, the scientific literature171,190 reports that, in 

general, at pH close to 6, CS offers less turbidity/apparent colour and the increase in pH 

also causes a slight increase in residual turbidity. Another factor that may be weakly 

influencing the better performance of the C/F treatment at pH 6 is that the zeta potential of 

the CS surface in acidic environments is usually positive due to the protonation of the 

amino groups (–NH3
+) in these conditions.191,192 On the other hand, impurities usually have 

a negative charge.76,77 Thus, the electrostatic interaction of the negatively charged 

pollutants in contact with the positive charges of the QS causes the agglomeration of 

particles, formation of flakes and the consequent general improvement of the process. In 

this sense, the fact that the QS is in a smaller proportion (about 4 times) in the composite, 

may be the cause of the insignificant influence. Figure 4 shows the formation of flakes into 

jars with and without the addition of HA/CS (control jar), at pH 6. 
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a)  b)  
Figure 4 – Flakes formation in the jar of the test jar (experiment nº 9). Coagulation/flocculation with (a) and without the 
addition of hydroxyapatite/chitosan (b) both when initiating sedimentation (pH 6). 

If the coagulation reaction occurs under non-optimized pH conditions, the quality 

of the treated and filtered water can be degraded by high concentrations of the C-F 

employed.189 In this sense, a fact that drew attention was the high addition of acidifier to 

the jars – average doses of 9.75 mL (pH 6) and 7.78 mL (pH 8) – to optimize the pH of the 

experiments. However, the pH control in this study was fundamental, since initial tests 

showed low performance not only of the K10G gel, but also of the HA/CS in the 

clarification of the raw effluent without pH correction. 

As mentioned, the optimal dosage of the HA/CS composite was 50 mg/L. When 

comparing this dosage in the treatment of hospital laundry effluents with dosages of 

commercial C-Fs (Table 4), the HA/CS in dosages eight times lower produces similar 

reductions in apparent color and turbidity. That indicates that CS associated with HA is 

more efficient than the C-Fs compared. 

Tabela 4 – Comparison Between the Dosages of Aluminium Sulfate, Aluminum Polychloride (PAC), Tanfloc SG and 
Hydroxyapatite/chitosan (HA/CS) in the Reduction of Turbidity and Apparent Colour. 

Coagulant/flocculant (optimal dosage) % Turbidity reduction ± standard deviation Source 

Aluminium sulfate (400mg/L) 86,4 ± 0,5 
Souza 

(2012)172 
PAC (400mg/L) 85,3 ± 0,5 

Tanfloc SG (400mg/L) 76,9 ± 0,8 

HA/CS (50mg/L) 67,4 ± 3 this study 

Coagulant/flocculant (optimal dosage) % Colour reduction ± standard deviation Source 

Aluminium sulfate (400mg/L) 63,2 ± 2,6 
Souza 

(2012)172 
PAC (400mg/L) 73,6 ± 1,3 

Tanfloc SG (400mg/L) 52,7 ± 2,6 

Formação de flocos 
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HA/CS (50mg/L) 56 ± 5,7 this study 

3.3. Statistical analysis 

The ANOVA test of repeated measures proved the hypothesis that the compounds 

used promoted a statistically significant improvement (p <5%) in the control parameters 

compared before and after the addition of C-Fs. The factorial ANOVA test proved the 

hypothesis that both C-Fs cause significantly different effects in the C/F process (at pH 6). 

The comparison between the different pH values of HA/CS did not show palpable levels of 

significance. However, the dosage strongly influenced the C/F process. The Tukey test 

showed that the C-Fs have less turbidity and apparent residual color with dosages of 50 
and 60 mg/L for HA/CS and K10G, respectively. 

4. CONCLUSION 

When compared to the CS gel K10G, the HA/CS composite is a significantly more 

efficient C-F that, in turn, promotes the efficient C/F of hospital laundry effluents at 

considerably lower dosages than some commercial C/F available. Although it has not been 

investigated here, the literature points out that HA is a powerful adsorbent141 and, in 

general, when combined with CS, it has the potential to improve the treatment of 

effluents,144,155,184 a detail that may explain the better performance of the HA/CS 

composite in this study. Due to the low efficiency of the K10G gel at pH 6, it is suggested 

that such C-F is not the most suitable to promote C/F in hospital laundry wastewater. 

Using the HA/CS, from a statistical point of view, reducing the pH from 8 to 6 did 

not promote improvement in the results. Thus, due to the high volume of hydrochloric acid 

added to reduce the pH to 6, it appears that the treatment at pH 8 using the HA/CS 

composite is the most efficient. Because, in addition to consuming less acidifying, it 

promotes reductions in the values of control parameters statistically equal when compared 

to C/F at pH 6. Although CS presents better results at pH close to 6, due to the presence 

of amino groups, it is in lower proportion in the HA/CS compound and, in general, it could 

have caused a weak improvement in the treatment. The optimal dosages of the K10G gel 

and the HA/CS composite were 60 and 50 mg/L, respectively. 

ABBREVIATIONS 
AOX adsorbable organic halogens  

ANOVA Analysis of Variance  

ASTM American Society for Tests and Materials  

BOD5 biochemical oxygen demand  
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C/F coagulation/flocculation 

C-F coagulant-flocculant  

COD  chemical oxygen demand  

CONAMA National Environment Council  

CS chitosan  

EEC European Economic Community  

GHP General Hospital of Palmas  

H1N1 influenza virus  

HA hydroxyapatite  

HA/CS hydroxyapatite/chitosan  

K10G K10G gel 

LABSAN Environmental Sanitation Laboratory 

LAPEQ Research Laboratory for Environmental Chemistry and Biofuels 

MPN most probable number 

NTU nephelometric tubidity unit 

PAC aluminium polychloride  

PPM parts per million 

UFT Federal University of Tocantins  
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