
Estimating the Directional Flexibility of Proteins 

from Equilibrium Thermal Fluctuations 

Sanjoy Paul and Ravindra Venkatramani* 

Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400 005, 

India  

 

 

 

 

Keywords: Variance, Energy Landscape, Protein Dynamics, Protein Stiffness, 

Directional Spring Constants, Molecular Dynamics Simulations, Elastic Network 

Models, Ubiquitin Family Proteins, Green Fluorescent Protein, GB1 Protein,    

 

 

Corresponding Author 

 

Ravindra Venkatramani (email: ravi.venkatramani@tifr.res.in) 

 

Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. 

Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India 

mailto:ravi.venkatramani@tifr.res.in


Abstract: 

 

The directional spring constant of proteins is an equilibrium molecular property accessible to both 

experiment and computations. Single molecule force spectroscopy (SMFS) experiments can 

extract this metric to describe the mechanical anisotropy and directional flexibility of proteins. On 

the other hand, computational methods thus far have employed either indirect force based non-

equilibrium simulations or coarse-grained Elastic Network Models (ENM) to predict protein 

directional spring constants. Here, we examine the ability of equilibrium atomistic Molecular 

Dynamics (MD) simulations to estimate the directional flexibility and mechanical anisotropy of 

proteins. We cross-correlate MD-derived directional spring constants with SMFS data for 5 

different globular proteins. The sequence specificity of MD protein dynamics translates into 

computed spring constants which can distinguish the directional flexibility of ubiquitin (Ub) from 

structurally homologous Small Ubiquitin like Modifier (SUMO) isoforms. Further, average MD 

derived directional spring constants correlate with spring constants and unfolding forces obtained 

from SMFS experiments along 5 different directions of Green Fluorescence Protein (GFP) and 6 

directions of immunoglobulin-binding B1 domain of streptococcal protein G (GB1). We predict 

two distinct classes of protein spring constants along the 7 lysine – C-term directions in Ub which 

are relevant for forming linkages with substrate proteins in the cellular context. Further, our studies 

reveal that the mechanical anisotropy of Ub is modified in a context sensitive manner by the 

binding of partner proteins (UBCH5A and UEV) which attach and recognize these biomolecular 

tag proteins.  Based on equilibrium MD benchmarks, we critically examine the ability of ENM 

based computational schemes to predict directional flexibility of proteins and suggest 

modifications to improve these intuitive and scalable descriptions.          

 

 

 

 

 

 

 



1. INTRODUCTION 

 

The multidimensional potential energy surface (PES) of proteins exhibits a complex topology with 

a large number of equilibrium states and barriers connecting them. Single Molecule Force 

Spectroscopy (SMFS) provides an experimental avenue to probe the features of the PES utilizing 

the response of proteins under in vitro mechanical stress1–4. These techniques provide not only 

signatures of folding-unfolding transitions of a protein at a single molecule level but also access 

parameters of the underlying PES. For instance, constant velocity SMFS experiments yield 

directional spring constants which can quantify the stiffness of a protein along a bond vector 

(pulling direction) connecting the C atoms of a residue pair subjected to a pulling force5–8. Such 

directional spring constants essentially capture the curvature of the underlying PES around a native 

(equilibrium) protein state along the pulling reaction coordinate. For instance, SMFS experiments 

were able to distinguish the stiffness of structurally homologous ubiquitin family proteins (Fig-

1A) along the C-terminus to N-terminus (N-C) pulling direction in terms of their spring constants5. 

Another important property accessed by SMFS experiments is protein mechanical anisotropy. 

Since proteins are large bio-molecules with complex contact topologies, it is expected that they 

will respond anisotropically to the uniaxial mechanical stress induced in SMFS experiments. 

Despite challenges in the experimental implementation1, mechanical anisotropy has been 

explicitly demonstrated on several proteins using SMFS7,9–11. It has been shown, for instance, that 

Green Fluorescent Protein (GFP) when mechanically pulled along 5 different pulling directions 

exhibits spring constants in the range of 1-17 N/m (Fig-1B).7 Mechanical unfolding forces in the 

range of 40-180 pN were observed along 6 pulling directions for the immunoglobulin-binding B1 

domain of streptococcal protein G (GB1) which were attributed to differences in unfolding 

pathways along these directions (Fig-1C).10   

The SMFS techniques, however, lack structural resolution and rely on computational methods to 

map the experimental stiffness measures to the underlying molecular structure. Further, 

computations can provide protein spring constants along directions which are not practically 

accessible to SMFS experiments. Such complementary computational techniques have included 

both non-equilibrium force-based and equilibrium fluctuation based approaches to examine 

protein directional stiffness.12–17 In the former approach, mechanical forces are explicitly applied 

in dynamical simulations and the protein response is monitored to estimate the directional 



flexibility. For instance, a Young’s modulus like metric was used to estimate the stiffness of 

crystalline -sheet rich peptide cross-links in silk fibres from atomistic constant velocity 

mechanical pulling simulations of the assembly.14 In another study, mechanical forces were 

applied on residue pairs in coarse-grained Brownian dynamics simulations of GFP and directional 

spring constants were estimated using Hooke’s law.15 A drawback of these approaches is that the 

estimated stiffness is sensitive to the applied external forces or pulling speeds and is not a true 

equilibrium property. In the case of the latter approach, equilibrium thermal fluctuations derived 

from coarse-grained Elastic Network Model (ENM) normal modes were processed to generate 

directional spring constants in ubiquitin, GFP and other protein systems.15,17 A limitation of 

standard implementations of ENM models is that they utilize simple harmonic inter-atomic 

interaction potentials which do not encode chemical sequence specificity, sidechain interactions 

and solvation effects. As a result, the standard coarse-grained ENM models17 cannot resolve 

directional flexibilities of structurally homologous proteins wherein differential sidechain packing 

can give rise to distinct dynamics.18  In their study of the mechanical anisotropy of GFP, Sacquin-

Mora and Lavery employed a more detailed ENM model with 2-3 pseudodatoms per amino acid 

residue which accounts for the packing density of different amino acid sidechains.15 Surprisingly, 

the authors found that directional ENM spring constants based on GFP crystal structures correlated 

poorly with those extracted from Brownian Dynamics simulations of GFP with explicit directional 

forces applied on the residues. Further, the best correlations with experimental spring constants 

which were obtained from explicit force simulations are not significantly better than those 

extracted by standard ENM models17. Thus, a deeper investigation into the estimation of 

directional spring constants from high resolution descriptions of equilibrium protein dynamics is 

required to examine the limitations of standard ENM models.  

Interestingly, the ability of equilibrium atomistic molecular dynamics (MD) simulations to extract 

protein directional spring constants has not been explored. At first glance this appears surprising, 

as atomistic MD simulations provide one of the most realistic descriptions of thermal motions for 

solvated proteins available to date. Given an equilibrium distribution of bond vector lengths from 

protein MD trajectories, the directional spring constants along the vectors can be readily extracted 

using the classical equipartition theorem. However, assessing equilibrium in MD simulations has 

proved challenging due to the inherent complexity of the protein PES and the associated 

computational expense for sampling such a landscape.19–22 We have recently made progress on 



this front, by introducing the cumulative variance of coordinate fluctuations (CVCF) as an intuitive 

metric to assess both sampling and protein dynamics in MD simulations.18 Features in the CVCF 

trace when plotted as function of simulation time can provide an assessment of the curvature and 

ruggedness of the protein PES. Importantly, we have demonstrated that a CVCF based analysis 

can yield quasi-harmonic spring constants for subsets of protein atoms (for instance, backbone, 

sidechain, and interfacial atoms within protein complexes).18 These developments coupled with 

the present abilities of MD to routinely access protein dynamics on the microsecond timescale 

provide a compelling motivation to examine the ability of MD to predict protein directional spring 

constants.   

In this study, using MD simulations, we compute directional spring constants for the 5 proteins 

shown in Fig-1: ubiquitin (Ub), Small ubiquitin-like modifier proteins (SUMO1 and SUMO2), 

 

Figure 1: Backbone secondary structure and mechanical anisotropy in (A) Ubiquitin family 

protein (Ub, SUMO1 and SUMO2), (B) GFP and (C) GB1. SMFS derived mechanical 

unfolding forces and directional spring constants reported in the literature are shown using 

arrows drawn along bond vectors connecting Cα atoms of residue pairs on which forces were 

applied. The thickness of the arrows are proportional to the magnitude of directional spring 

constant values reported. The strength of mechanical unfolding force values are indicated using 

a color map (red-low to black-high) on the arrows.     



GFP, and GB1. As discussed earlier, experimental spring constants and unfolding forces along the 

N-C pulling direction have been reported for these proteins 5,7,10. Further, SMFS spring constants 

along multiple pulling directions are available for Ubq (2 directions)9 and GFP (5 directions)7. For 

the GB1 system, SMFS derived PES parameters and unfolding force data has been reported for 6 

directions.10 We first carry out a CVCF-trace analysis of the protein backbone in sets of 

independent microsecond (s) MD trajectories to assess both equilibration and the relative 

flexibility of structured and unstructured protein segments. The latter analysis enables us to discard 

flexible segments and map SMFS pulling directions onto structured segments which are expected 

to contribute to the mechanical resistance of the protein. We then proceed to show that the average 

directional spring constants computed from MD offer good correlations with the experimental 

SMFS data at much higher resolutions relative to coarse-grained ENM. We present experimentally 

testable predictions for the mechanical anisotropy of Ub along biologically relevant pulling 

directions and the expected changes in Ub anisotropy upon binding to two natural partner proteins 

(UBCH5A and UEV). Finally, using an extensive test set of directional bond vector fluctuations 

derived from MD trajectories of Ub, we propose improvements to an intuitive ENM framework 

proposed previously by Eyal and Bahar 17 to compute directional spring constants.  

2. Methods 

2.1 MD Simulations: 

Details of simulation conditions and parameters of ubiquitin family proteins (Ub, SUMO1 and 

SUMO2) and Ub:UBCH5A and Ub:UEV protein complexes were reported by us recently.18 We 

used the 10 x 1s trajectories for these three protein systems from reference 18 directly in our 

present analysis. Here, we carried out additional all atom MD simulations for GFP and GB1 using 

broadly the same protocol described in reference 18 with a few system specific modifications as 

described below. We carried out simulations using GROMACS23 version 5.1.3 with the AMBER 

force field ff14SB24 for GFP and the CHARMM36m force field25 for GB1. In both cases, an 

explicit solvent TIP3P water model was employed.25 Initial coordinates of GFP were derived from 

Protein Data Bank (PDB code 1GFL) and processed through the tleap program of AmberTools2026 

to add hydrogens. The protein was solvated using a TIP3P rectangular water box with a 10 Å 

padding around the protein along each of the X, Y and Z directions of the box. Further, 5 Na+ ions 

were added to neutralize the system. The resultant structure and topology built in this way were 



converted into GROMACS readable format using the ParmEd tool26. In case of GB1, initial 

coordinates were derived from the PDB (code 1PGA) and processed through the CHARMMGUI 

webserver27,28 to add hydrogen atoms and solvate the system using a TIP3P rectangular water box. 

A solvent padding of 10 Å around the protein was created along each of the X, Y and Z direction 

with 4 Na+ ions added to neutralize the system. Following these initial modelling steps, the systems 

were equilibrated and production runs were carried out employing Periodic Boundary Conditions 

(PBC) with the Particle Mesh Ewald (PME) method29 for long-range electrostatic interactions. A 

1.0 nm short-range van der Waals cut-off and a 1.0 nm short range electrostatic cut-off were used 

during the equilibration and production runs. During equilibration, we first optimized the solvated 

protein systems, while keeping protein heavy atoms fixed for 10000 steps using the steepest 

descent algorithm. Then, the systems were equilibrated at 300 K (thermal equilibration) with 

protein heavy atoms fixed for 100 ps using the Nose-Hoover30,31 thermostat with a 0.5 ps relaxation 

constant. Optimization and thermal equilibration were repeated again with harmonic constraints 

of 25 kcal/(mol Å2) on protein heavy atoms, followed by a 150 ps NPT equilibration at a 

temperature of 300 K and a pressure of 1 bar using the Parrinello-Rehman32 isotropic pressure 

coupling scheme with a relaxation time constant of 2.0 ps. The NPT equilibration step was then 

repeated twice with harmonic constraints of 10 and 5 kcal/(mol Å2) applied on protein heavy atoms 

successively. Finally, unconstrained NPT simulations were performed for 1 ns. The solvated 

protein coordinates and velocities obtained at the end of this step were used to seed 10 independent 

1 μs NVT production runs for each protein system (GFP and GB1) with the aforementioned 

temperature coupling method. For all 5 protein systems, production trajectories sampled 

coordinates every 20 ps, which were analysed using Visual Molecular Dynamics (VMD) 1.9.1.33       

2.2 Principal Component Analysis of MD Trajectories  

Given rigid body rotation-translation free coordinates from an MD trajectory of length 𝑇𝑆 for an N 

atom protein system, Principal Component Analysis (PCA)34,35 yields a set of 3N-6 orthogonal 

principal components (PC eigenvectors) and their variances (the eigenvalues) by diagonalizing the 

3N3N variance-covariance matrix of atomic coordinates with elements 𝜎𝑖𝑗
2(𝑇𝑆) =

∑ (𝑟𝑖(𝑡)−〈𝑟𝑖(𝑡)〉)(𝑟𝑗(𝑡)−〈𝑟𝑗(𝑡)〉)
𝑇𝑆
𝑡=1

𝑇𝑆
. Here the brackets < > indicate an average over the MD trajectory and 

𝑟𝑖/𝑗 are a pair of atomic Cartesian coordinates. The set of PC eigenvectors  = {1, 2 …. 3N-6} 



are sorted in descending order of their corresponding eigenvalues (variances i) : 1 > 2 >……3N-

6. We carried out PCA of protein C atom fluctuations sampled in 10 independent 1 s trajectories 

of free Ub. Rigid-body translations and rotations were eliminated by aligning the coordinates of 

the protein C  atoms in each frame of the Ub trajectory to their positions in the first frame (t = 1 

timepoint). PCs obtained using this procedure were processed further as described in Sec. 2.4.3 

and Sec. 2.4.4 to yield directional spring constants for Ub.    

2.3 ENM Calculations 

Coarse-grained normal modes were derived using 𝐶𝛼 atom coordinates from crystal structures of 

the proteins: Ub (PDB id: 1UBQ), SUMO1 (PDB id: 4WJQ), SUMO2 (PDB id: 1WM3), GFP 

(PDB:id: 1GFL) and GB1 (PDB id: 1PGA) as described by Eyal and Bahar.17 For an N atom 

system, the ENM analysis yields a set of 3N-6 orthogonal normal modes (eigenvectors) and their 

spring constants (eigenvalues) by diagonalizing the 3N3N Hessian matrix (H ) of second 

derivatives of the PES constructed at a minimum energy configuration of the system.36 ENM 

assumes a harmonic inter-atomic potential energy form with a minimum at the experimentally (X-

ray/NMR) derived protein coordinates:  

                                                         V = 
1

2
∑ 𝛾𝑎,𝑏(𝑟𝑎,𝑏 − 𝑟𝑎,𝑏

0 )2𝑎,𝑏                                                  (1) 

where, 𝑟𝑎,𝑏 represents the distance between 𝐶𝛼 atom pairs (nodes) of protein amino acid residues 

a and b, 𝑟𝑎,𝑏
0  is the corresponding equilibrium distance (distance in the X-ray/NMR protein 

structure) of the atom pair. The spring constant 𝛾𝑎,𝑏 between the atom pairs is defined as 𝛾𝑎,𝑏 = 𝛾 

if 𝑟𝑎,𝑏
0   𝑟𝐶 and 0 otherwise. In the previous study of Eyal and Bahar, the value of 𝛾 was set to 0.25 

kcal/(mol Å2) for GFP and 1.75 kcal/(mol Å2) for Ub 17. However, for the present study, we find 

that a uniform of choice of 𝛾 = 0.8 kcal/(molÅ2) for all the protein systems provides good 

agreement between MD and CG-ENM derived directional spring constants (Section S.1 in ESI). 

It must be noted that the value of 𝛾 serves as a scaling factor (Fig-S1 A-C in ESI) for the ENM 

derived spring constants and does not alter the relative trends across different pulling directions 

and protein systems (Fig-S1 D-F in ESI). We set 𝑟𝐶 to 13 Å for all protein systems in accordance 

with Eyal and Bahar.17   Diagonalization of  the H, yields a set of normal mode eigenvectors  = 

{1, 2 …. 3N-6} which were sorted in ascending order of their corresponding eigenvalues (spring 



constants i) : 1 < 2 <……3N-6. The normal modes were then processed as described below 

(Sec. 2.4.3 and 2.4.4) to obtain directional spring constants for all 5 proteins.  

2.4 Calculation of Protein Directional Spring Constants: 

Both MD simulations and ENM provide a means to extract equilibrium fluctuations of protein 

atomic coordinates. Here, we aim to examine the correspondence between SMFS derived 

directional spring constants and unfolding forces with equilibrium protein dynamics. Below we 

first present the reaction coordinates (pulling directions) that we use for our analysis, followed by 

a description of methods to compute protein spring constants along these coordinates from 

MD/ENM equilibrium fluctuations. 

2.4.1 Reaction coordinates to Examine Directional Protein Flexibility  

SMFS experiments apply a pulling force along the protein backbone to unfold proteins.9,10,37 In 

essence, the directional spring constants are reported along vectors connecting the C atoms of 

residues on which the pulling force is applied. Thus, by analogy, equilibrium fluctuations of the 

magnitude of bond vectors 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   connecting 𝐶𝛼 atom pairs of amino acid residues a and b could be 

used to estimate spring constants along these directions15,17. However, this description is an 

oversimplification as it may include flexible protein segments which extend without resistance to 

a pulling force5,7,9,10. For instance, SMFS experiments report  spring constants for Ub along 𝑟1,76⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

as the pulling force is applied to the backbone of this residue pair. However, the terminal segment 

73-76 in Ub is a disordered loop (Fig-2) that should extend without resistance and transmit the 

pulling force to the closest structured segment. Thus the mechanical resistance of Ub would 

primarily arise from the core protein segment 1-72 and equilibrium fluctuations of the bond vector 

𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  should correspond better with the SMFS directional spring constant. The inclusion of flexible 

segments in the definition of the pulling reaction coordinate is a major problem in MD where a 

diversity of conformations would be sampled for the segments which would be extended without 

resistance in experiments. The problem is somewhat mitigated in ENM calculations as the 

equilibrium fluctuations are restricted to thermal amplitudes around the crystal structures. 

Nevertheless, the conformations and interactions of the terminal loops are still not representative 

of SMFS experiments and the computed flexibilities may deviate from that of the core protein 

structure.  A CVCF-trace analysis of MD trajectories of Ub, GFP, and GB1 reveals that the per 



atom variance of loops can more than an order of magnitude greater than that for the structured 

protein core (Fig-S2 of ESI). On the other hand, the per atom variance of the short loop formed by 

residues 48-49 in GB1 overlaps with that 

of the structured protein core. Based on 

these observations, we modified the 

experimental pulling directions to 

exclude the distinctly flexible segments 

(relative to the structured core) in MD 

(examples in Fig-2) for Ub, GFP, and 

GB1. For these modifications, we adopted 

a uniform protocol wherein we modified 

the experimental directions by shifting the 

reference C atoms from flexible loops 

(based on the CVCF analysis in Fig-S2 of 

ESI) to the closest residue in the 

structured protein core. Some examples 

of modified directions for Ub, GFP, and 

GB1 are shown in Fig-2 and the full list 

of experimental pulling directions and 

corresponding MD bond vectors used in 

our analysis are provided in Table-S3 of ESI. Protein spring constants along these directions were 

calculated by multiple methods as indicated in the following subsections.                 

2.4.2 Direct Calculation of Protein Directional Spring Constants from MD Trajectories:  

MD simulation trajectories provide the evolution of atomic coordinates as a function of time. If 

𝑥𝑖(𝑡) is the coordinate of the ith atom at snapshot t along the MD trajectory then the Cumulative 

Variance of Coordinate Fluctuations (CVCF) over 𝑇𝑠 snapshot/frames is defined as18   

         𝜎𝐶𝑉𝐶𝐹
2 (𝑇𝑆) = ∑

∑ (𝑥𝑖(𝑡)−〈𝑥𝑖(𝑡)〉)
2𝑇𝑆

𝑡=1

𝑇𝑆

𝑁
𝑖=1  =  ∑

1

𝑇𝑠
∑ (𝑥𝑖(𝑡) − 

1

𝑇𝑠
∑ 𝑥𝑖(𝑡

′)
𝑇𝑠
𝑡′=1 )

2
𝑇𝑠
𝑡=1

𝑁
𝑖=1              (2) 

Where the index i runs over a subset of N protein atoms of interest (for instance, subset of all 

heavy, backbone and sidechain atoms, or interfacial and non-interfacial atoms in protein 

Figure 2: Bond vectors joining pairs of C atoms 

(red/purple/green spheres) representing SMFS 

pulling directions (dashed lines) and their 

corrections in MD simulations (solid lines) for Ub, 

GFP and GB1. For the corrections, the 

experimental bond vectors are redefined by 

shifting the terminal C atoms which lie in flexible 

segments to the closest residue which lies in the 

structured part of the protein.  



complexes). While applying Eqn. 2 for a given subset of atoms, rigid-body translations and 

rotations should be eliminated by aligning the coordinates of the subset in each frame of the 

trajectory to their positions in the first frame (t = 0 timepoint). For individual MD trajectories, 

features of the CVCF-trace as a function of simulation time can help assess converged sampling 

(Boltzmann statistics) for a section of the PES. Further, a CVCF-trace analysis of multiple 

trajectories all aligned at their t=0 timepoint can provide an estimation of the effective curvature 

and roughness of the protein PES in terms of the average CVCF (<𝜎𝐶𝑉𝐶𝐹
2 > ) and its standard 

deviation  (SDCVCF) over the set of trajectories. In the present manuscript, we examine the CVCF of 

protein backbone atoms from MD trajectories as this is the relevant subset for extracting 

directional spring constants (vide infra). In the standard CVCF-trace analysis presented here, we 

examine  <𝜎𝐶𝑉𝐶𝐹
2 > and SDCVCF  from 10 independent s MD simulation trajectories for each of 5 

protein systems as a function of simulation time.  

 In order to assess the nature of the PES projected along SMFS pulling directions we follow 

the equilibrium fluctuations of bond vectors 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗    connecting C atom pairs a and b as a function 

of simulation time 𝑇𝑆 in terms of the directional CVCF:  

𝜎𝐶𝑉𝐶𝐹
2 (𝑇𝑆, 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) =

∑ (𝑟𝑎,𝑏(𝑡)−〈𝑟𝑎,𝑏(𝑡)〉)
2𝑇𝑆

𝑡=1

𝑇𝑆
 =  

1

𝑇𝑠
∑ (𝑟𝑎,𝑏(𝑡) − 

1

𝑇𝑠
∑ 𝑟𝑎,𝑏(𝑡

′)
𝑇𝑠
𝑡′=1 )

2
𝑇𝑠
𝑡=1            (3) 

The indices t and 𝑡′ run over the number of frames/snapshots sampled in the trajectory and 𝑟𝑎,𝑏(𝑡) 

is the magnitude of 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   at time t. Since 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   represents an internal bond coordinate vector, no 

alignment of the MD trajectory snapshots to eliminate overall rotation and translation is required. 

The equipartition theorem then allows us to relate the thermal fluctuations along 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   in MD 

trajectories to a directional spring constant  

                                              𝑘𝑀𝐷(𝑇𝑆, 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) =  
𝑘𝐵𝑇

𝜎𝐶𝑉𝐶𝐹,𝑑𝑖𝑟𝑒𝑐𝑡
2 (𝑇𝑆,𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )

                                             (4) 

Where T is the temperature (set to 300 K in this study) and 𝑘𝐵 is the Boltzmann constant. In the 

directional spring constant analysis presented here, averages and standard deviations in 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) 

were computed over 10 MD trajectories at the  𝑇𝑆 = 1 𝑠 timepoint based on the CVCF-trace 

analysis presented in Sec. 3.1.     

 



2.4.3 Calculation of Directional Spring Constants from ENM and PCA 

Eyal and Bahar proposed an intuitive coarse-grained ENM based scheme to extract directional 

spring constants from experimental protein structures.17 This approach is appealing as it provides 

a rapid estimation of protein directional flexibility from X-ray/NMR derived protein structures. In 

this scheme, ENM normal modes are projected along bond vectors representing desired pulling 

directions and their contributions to the directional deformation are combined to estimate thermal 

fluctuations and directional spring constants. Projection of a normal mode k along a specific 

direction 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   for a pair of Cα atoms a and b can be computed as 

                                                             𝑐𝑜𝑠𝛼𝑎𝑏
𝑘 =

𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∙𝛥𝑘
𝑎𝑏

|𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ||𝛥𝑘
𝑎𝑏|
                                                        (5) 

where, 𝛥
𝑘
𝑎𝑏 = 

𝑘
𝑏 − 

𝑘
𝑎

 represents the change in the bond distance between the Cα atom pairs a 

and b from its reference value due to the application of normal mode k with unit amplitude to the 

protein structure. Here, 
𝑘
𝑏
 and 

𝑘
𝑎
 are the coefficients of atoms a and b respectively in the kth  

normal mode eigenvector. The contribution of the thermally activated kth mode with eigenvalue  

𝜆𝑘 to the overall deformation 𝑑𝑎𝑏 = ∑ 𝑑𝑎𝑏
𝑘

𝑘  is given by      

                                                  𝑑𝑎𝑏
𝑘 = (𝑘𝐵𝑇/𝜆𝑘)

1/2𝑐𝑜𝑠𝛼𝑎𝑏
𝑘 |𝛥

𝑘
𝑎𝑏|                                            (6)      

and its contribution to the macroscopic force 𝐹𝑎𝑏 = 𝑘𝑑𝑖𝑟𝑒𝑐𝑡(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  )𝑑𝑎𝑏 that induces the deformation 

𝑑𝑎𝑏 around the equilibrium state is  

                                                                    𝑓𝑎𝑏
𝑘 = 𝜆𝑘𝑑𝑎𝑏

𝑘                                                             (7)   

Force contributions from each normal mode can be summed up to balance the macroscopic force  

                                                                   𝐹𝑎𝑏 = ∑ 𝑓𝑎𝑏
𝑘

𝑘                                                             (8) 

Which then leads to the following definition of spring constant from ENM modes as prescribed by 

Eyal and Bahar 

                                                      𝑘𝐸𝐵−𝐸𝑁𝑀(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) =
∑ 𝜆𝑘𝑑𝑎𝑏

𝑘
𝑘

∑ 𝑑𝑎𝑏
𝑘

𝑘
                                                     (9) 

Although, this scheme was proposed for ENM modes, the spring constants can also be derived 

using quasiharmonic modes derived from PCA. In the manuscript, we will also apply Eqn. 9 to 



derive spring constants from quasiharmonic modes (𝑘𝐸𝐵−𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  )). However, as we will show in 

the manuscript (Sec. 3.4), the definition of directional spring constant in Eqn. 9 does not reproduce 

MD thermal fluctuations and shows an unphysical dependence on high frequency modes of the 

system.  We propose a modification to the original Eyal and Bahar formalism wherein the force 

balance condition in Eqn. 8 is replaced with an energy balance criterion. In this modified 

framework the potential energy contributions of each mode projected along 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗    is summed up to 

obtain the total potential energy 𝐸𝑎𝑏 of the bond between atoms a and b: 

                                                     𝐸𝑎𝑏 ==
1

2
𝑘𝑑𝑖𝑟𝑒𝑐𝑡(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  )𝑑𝑎𝑏

2 = ∑ 𝐸𝑎𝑏
𝑘

𝑘                                     (10) 

Which then leads to a modified definition of the directional spring constant along 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   derived from 

ENM/PCA modes: 

                                                   𝑘𝐸𝑁𝑀/𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) =
∑ 𝜆𝑘(𝑑𝑎𝑏

𝑘 )2𝑘

∑ (𝑑𝑎𝑏
𝑘 )2𝑘

                                                   (11)     

2.4.4 Covariance Propagation Scheme for Computing Directional Spring Constants from 

PCA and ENM  

Here we describe a simple scheme to compute protein directional spring constants from a set of 

MD-PCs or ENM-normal modes based on the standard method of error propagation. For a function 

𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) of variables 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 with variances 𝜎𝑥1
2 , 𝜎𝑥2

2 , 𝜎𝑥3
2 , … 𝜎𝑥𝑛

2  respectively 

and covariance 𝜎𝑥𝑖𝑦𝑖′
2  (𝑖 and 𝑖′ run over 1 to n and 𝑖 ≠ 𝑖′) the variance in f can be generally written 

as: 

                                  𝜎𝑓
2 = ∑ (

𝜕𝑓

𝜕𝑥𝑖
)2𝜎𝑥𝑖

2𝑛
𝑖=1 +∑ ∑

𝜕𝑓

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑥𝑖′

𝑛
𝑖′=1

𝑛
𝑖=1
𝑖≠𝑖′

𝜎𝑥𝑖𝑥𝑖′
2                                     (12) 

The magnitude 𝑟𝑎,𝑏 of the vector connecting 𝐶𝛼 atom pairs is one such multivariate function of the 

constituent atomic coordinates of the vector: 

                                                 𝑟𝑎,𝑏 = √∑ (𝑘𝑏 − 𝑘𝑎)2𝑘={𝑋,𝑌,𝑍}                                                     (13) 

Where the index ka/b runs over Cartesian coordinates X, Y and Z of the 𝐶𝛼 atoms  of residues a and 

b.  In accordance with Eqn. 12, the variance of 𝑟𝑎,𝑏 can be written by propagating the covariance 

matrix of the coordinates ka/b : 



𝜎𝐶𝑃
2 (𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) = ∑ ∑ (

𝜕𝑟𝑎,𝑏

𝜕𝑘𝑖
)2𝜎𝑘𝑖

2 + (
𝜕𝑟𝑎,𝑏

𝜕𝑘′𝑗
)2𝜎𝑘′𝑗

2 + 2(
𝜕𝑟𝑎,𝑏

𝜕𝑘𝑖
)(
𝜕𝑟𝑎,𝑏

𝜕𝑘′𝑗
)𝜎𝑘𝑖𝑘′𝑗
2

𝑘,𝑘′={𝑋,𝑌,𝑍}𝑖,𝑗={𝑎,𝑏}              (14) 

Where the subscript CP stands for covariance propagation. After explicitly performing the 

differentiation with respect to 𝑟𝑎,𝑏 we obtain: 

𝜎𝐶𝑃
2 (𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) = ∑ ∑ (𝑘𝑖 − 𝑘𝑗)

2
(𝜎𝑘𝑖

2 + 𝜎𝑘′𝑗
2 − 2𝜎𝑘𝑖𝑘𝑗

2 ) + 2(𝑘𝑖 − 𝑘𝑗)(𝑘
′
𝑖 −𝑘,𝑘′={𝑋,𝑌,𝑍}𝑖,𝑗={𝑎,𝑏}

𝑘′𝑗)(𝜎𝑘𝑖𝑘′𝑖
2 + 𝜎𝑘𝑗𝑘′𝑗

2 − 𝜎𝑘𝑖𝑘′𝑗
2 − 𝜎𝑘𝑗𝑘′𝑖

2 )                                                                                        (15) 

where the indices k and k’ run over the Cartesian coordinates, and indices i and j run over atoms a 

and b. In case of PC modes derived from an MD trajectory with 𝑇𝑆 snapshots, 𝑘𝑖 is the average kth 

component of the coordinate of ith atom from 𝑇𝑆 snapshots. In case of ENM, 𝑘𝑖 represents the kth 

component of the coordinate of atom i in the crystal/NMR structure. Given an MD trajectory for 

N-atom protein system, the covariance matrix for these coordinates can be reconstructed from any 

subset of M PCs (M  3N-6) using the following transformation: 

                       (
1
 
2
… 

𝑀
)
3𝑁×𝑀

(
1 0 …
0 ⋱ 0
… 0 𝑀

)

𝑀×𝑀

(

 
 
 
 


1
Ɨ


2
Ɨ

.

.

.


𝑀
Ɨ
)

 
 
 
 

𝑀×3𝑁

= (𝐶)3N×3N                     (16) 

 

 = {1, 2 …. M} are the eigenvectors obtained from PCA on a MD trajectory of 𝑇𝑆 snapshots 

and sorted based on their decreasing eigenvalues (variance) 1 > 2 >……M. The reconstructed 

covariance matrix constructed from a subset of PCs can then be compared with that directly 

extracted from MD to reveal the dominant collective motions contributing to the protein directional 

flexibility. On the other hand, ENM yields normal mode eigenvectors and mode spring constants 

as corresponding eigenvalues. The spring constants can be converted into thermal mode variances 

using the equipartition expression in Eqn. 3. Hence, for an N-atom protein system a covariance 

matrix can be constructed from the top M (M  3N-6) normal modes (eigenvectors) and their 

corresponding spring constants (eigenvalues) as: 
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𝑀
Ɨ
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𝑀×3𝑁

= (𝐶)3N×3N                     (17) 

 = {1, 2 …. M} are the eigenvectors obtained from ENM on the crystal structure of the protein 

and sorted based on their increasing eigenvalues (decreasing variance of each normal mode) 1 < 

2 <……M. Elements of the covariance matrix C derived from a subset of M MD-PCA/ENM 

modes  can be used in Eqn. 15 to obtain directional variances 𝜎𝐶𝑃−𝑃𝐶𝐴
2 (𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  , 𝑀) / 𝜎𝐶𝑃−𝐸𝑁𝑀

2 (𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ,𝑀) 

and corresponding directional spring constants 𝑘𝐶𝑃−𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  , 𝑀) / 𝑘𝐶𝑃−𝐸𝑁𝑀(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  , 𝑀). The MD-

PCA derived spring constants also depend on the length of the trajectory (TS) and we assume that 

the PCA is carried out on an equilibrated trajectory as determined by the CVCF-trace analysis. On 

the other hand, the ENM derived spring constants depend on the cut-off radius 𝑟𝐶 used for 

interatomic interactions (Sec. 2.3) and we set this parameter to an optimal value based on the 

studies by Bahar and co-workers17,38. In general, the isomorphism in the covariance propagation 

scheme (Fig-S4 of ESI) for computing spring constants using normal modes and PCs should be 

useful to quantitatively compare the fluctuations extracted from ENM and MD trajectories with 

varying cut-off radii and/or timescales respectively. As discussed in the results section (Sec. 3.4), 

such comparisons enable us to improve the description of ENM formalisms to extract directional 

spring constants.     

3. Results 

3.1 CVCF-trace analysis reveals locally equilibrated MD sampling over a 1s timescale   

Recently we presented an analytical framework to assess sampling in MD trajectories using 

CVCF.18 Briefly, the features of the CVCF-trace when plotted as a function of MD simulation time 

reveals sections of the trajectory which are locally equilibrated (CVCF plateaus), discovering new 

minima (rise in CVCF), or converging towards a local equilibrium (decreasing CVCF-traces which 

eventually lead to plateaus). The criterion for assessment of equilibration is rigorous and plateaus 

of the CVCF essentially ensure Boltzmann population statistics for the section of PES sampled by 



the MD trajectory. We also showed that by aligning CVCF-traces from multiple trajectories 

originating from the same phase point (same coordinates and velocities), the effective curvature 

and ruggedness of the PES around the originating phase point can be estimated in terms of the 

average CVCF  (<𝜎𝐶𝑉𝐶𝐹
2 >) and associated standard deviation (SDCVCF) across the set of trajectories 

respectively. In this section, we first apply this framework to examine equilibration of the protein 

backbone in our MD simulations and then the nature of the protein PES as projected along the 

pulling reaction coordinate 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   for Ub, SUMO1, SUMO2, GFP and GB1. 

 

To first examine equilibration, we aligned 10 independent s trajectories of the 5 proteins at their 

initial (common) t=0 timepoint to plot the evolution of the backbone CVCF-traces of the proteins 

(Fig-S5 of ESI). While, the data reveal heterogeneity in traces, CVCF plateaus at 1s are seen for 

a significant fraction of the trajectories for each of the five protein systems. Specifically, the 

fraction of trajectories showing convergence to plateaus varies from 0.6 (GFP) to 1.0 (SUMO1 

and GB1). Thus, the sampling of the protein backbone has achieved near Boltzmann statistics in a 

significant fraction of trajectories for all 5 proteins. The statistics gets even better, when the 

directional CVCF-traces along the pulling reaction coordinates 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   (Column 4 in Table-S3 of ESI) 

are examined for the proteins (Fig-3). Here, the fraction of trajectories which show near Boltzmann 

 

Figure 3: CVCF-trace analysis for bond vector fluctuations in 10  1s MD trajectories of Ub, 

SUMO1, SUMO2, GB1, and GFP. The panels show directional CVCF traces corresponding to 

different pulling directions (Sec. 2.4.1 and Table-S3 of ESI) for which SMFS data is available.  
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statistics at the 1 s timepoint ranges from 0.8-1.0, indicating that these directions for the proteins 

are mostly equilibrated around their native state over this timescale. The trends in directional 

CVCF across multiple trajectories can be effectively combined in terms of a <𝜎𝐶𝑉𝐶𝐹
2  (𝑟𝑎,𝑏⃗⃗ ⃗⃗⃗⃗  ⃗)>  trace 

plotted with associated SDCVCF as a function of time (Fig-S6). Based on the average CVCF trace, 

PES features18 and protein directional spring constants (Eqn. 4) can be extracted from the set of 

trajectories for all 5 proteins at the  𝑇𝑠 =1 s timepoint.  

In Table-S7, we report the <𝜎𝐶𝑉𝐶𝐹
2  (𝑟𝑎,𝑏⃗⃗ ⃗⃗⃗⃗  ⃗)>  and SDCVCF  of the protein PES projected along the 

different pulling directions along with separation (XU) between native and transition states 

(potential width) for protein unfolding along those directions provided by SMFS experiments 

(Table-S7). The square root of <𝜎𝐶𝑉𝐶𝐹
2  (𝑟𝑎,𝑏⃗⃗ ⃗⃗⃗⃗  ⃗)> provides a measure of the PES range (MD 

equilibrium amplitude) that is sampled around the native minima in equilibrated simulation 

trajectories. Comparing XU with the MD equilibrium amplitude, we find that MD simulations 

sample a diverse fraction (~8-42 %) of the PES slice along the pulling coordinate lying between 

the native state and the transition state. In case of GFP, the stiffest direction (𝑟117,182⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ) is sampled 

the most (~42 %) and the most flexible direction (𝑟3,212⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) is sampled the least (14 %). The lowest 

PES fractions sampled (~8-19 %) are along the different pulling directions for the GB1 protein. 

The structurally homologous ubiquitin family proteins show a relatively broad distribution of 

sampling fractions (~12-31%) wherein the PES fraction sampled along the stiffest direction 

(Ub: 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) is the most and that along the most flexible direction (SUMO1: 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  is the least. Within 

each protein fold (ubiquitin family, GFP, GB1), the MD thermal amplitudes and experimentally 

derived  XU   and spring constants correlate (Table-S7). With only a single exception (GB1: 𝑟19,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), 

we find a direct (inverse) relationship between MD thermal amplitudes in 1 s trajectories and 

experimental XU (spring constants) for a given protein fold. While the fluctuations along  𝑟19,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

appear to be locally equilibrated (Fig-3) around the native state, the fraction of the PES between 

native and transition states sampled along this direction is the lowest (~8 %). Based on these 

observations, within a given protein fold, we expect systems which sample a greater fraction of 

the PES between the native and transition state to show stronger correlations with the SMFS 

experimental data.  On the other hand, the data across different protein folds are not correlated and 

highlight difficulties in comparing mechanical properties across protein folds in both experiments 

and simulations. Nevertheless, relative trends in mechanical properties for a given protein fold can 



be computationally determined and cross validated by experiments (see next section). Finally, in 

Table-S7 we also report the  roughness of the PES slice projected along each pulling direction 

extracted from the CVCF-trace analysis of 10  1𝜇𝑠 MD trajectories for each protein system. The 

data show that the PES roughness along different directions is also diverse, ranging from ~1-26 % 

of MD equilibrium amplitudes, dictating the resolution of spring constants obtained from MD.  

3.2 MD-derived average directional spring constants correlate with directional protein 

flexibility and unfolding forces from SMFS experiments for a given protein fold  

In this subsection, we examine the ability of MD to estimate directional spring constants (𝑘𝑀𝐷) of 

Ub, SUMO1, SUMO2, GFP and GB1. Experimental  spring constants 𝑘𝑆𝑀𝐹𝑆 and unfolding forces 

(𝐹𝑈−𝑆𝑀𝐹𝑆) along the computationally examined directions have been reported (Fig-1 and Table-

S7) and we compare these with 𝑘𝑀𝐷 extracted from the CVCF-trace analysis of 10  1 𝜇𝑠 MD 

trajectories (Eqn. 4). Given the difficulties in comparing mechanical properties of proteins with 

different folds (see previous section), we examine the correlations between computed and 

experimental data for each protein fold separately. For ubiquitin family proteins (Fig-4A), the 

𝑘𝑀𝐷(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) correlates well with that obtained from SMFS experiments5. Note that although SMFS 

experiments report directional spring constants and unfolding forces along 𝑟1,76⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  in Ub and  𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  in 

case of SUMO1 and SUMO2, 𝑘𝑀𝐷 is computed along 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   for all the three protein systems. The 

unstructured protein tail formed by residues 73-76 in Ub (Fig-2) is expected to elongate upon 

pulling with negligible mechanical resistance. Such modifications to experimental distances in the 

MD analysis are discussed in the methods (Sec. 2.4.1) and in the remainder of this section we refer 

to the data only in terms of the modified MD reaction coordinates (column 4 in Table-S3 of ESI). 

Both computations and experiments predict Ub to be significantly stiffer than the SUMO isoforms 

along 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and SUMO1 and SUMO2 to have comparable stiffness values. Mechanical unfolding 

forces have also been reported along 𝑟46,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  for Ub (pulling speeds of 0.3 m/s) and along 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  for 

Ub, SUMO1 and SUMO2 (pulling speeds of 0.4 m/s).9 We find that the computed 𝑘𝑀𝐷 also 

correlates with the reported experimental unfolding forces (Fig-4D). The experimental unfolding 



force (and computed directional spring constant) for Ub along 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is well resolved and higher 

than that along  𝑟46,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    (Fig-4D). Both computations and experiments predict the 𝑟46,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  direction 

 

Figure 4: Correlation between derived spring constants with from SMFS data. (A-C) 

Scatter plots of spring constants 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  )  computed from MD simulations (Eqn, 4) and that 

from SMFS experiments (𝑘𝑆𝑀𝐹𝑆(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) ) for ubiquitin family proteins, GFP and GB1. (D-F) 

Scatter plots of 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) and SMFS mechanical unfolding forces (𝐹𝑈−𝑆𝑀𝐹𝑆(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  )) for ubiquitin 

family proteins (pulling speeds of 0.3-0.4 m/s), GFP (0.4 m/s), and GB1 (0.4 m/s). Data 

points for different pulling directions are color coded as indicated. For cases where the 

experimental and MD pulling directions are the same a single direction is provided otherwise 

the pair of directions (Expt/MD) are given (see Sec. 2.4.1). Average values and standard 

deviations in 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) are derived  from 10 MD trajectories of the proteins at the 1 μs 

timepoint. Experimental error bars where available are also indicated. Each panel shows the 

correlation coefficient () and Adjusted R-square (Adj R2) between the computed and 

experimental datasets.  

 

 



in Ub to be slightly more mechanically pliant relative to the 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  direction in SUMO1/SUMO2. 

To summarize, we find a strong linear correlation between computed and experimental directional 

spring constants/unfolding force values of ubiquitin family proteins (Fig-4A and Fig-4D). Next, 

we examined the mechanical anisotropy in 𝑘𝑀𝐷 for GFP by computing the spring constant along 

the 𝑟10,209⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟129,209⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟182,209⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟10,129⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑟117,182⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    directions and find good correlations with SMFS 

experimental data (Fig-4B and Fig-4E).37 However, the resolution of computed spring constants 

is poorer than that reported for experimental spring constants and unfolding forces. SMFS 

experiments identify three distinct classes of spring constants/unfolding forces for GFP, showing 

the 𝑟117,182⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   direction as the stiffest, the 𝑟10,209⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  /𝑟129,209⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   directions as the most flexible, and the 

𝑟182,209⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  /𝑟10,129⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    directions as having intermediate flexibility. However, the computed 𝑘𝑀𝐷 

distributions for these directions have significant overlaps. Nevertheless, we again find a strong 

linear correlation for the average computed 𝑘𝑀𝐷 with experimental spring constants/average 

unfolding forces. Finally, in case of GB1, only experimental unfolding forces (pulling speed of 0.4 

m/s) along 𝑟1,56⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟10,40⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟19,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟10,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟19,56⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝑟1,40⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  have been reported.39 However, spring 

constants can be derived (Table-S7) from reported values of potential widths (∆𝑋𝑢) and unfolding 

rate constant at zero force (𝛼0). Here, we find a somewhat poorer correlation (relative to the other 

protein systems) between the computed 𝑘𝑀𝐷 and the experimental spring constants/unfolding force 

with the former failing to predict the mechanical anisotropy along 𝑟19,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (Fig-4C and Fig-4F). This 

is because the computed  𝑘𝑀𝐷 overestimates the mechanical resistance for the former direction. 

Excluding the 𝑟19,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  data point, we find that fairly good correlations between experimental 

directional spring constant (and unfolding forces) and computed 𝑘𝑀𝐷 (Fig-4C and  Fig-4F). Both 

experiments and computations show that the 𝑟1,56⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑟9,41⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  directions possess the strongest and 

weakest mechanical resistances respectively. The mechanical resistance of 𝑟1,41⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟19,56⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝑟9,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

directions are found to be of intermediate strength. The computed 𝑘𝑀𝐷 is also able to distinctly 

resolve the directions with the strongest and intermediate/lowest mechanical resistances correctly. 

Overall, we still find a reasonable correlation (including the  𝑟19,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   data point) of the average 

computed 𝑘𝑀𝐷 with experimental spring constants/average unfolding forces.   

While the average 𝑘𝑀𝐷 values are lower than the experimentally measured 𝑘𝑆𝑀𝐹𝑆 in almost every 

case, relative trends in the mechanical anisotropy are still correctly predicted by computations in 

all the protein systems investigated here with only a single exception (the 𝑟19,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   direction for GB1). 



As noted in the previous section, this is likely related to the lower coverage of the PES section 

along the pulling directions for GB1 in MD simulations. We note that computed 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) with 

unmodified experimental pulling directions show poor correlations with experimental data (Fig-

S8 and Fig-S9). As discussed in section 2.4.2, this is because in some cases the pulling force in 

SMFS experiments is applied on residues which belong to flexible loops and do not contribute to 

the mechanical resistance of the protein. Arbitrary modifications to the directions may produce a 

diversity of mechanical anisotropy trends (Fig-S8 and Fig-S9).  To produce consistent results we 

propose a modification of the experimental direction by replacing the flexible loop residue with 

the closest neighbour in the structured part of the protein. Such modifications produce average 

𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) trends in good agreement with experiment (Fig-4).  Since our model for extracting 

directional spring constants (𝑘𝑀𝐷) is validated against SMFS experimental results here, we employ 

it further to predict the mechanical anisotropy of Ub along various functionally relevant  lysine to 

C-terminal directions in the next section.    

3.3 Mechanical anisotropy in Ub and its modulation upon complexation with partner 

proteins 

The Ub protein possesses 7 lysines (Fig-5A) in its sequence which in paired combination with the 

protein C-terminus act as tethering points for substrate or poly-Ub chain linkages in the cell.40,41 

The lysine tethering point determines both the architecture of poly-Ub chains on the tagged cargo 

and the subsequent biological fate of the cargo.42 We therefore examined Ub flexibility along 

directions connecting the C-terminus to each of the 7 lysines  (𝒓6,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝒓11,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝒓27,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝒓29,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝒓33,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 

𝒓48,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝒓63,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) and find that these directions possess two distinct classes of spring constant 

values  (Fig. 5B). Ub is significantly stiffer (𝑘𝑑𝑖𝑟𝑒𝑐𝑡 is almost an order of magnitude larger) along 

𝒓6,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝒓27,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝒓29,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, and 𝒓63,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ than along 𝒓11,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝒓33,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, and 𝒓48,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Previous ENM based 

computational studies have proposed that the 𝒓11,76⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝒓48,76⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ directions in Ub are 2-fold more 

flexible relative to the 𝒓29,76⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝒓63,76⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.17 Further, previous Steered Molecular Dynamics (SMD) 

simulations of Ub showed lower unfolding forces along 𝒓48,76⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ relative to 𝒓1,76⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and even lower 

unfolding forces (< 50 pN) along 𝒓11,76⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.43 Our results here further predict two distinct (differing 

by about an order of magnitude) classes of spring constant values for Ub along the 7 lysine:C-term 



directions which  can be tested by SMFS experiments. The set of high spring constant values (~ 2 

N/m) are comparable to the N-C term spring constant of Ub (Fig-4A). Our recent work showed 

 

Figure 5: Mechanical Anisotropy in Ub and its alteration upon complexation with partner 

protein. (A) Positions of the 7 lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and 

Lys63) present in Ub which along with the C-terminal serve as tethering points for Mono- or 

poly-ubiquitination of substrate proteins. (B) Computed 𝑘𝑀𝐷(𝒓𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑇𝑆 = 1𝜇𝑠) along 7 lysine to 

C-terminal (residue 72) pulling directions for Ub. Two of the directions containing Lys48 and 

Lys63, the direction was modified to 𝒓46,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝒓65,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ respectively as these residues fall on 

flexible loops (Sec. 2.4.1)  (C) Changes in 𝑘𝑀𝐷(𝒓𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑇𝑆 = 1𝜇𝑠) of free Ub upon complexation 

with two partner proteins UBCH5A and UEV.  We find that the trends in mechanical anisotropy 

and its change upon complexation to be unaltered if the 𝒓48,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝒓63,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ directions are retained 

(Sec. S10 of ESI).     

 



that Ub changes its overall flexibility in a context sensitive manner upon binding to two protein 

partners (the UEV domain of TSG101 and UBCH5A) that have distinct functional consequences.18 

While the TSG101 UEV domain is a Ub recognition motif, recognizing ubiquitylated cargo, 

UBCH5A is an E2 ligase, which attaches Ub to protein substrates.  Interestingly, by analyzing the 

trajectories of Ub:UBCH5A and Ub:Uev complexes, we find that these protein-protein interactions 

can also selectively and in a context sensitive manner alter the mechanical anisotropy of Ub 

relative to its free form. Upon binding to UBCH5A, Ub directional flexibility increases selectively 

along 𝒓6,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗,  𝒓48,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝒓11,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ but remains unchanged along other directions (Fig-5C). In contrast, 

binding to UEV selectively decreases the Ub directional flexibility along 𝒓1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝒓27,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ , 𝒓29,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ , and 

𝒓48,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  while preserving the flexibility along other directions. Upon examining other lysine 

directions, we find that UBCH5A and UEV prefer to access Ub directions which have different 

flexibility scales and alter protein flexibility in contrasting ways (Fig. 5C). While UBCH5A tends 

to selectively decrease directional protein flexibility, UEV tends to selectively increase directional 

protein flexibility.     

 

3.4 A Scalable Scheme to Compute Directional Spring Constants Based on Quasiharmonic/ 

Normal Modes    

The previous sections show that protein directional spring constants 𝑘𝑀𝐷( 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) can easily be 

computed along desired directions from equilibrated MD simulation data. A deeper understanding 

of the directional protein flexibility in relation to the protein structure can be obtained by 

examining the contributions to kMD from collective protein motions. For this PCA of equilibrium 

MD trajectories can be used which provides a basis of quasiharmonic modes to express protein 

dynamics. Further, it would be desirable to extract directional flexibilities from cheaper 

computational schemes such as coarse-grained ENM analysis which provide a harmonic normal 

mode basis to express protein flexibility.17,44 In both PCA and ENM, the objective is to compute 

directional spring constants from a set of orthogonal eigenvectors and their eigenvalues. In this 

subsection, using Ub as a model protein system, we demonstrate a simple covariance-propagation 

(CP) scheme (Fig-S4 and Sec 2.4.4) to extract directional protein flexibility from an eigenvector 

basis. First, we consider PC modes obtained by performing C only PCA (Sec. 2.2) on 10 x 1 μs 

MD trajectories of Ub. For each trajectory, PCs along with their corresponding eigenvalues are 



processed (Sec. 2.4.4) to extract directional variances 𝜎𝐶𝑃−𝑃𝐶𝐴
2 (𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) which are converted into 

𝑘𝐶𝑃−𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) using Eqn. 4. The 𝑘𝐶𝑃−𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) thus computed can be validated against 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) 

obtained directly from distance distributions in the corresponding MD trajectories using Eqns. 3 

and 4 in Sec. 2.4.2. The same scheme is transferable and  can be employed to compute 

𝑘𝐶𝑃−𝐸𝑁𝑀(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) from coarse-grained ENM normal modes (Fig-S4 and Sec. 2.4.4) derived from the 

Ub crystal structure.  

3.4.1 Validation against MD Trajectories 

First, in order to validate the CP scheme, we compute 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  , 𝑇𝑠 = 1𝜇𝑠) from each of the 10 

MD trajectories of Ub  (C atoms only) for all possible 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   excluding nearest neighbour residue 

pairs in the core 72 residue sequence of Ub, a total of ((
72
2
) − 71 = 2485) directions. The 

𝜎𝐶𝑃−𝑃𝐶𝐴
2 (𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) computed using PC modes reproduces most (80 %) of the directional variances from 

direct MD distributions (Fig-6A). Further, the agreement is also clearly visible in the scatter plot 

for 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) and 𝑘𝐶𝑃−𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) computed using the two schemes (Fig-6B). However, it is also 

apparent from these plots that there are some directions (20 %) for which the variance in 

distributions is not well reproduced by the CP scheme. A deeper investigation reveals that the 

CVCF-traces along these directions has not converged to a plateau indicating non-equilibrium 

sampling over the 1s timescale (Fig-S11 of ESI) with non-Gaussian distance distributions. For 

instance, in Fig-S11 of ESI the computations of the directional variance using the CP scheme 

(using all modes) and direct MD are compared for three directions: 𝑟8,10⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟24,33⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , and 𝑟41,60⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   in a 

specific trajectory of Ub. The CP scheme reproduces 𝜎𝐶𝑉𝐶𝐹
2 (𝑟24,133⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) and 𝜎𝐶𝑉𝐶𝐹

2 (𝑟41,60⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  from MD 

distance distributions perfectly (Fig-S11A) as these directions exhibit converged CVCF plateaus 

(Fig-S11B and Fig-S11C) and distributions which can be described by single Gaussian fits (Fig-

S11E-F). In contrast, for the 𝑟8,10⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  direction which shows a bimodal distance distribution (Fig-

S11D) and no CVCF-trace plateau at 1 s, the 𝜎𝐶𝑉𝐶𝐹
2 (𝑟8,10⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) from direct MD is poorly reproduced 

by the CP scheme (Fig-S11A). We also examined the ability of the method developed by Eyal and 

Bahar 17 for protein spring constants, to reproduce the 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) computed from MD distance 

distributions. While the original description of the method was based on coarse-grained ENM 

normal modes, we follow the prescription by Eyal and Bahar to compute 𝑘𝐸𝐵−𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) for all the 



2485 directions of Ub from ( C-atom) PCA on each of the 10 s trajectories of the protein (Eqn. 

9). From the scatter plot in Fig-6C it is apparent that the formalism of Eyal and Bahar using PCA 

fares relatively poorly in reproducing the spring constants of Ub from direct MD.  The scatter plot  

of 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) and 𝑘𝐸𝐵−𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) shows a large spread, is shifted below the x=y line, and deviates 

from a linear fit at higher spring constant values. We note, that a fundamental difference between 

the CP framework proposed in Sec 2.4.4 and the prescription of Eyal and Bahar lies in the 

definition of the directional spring constants. While the former derives the directional spring 

constant from the equipartition principle (Eqn. 10) which balances thermal energy with cumulative 

mode energy, the latter uses Eqn. 8 which balances thermal force with the cumulative mode 

deformation force.   

 

As, we will show in the next subsection the definition adopted by Eyal and Bahar also leads to an 

anomalous dependence of the computed spring constants on high frequency modes of the system. 

We therefore, modified the Eyal-Bahar formalism to adopt an equipartition based definition  

(𝑘𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) from Eqn. 11) of the spring constant. The correlation of the modified spring constant 

𝑘𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  )  with 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) is significantly improved and matches that obtained for the CP scheme, 

except for a systematic underestimation of values relative to that derived directly from MD (Fig-

 

Figure 6: Correlations between Ub spring constants from MD trajectories and those 

computed using PC modes using three different methods: (A) Correlation between 

𝜎𝐶𝑉𝐶𝐹
2 (𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) for Ub obtained from distance distributions in MD trajectories (Eqn. 3)s and 

𝜎𝐶𝑃−𝑃𝐶𝐴
2 (𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) obtained using the method of covariance propagation and C atom PCA with the 

full set of PC modes (Eqn.  16) (B) Correlation between 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) and 𝑘𝐶𝑃−𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  )  obtained 

from the variances in panel A using Eqn. 4. (C) Correlation between 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) and 

𝑘𝐸𝐵−𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  )  obtained using the formalism of Eyal and Bahar on PC modes (Eqn. 9). (C) 

Correlation between 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) and 𝑘𝑃𝐶𝐴(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  )  obtained by using the modified formalism of 

Eyal and Bahar on PC modes (Eqn. 11).  Each panel shows the correlation coefficient () and 

Adjusted R-square (Adj R2) between the datasets. The diagonal line depicts x=y. 

 



6D). Thus, having established the reliability of our CP scheme to compute protein spring constants 

from PCA and ENM, we examine the ability of scheme to reveal mode contributions to the protein 

directional spring constants in the next section.    

3.4.2Collective PC and ENM mode contributions to the directional spring constant   

PCA as applied to MD trajectories highlights the prominence of low frequency collective 

vibrational modes in protein dynamics. PCs sorted by decreasing order of their eigenvalues 

(variances) show a sharp drop in terms of their contributions to the total variance produced in MD 

trajectories (Fig-S12 of ESI). Specifically, more than 80% of the total fluctuations originate from 

top ten lowest frequency modes in globular proteins examined here (Fig-S12). Since the overall 

spring constant is inversely proportional to the variance of bond vector fluctuations, it is expected 

to decay as a function of mode index cumulatively when modes are sorted based on decreasing 

fluctuations. Here, we investigate the trends in directional variances and spring constants 

computed using the CP framework of Sec 2.4.4 and those using both the original and modified 

Eyal-Bahar methods17 as a function of the number of PC modes M used in the computations. 

Specifically in Fig-7, we investigate the convergence of these measures along  𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  to the  𝜎𝐶𝑉𝐶𝐹
2  

and 𝑘𝑀𝐷 limits at 𝑇𝑠 = 1 𝜇𝑠 in 10 MD trajectories of Ub. We perform PCA (Sec. 2.2) on each of 

the MD trajectories considering 𝐶𝛼 atoms only and use the CP scheme (Sec 2.4.4) to compute 

𝜎𝐶𝑃−𝑃𝐶𝐴
2 (𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑀) and 𝑘𝐶𝑃−𝑃𝐶𝐴(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ,𝑀) as a function of the number of PC modes sorted based 

on their decreasing eigenvalues. These values are also compared with the total variance/spring 

constants of the bond vector 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  obtained directly from MD (horizontal coloured lines in Fig-7). 

As expected, in each of the 1 𝜇𝑠 MD trajectories of Ub, 𝜎𝐶𝑃−𝑃𝐶𝐴
2 (𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , M) increases with number 

of PC contributions and saturates around 𝑀 = 50 indicating that the last ¾ high frequency modes 

have negligible contributions to the directional variance in MD trajectories (Fig-7A). Moreover, 

𝜎𝐶𝑃−𝑃𝐶𝐴
2 (𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑀) converges to within 10 % of  𝜎𝐶𝑉𝐶𝐹

2 (𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) upon including the top 50 PCs. 

Accordingly, 𝑘𝐶𝑃−𝑃𝐶𝐴(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ,𝑀) also decays rapidly with M and saturates to a value close to 𝑘𝑀𝐷 

(Fig-7B).  

We find similar trends for the convergence of 𝑘𝐶𝑃−𝐸𝑁𝑀(𝑟1,72,, 𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) computed from Ub crystal 

structures (Fig-S13 of ESI). However, convergence of 𝜎𝐶𝑃−𝐸𝑁𝑀
2 (𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,M) and 𝑘𝐶𝑃−𝐸𝑁𝑀(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) 

with number of modes is more gradual as compared to their PCA counterparts (Fig-S13 A-B). 



While contributions to 𝜎𝐶𝑃−𝑃𝐶𝐴
2 (𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , M) and 𝑘𝐶𝑃−𝑃𝐶𝐴(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) from modes M > 50  are negligibly 

small, modes ~ 50-100 provide a significant contribution to 𝜎𝐶𝑃−𝐸𝑁𝑀
2 (𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,M) and 

𝑘𝐶𝑃−𝐸𝑁𝑀(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  (Fig-S13 A-B). In stark contrast, 𝑘𝐸𝐵−𝐸𝑁𝑀/𝑃𝐶𝐴(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) values do not decay but 

instead show a rise which does not saturate even upon including all modes in the spring constant 

calculation (Fig-7C). Clearly, high frequency local modes contribute significantly to the 

directional flexibility 𝑘𝐸𝐵−𝑃𝐶𝐴/𝐸𝑁𝑀(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) of Ub along 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  which appears unphysical and 

inconsistent with the behaviour observed for the directional variance of the protein (Fig-7A). 

Moreover, there is a large discrepancy between 𝑘𝑀𝐷(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) and the spring constants obtained using 

the Eyal and Bahar framework (Fig-7C). Upon incorporating the modified description of the spring 

constant (Eqn. 11) as discussed in the previous section, the contribution of high frequency normal 

modes to  𝑘𝐸𝑁𝑀(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) is lowered which leads to a weak convergence of the spring constant values 

at large M (Fig-7D). 

       

 

Figure 7: Convergence of variance and spring constants as a function of PC modes. (A) 

𝜎𝐶𝑃−𝑃𝐶𝐴
2 (𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) plotted cumulatively as a function of vibrational modes obtained from PCA 

followed by method of error propagation on 10 independent 1 μs MD trajectories represented 

by different colors. The dotted horizontal lines represent the 𝜎𝐶𝑉𝐶𝐹
2 (𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) obtained at end of 

the corresponding MD trajectories (Eqns. 2 and 3 in Sec. 2.4.2). (B) 𝑘𝐶𝑃−𝑃𝐶𝐴(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) plotted 

cumulatively as a function of PC mode index (solid line) obtained from 𝜎𝐶𝑃−𝑃𝐶𝐴
2 (𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) using 

Eqn. 4 in Sec. 2.4.2. Also shown are the 𝑘𝑀𝐷(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) values obtained from distance distributions 

of the corresponding MD trajectory (dashed line). A zoomed in version for the PC modes 50-

210 is also shown in inset. (C) 𝑘𝐸𝐵−𝑃𝐶𝐴(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) from Eqn. 9 plotted cumulatively as a function 

of PC modes (solid line) shows a large deviation from 𝑘𝑀𝐷(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) values obtained directly from 

MD trajectories (dashed line) and does not converge/saturate with number of modes. (D) 

𝑘𝑃𝐶𝐴(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  from Eqn. 11 plotted cumulatively as a function of PC modes (solid line) also 

shows a large deviation from 𝑘𝑀𝐷(𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) values obtained directly from MD trajectories (dashed 

line) but converges/saturates with increasing mode index.   
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3.5 Correspondence of ENM and MD derived spring constants 

In this subsection, we apply our CP formalism to compute 𝑘𝐶𝑃−𝐸𝑁𝑀(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) from coarse-grained 

ENM derived normal modes (Sec. 2.4.4). In previous sections, we investigated a few selected 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   

and found strong correlations between computed 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) and that from SMFS experiments. 

Here, we examine the ability of coarse-grained ENM to reproduce MD derived directional spring 

constants for Ub, SUMO, SUMO2, GFP and GB1. 

 

 For Ub family proteins, we have showed that spring constants from both SMFS experiments and 

MD simulations can resolve the flexibilities of Ub from its SUMO isoforms. In contrast, the 

𝑘𝐶𝑃−𝐸𝑁𝑀(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) computed from Ub, SUMO1 and SUMO2 crystal structures are virtually 

indistinguishable (Fig-8A). The poor resolution of ENM spring constants relative to MD is 

expected since the ubiquitin family proteins are structurally homologous with superimposable 

backbones and coarse-grained ENM is a Cα based method. However, ENM is able to resolve the 

Ub mechanical anisotropy along 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and the 𝑟46,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  directions showing significantly higher spring 

constants along the former direction.. In case of GFP, ENM can correctly distinguish the flexibility 

along  𝑟117,182⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟10,129⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , and 𝑟182,212⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , from that along 𝑟129,209⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑟10,209⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (Fig-8B) as captured in 

MD and SMFS experiments. However, ENM overestimates the 𝑘𝐶𝑃−𝐸𝑁𝑀(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) along 𝑟10,128⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and  

𝑟182,209⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    relative to that along 𝑟117,182⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  In GB1, however, ENM fares poorly, failing to predict the 

significantly high directional spring constant along 𝑟1,56⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  relative to the other directions and the 

 

Figure 8: Protein directional spring constants as viewed by coarse-grained ENM and MD 

simulations. Computed 𝑘𝑀𝐷(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) (solid bar) and 𝑘𝐶𝑃−𝐸𝑁𝑀(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) (hollow bar) for Ub family 

protein along 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝑟48,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  in case of Ub (A), for GFP along 𝑟117,182⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟10,128⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟182,212⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟132,212⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

and 𝑟3,212⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (B) and for GB1 along 𝑟1,56⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟10,40⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟21,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟10,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟19,56⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝑟1,41⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (C). Average and 

standard deviation in computed 𝑘𝑀𝐷 (in solid bar) is taken over the set of 10 MD trajectories 

for each protein at 1 μs timescale.  
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least mechanically resistant direction along 𝑟9,41⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (Fig-8C). Both of these trends are picked up by 

MD.   

4. Discussion  

 SMFS experiments use an effective 2-state (folded/unfolded) model to map unfolding force 

data back to the underlying PES section along the pulling reaction coordinate.5,7,10 Typically, 

Monte-Carlo simulations of the 2-state kinetics are performed to estimate the distance between the 

native and transition states (the potential width X
U
) and the equilibrium unfolding rate constant 

(𝛼0), which then together provide the directional spring constant (𝑘𝑆𝑀𝐹𝑆(𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  )). Here, we show 

that atomistic MD simulations provide a means to assess the correspondence of the parameters 

extracted from SMFS to the underlying PES accessed by proteins under equilibrium sampling 

conditions. The assessment of equilibrium sampling conditions was based on a CVCF-trace 

analysis which also provides a means to estimate protein flexibility.18  By running multiple 

trajectories, MD simulations can provide an assessment of the effective curvature and roughness 

of the section of PES sampled over a fixed timescale in terms of  <𝜎𝐶𝑉𝐶𝐹
2  (𝑟𝑎,𝑏⃗⃗ ⃗⃗⃗⃗  ⃗)>  and  SDCVCF  

respectively. We note that while both effective curvatures, extracted from MD (kMD) and SMFS ( 

𝑘𝑆𝑀𝐹𝑆), are based on the equipartition theorem, and their correlation is not immediately apparent. 

For instance, the former depends only on the thermal amplitude 𝜎𝐶𝑉𝐶𝐹 (𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗  ) and is related by a 

simple inverse relationship to the variance. In contrast, the latter is given in terms of the activation 

barrier (∆𝐺‡) for unfolding (obtained from 𝛼0) and the potential width ( 𝑘𝑆𝑀𝐹𝑆 = 
2∆𝐺‡

(∆𝑋𝑈)2
). Our 

analysis here reveals that microsecond MD trajectories, in 5 different globular proteins, produce 

thermal amplitudes which cover only about 7-42% of the potential width along the pulling reaction 

coordinates (Table-S7). Thus it is encouraging to note that average kMD values show strong 

correlations ( ~ 0.97-0.99 with Adj R2 ~ 0.92-0.99) with the MD data. Our data show that MD 

underestimates the mechanical flexibility relative to that predicted from SMFS for directions 

(𝑟19,48⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  for GB1) where the thermal amplitude is small relative to the potential width. A second 

interesting observation from MD is that roughness of the PES section along the pulling coordinates 

appears to be significant. The heterogeneity in sampling impacts the resolution of the computed 

kMD which in general appears to be lower than experiments (Fig-4). The higher resolution of the 

SMFS data may be due to biased sampling conditions along the pulling coordinate in experiments 



as opposed to the free thermal sampling conditions in MD. Importantly, however, these 

observations, along with excellent correlations seen for average spring constants, do suggest that 

directional flexibilities which are well resolved in MD should be also well resolved in SMFS 

experiments. A third crucial point touched upon in our analysis is the definition of the pulling 

reaction coordinate  𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   for which spring constants are computed in MD. We show that a simplistic 

choice of 𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   based on  C atom positions of residue pairs (a and b)  on which the pulling force is 

directly applied in SMFS experiments may severely overestimate computed directional 

flexibilities (Fig-S8 of ESI) when either one or both residues of the pair lie on flexible protein 

segments. Such segments are expected to extend with pulling force without contributing to the 

mechanical resistance of the protein fold. In this case, we propose that the  𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   definitions should 

be modified to use C atoms of residue pairs from the structured protein core (Sec 2.4.1 and Table-

S3). We show that a CVCF-trace analysis of the relative flexibility of candidate protein segments 

(Fig-S2 of ESI) with respect to the structured protein core can provide objective choices of  𝑟𝑎,𝑏⃗⃗ ⃗⃗ ⃗⃗   

for computing directional protein flexibilities. To summarize, our studies show that an atomistic 

MD-based analysis of directional protein flexibilities and anisotropies can provide useful insights 

for mapping the reaction coordinates and PES parameters from SMFS experiments to equilibrium 

protein dynamics.      

We have applied our MD-based computational framework to study the mechanical anisotropy of 

Ub in free form and in complexes with protein partners. Our computations reveal intriguingly that 

the directional flexibility of free Ub associated with conserved lysines (Fig-5A) fall into two 

distinct scales (Fig-5B) with the directions 𝑟6,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟27,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟29,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , and 𝑟63,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  an order of magnitude 

more stiffer than the directions 𝑟11,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟33,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , and 𝑟48,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . The mechanical isotropy of Ub may be 

relevant for understanding mono- or poly-ubiquitination reactions in the cellular context. For 

instance, the E2 ligase UBCH5A innately prefers linking poly-Ub chains using lysine-11, lysine-

48 and lysine-63 residues.45 It is known that lysine-11 and lysine-48 linked chains trigger substrate 

protein degradation more frequently than other modifications46  as the tethers are less likely to 

produce chain branches which can impede degradation47. In contrast, atypical poly-Ub chains 

linked through other lysines (residues 6,27,29,33, and 63) can create a range of molecular signals 

including proteasomal degradation.48–50 Previous studies have employed structural arguments 

(proximity to the E2 catalytic cysteine) to rationalize lysine-11 linked poly-Ub chain formation.45 



Our analysis adds a fresh dynamical perspective by predicting that two out of three flexible 

directions in free Ub, 𝑟11,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and  𝑟48,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , become distinctly rigid upon binding to UBCH5A (Fig-

5C). Additionally, one of the four rigid directions, 𝑟6,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is further rigidified (Fig-5C). Interestingly, 

the binding to the Ub recognition domain UEV has exactly the opposite effect to that of the 

UBCH5A ligase, that of softening Ub directional flexibility (Fig-5C). Our calculations predict 

UEV binding to preferentially impact the rigid directions, reducing the spring constants of Ub 

along 𝑟1,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟27,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟29,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , and 𝑟63,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .  Additionally, one the three flexible directions of Ub, 𝑟46,72⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

shows a distinctly lower spring constant in the bound form. These are clear predictions, well 

resolved in MD, for the mechanical anisotropy in free Ub and its contrasting changes upon binding 

to functionally distinct protein partners which can be tested using SMFS experiments. 

Finally, we have demonstrated the utility of the MD-based directional flexibility analysis in terms 

of examining and tuning the performance of coarse-grained ENM schemes. These scalable 

methods have shown great promise in previous applications for determining the directional 

flexibility of proteins.15,17 However, given the sparse experimental dataset on protein mechanical 

anisotropy and the difficulty in combining directional spring constant data for different proteins, 

it has been difficult to quantitatively evaluate the predictive ability of ENM-based methods. Using 

a large dataset of bond vector fluctuations derived from MD and a transferrable CP framework 

(Sec. 2.4.3) we were able to demonstrate some limitations in a ENM scheme for computing 

directional spring-constants (Sec. 3.4) and propose modifications to overcome these issues. 

Calculations on ubiquitin family proteins, GFP and GB1 show both abilities and limitations of 

coarse-grained ENM models to resolve directional flexibilities of proteins (Fig 8). ENM based 

spring constants were found to be able to resolve the mechanical anisotropy of Ub along two 

directions, but were unable to resolve the N-C term stiffness for structurally homologous ubiquitin 

family proteins. For GFP, the ENM models were able to distinguish between the lowest two and 

highest three spring constants, but not the trends within each class. In GB1, ENM models 

completely fail to predict even major trends in protein mechanical anisotropy. Preliminary 

calculations wherein the coarse-grained ENM interaction potential was reparametrized with spring 

constants derived from MD simulations (data in Fig-5B) show that the ENM resolution can be 

improved to approach that of MD in reproducing directional spring constants for all proteins 

considered here (Fig-S14). Parameterization of ENM models with MD has been proposed before51 

and holds great promise for improving the predictive abilities of these scalable models.    



5. Conclusions 

In this paper we have demonstrated that equilibrium atomistic MD simulations can be used 

to estimate the directional flexibility of proteins and produce average spring constant values which 

correlate with SMFS experimental data. The MD-based framework to estimate protein directional 

spring constants is promising as it enables the extraction of the full mechanical anisotropy of the 

protein considering all residue pairs and present well-resolved directions for SMFS experiments 

to investigate. Further, as demonstrated here insights into the features of the native PES can be 

extracted from a CVCF-trace analysis which can be correlated to experimental data. We have also 

demonstrated that the MD-based framework can be useful to evaluate computationally cheaper 

and scalable coarse-grained ENM models and improve them. More experimental data on protein 

mechanical anisotropy is desirable to develop these methods into powerful predictive tools.    
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