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Abstract

High-throughput density functional theory (DFT) has been widely utilized to study a variety of ma-
terials and molecular properties. However, its application to complex molecular systems, including those
relevant to electrochemical reactivity and decomposition, has been limited by insufficient automation.
Here, we report a broadly applicable, automated framework for the accurate and robust DFT calculation
of molecules, capable of addressing species relevant to electrochemistry. This framework is specifically
designed to study molecules with different charge states, open-shell electronic structure, metal coordina-
tion, and implicit solvation. We first identify appropriate levels of theory that avoid calculation failures
and accurately predict molecular redox potentials. We then describe our framework, including methods
to automatically detect and correct errors and to optimize structures from saddle points to potential
energy surface minima. To demonstrate the efficacy of this framework, we examine a case study includ-
ing over 12,000 calculations of reactive molecular fragments. This framework is able to reduce the rate
of failure for DFT calculations from 25.1% to 1.2%, significantly improving the degree of automation
possible for high-throughput molecular DFT.

Keywords: Density functional theory, high-throughput, error correction, electrochemistry, computa-
tional thermochemistry

Introduction

With advancements in available computing power, ab initio calculations based on density functional theory
(DFT) have become potent tools for the prediction of materials and molecular properties. When used in
a high-throughput manner, DFT can generate massive data sets1,2 and serve to populate databases.3–10

By leveraging these repositories or other high-throughput calculations, researchers have been able to screen
compounds for a broad range of applications, including photovoltaics,11 metal-ion battery electrolytes12–14

and electrodes,15–18 redox-flow batteries,19 catalysts,20,21 thermoelectrics,22 pharmaceuticals,23–26 and many
more. High-throughput DFT has also recently been used to construct computational reaction networks
that describe the thermodynamics and kinetics of chemical reactions between large numbers of chemical
species.27,28

In order to facilitate high-throughput computational chemistry, a number of tools3,29–34 have been de-
veloped to automate DFT calculations, generating input files, interfacing with quantum chemistry software
such as the Vienna Ab Initio Simulation Program (VASP),35 Quantum Espresso,36 or Q-Chem,37 and both
parsing and analyzing data with little to no human intervention. A key feature of such packages is the
ability to autonomously detect and correct errors (issues that cause the DFT code to fail) and problems
(issues that do not cause the code to fail but might lead to incorrect results) that may be encountered during
calculations.
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Numerous studies have explored neutral, closed-shell organic molecules with great success using high-
throughput methods. However, certain other types of species remain difficult to simulate in an automated
and high-throughput fashion due to their inherent chemical complexity. Specifically, charged molecules,
open-shell molecules, molecules coordinated with metal ions, and molecules in solvent can be notoriously
difficult to analyze using DFT:

• Charged molecules: Without being stabilized (for instance, by a counter-ion or solvent environment),
charged molecules can be difficult to optimize to stationary points either during self-consistent field
(SCF) calculations or during geometry optimization. This difficulty is especially pronounced for anions
due to the expanded electron cloud, which necessitates a large basis set for accurate calculation of the
electron density.

• Open-shell molecules: Radicals are often unstable and reactive. This instability can make geometry
optimization especially challenging, as minima may be extremely shallow and the radical may have a
tendency to dissociate or significantly change its bonding during optimization.

• Metal-coordinated molecules: The introduction of metals into molecular DFT calculations leads to
a number of complications. Metals usually require coordination to be stabilized, necessitating the
addition of solvent or ligand species. Because metal coordination occurs on a length scale longer than
conventional molecular bonds, it cannot be accurately captured without a sufficiently advanced level of
theory (LOT). Additionally, metal chemistry is strongly dependent on oxidation state; in cases where
several oxidation states are possible, care must be taken to ensure that the SCF converges to a state
where the metal has an appropriate charge.

• Solvated molecules: The introduction of solvent generally increases computational complexity. Either
the solvent must be explicitly considered, increasing the number of electrons and the dimensionality of
the potential energy surface (PES), or an implicit solvent model must be used, which adds additional
convergence parameters (converging the solvent cavity) and additional terms to the molecular energy
and gradient. In either case, optimization can become both more computationally costly and more
difficult.

An example molecule for each category is depicted in Figure 1, along with some possible errors that might
arise during calculation. The risk of calculation failure may increase for molecules exhibiting multiple of
these challenging traits - for instance, a charged, radical, metal-coordinated molecule; errors may also be
more likely in a complex workflow involving many calculations, necessitating robust error handling.

It is important to note that the diverse challenges identified above cannot be easily addressed by a single
solution. However, these types of molecules are important in many applications; ionic species and coordinated
metals are highly relevant in a range of biological applications,38–40 radicals play a key role in combustion41,42

and catalysis,43 and solvation is essential for many synthetic and reactive processes.44–46 Further, all of these
classes of species are critical in electrochemical systems, particularly Li-ion and multivalent-ion electrolytes
as well as catholytes and anolytes in redox-flow batteries. Complex electrochemical reaction cascades can
trigger electrolyte decomposition, potentially hampering battery performance47 or alternatively forming a
protective passivating layer in the form of a solid electrolyte interphase (SEI).48 In this work, we focus
on electrochemically relevant molecules, though we emphasize that much of what we discuss is broadly
applicable.
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Figure 1: A schematic depicting the importance of error correction. Performing common calculations such as a single-point self-

consistent field (SCF) calculation (SP) to obtain the energy E, a geometry optimization (OPT) to obtain the atomic coordinates
~R, or a vibrational frequency analysis (FREQ) to obtain the enthalpy H, entropy S, and frequencies νi, will frequently result

in errors of varying nature. This may be especially true when charged, radical, metal-coordinated, or solvated molecules are

involved. In calculations involving several of these challenging features, or in complex workflows involving multiple calculations

(bottom), the risk for errors can be compounded.

In this paper, we describe a set of computational methods that allow for the robust and accurate cal-
culation of molecular geometries and thermochemistry using DFT in a fully automated fashion. Through a
benchmark study, we identify LOTs appropriate for use in high-throughput studies of electrochemical sys-
tems, including density functional, basis set, and implicit solvent model. These appropriate LOTs are found
to accurately predict reduction and oxidation potentials without failure. We present automatic schemes to
correct common errors and problems encountered during molecular DFT calculations and describe an open
source implementation of these methods. We further demonstrate the efficacy of our implementation through
analysis of a set of over 12,000 DFT calculations.

Computational Details

All calculations discussed in this article were performed using version 5.2.2 of the Q-Chem electronic structure
code.37 A large quadrature grid (SG-3) was used for all calculations.49 Unless otherwise noted, with this
exception, all Q-Chem default values (as of the 5.2.2 version) were used for initial calculations, though during
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error-correction these default values might be changed. The modification of DFT parameters during error
correction will be discussed below.

Level of theory

The LOT for a quantum chemistry calculation defines the methods used to approximate the solution to
the many-body Schrödinger equation. For Kohn-Sham DFT calculations, the most important components
of the LOT are the density functional and the basis set. The density functional, which depends generally
on the spatial electron density and its derivatives, defines the energy of a system of interacting electrons.
The basis set is a collection of spatial functions which are used to model the exact many-body electronic
wave function. Here, we consider only contracted Gaussian basis sets,50 which are most commonly used in
molecular quantum chemistry.

In addition to the density functional and the basis set, the choice of implicit solvent model is important
for approximating the effect of bulk solvent. Implicit solvent models typically approximate bulk solvent
as a continuous dielectric medium. The interaction between this medium and the electron density of the
molecule of interest approximates the electrostatic interaction between the solvent and the solute, allowing
for the calculation of properties including the solvation free energy. While self-consistent iterative procedures
involving solvent cavities are often referred to as self-consistent reaction field (SCRF) calculations, we will
here use the term SCF to describe such calculations both with and without implicit solvent. More extensive
descriptions of the components of the LOT are provided in the Supporting Information.

DFT calculations rely on numerous parameters that can be modified by users. These include conver-
gence parameters for SCF calculations and geometry optimizations, numerical parameters (including the
quadrature grid, already mentioned), algorithmic parameters, and others. While these parameters can have
significant impacts on the results of DFT calculations - including the accuracy of their results, their com-
putational cost, and their likelihood to fail - they do not affect the underlying physical theory being used to
determine the electronic structure. As such, we do not here consider them in our evaluation of LOTs. We
do, however, vary some of these parameters in our error correction procedures, described below.

The incredible diversity of density functionals, basis sets, and implicit solvent models available to re-
searchers makes the task of selecting a LOT for a particular application challenging. Here we provide a
small combinatorial benchmark that compares a select set of LOTs on three metrics particularly important
for high-throughput studies: tendency to fail due to errors or other problems; accuracy (comparing to ex-
perimental oxidation and reduction potentials); and computational cost. We use this benchmark to identify
LOTs that are generally appropriate for calculations involving complex molecular species in electrochem-
ical applications. Note that we make no claims that the LOTs identified in this benchmark are the best
for this application or for any other. There may be functionals, basis sets, and implicit solvent models,
or combinations thereof, that are superior in certain dimensions to the top performers of this benchmark.
We simply sought to identify a set of LOTs that are adequate for this particular use case. We note that
this method of evaluating based on cost and tendency to fail in addition to accuracy is especially useful
for benchmarks aiming to identify LOTs for high-throughput applications, where both the computational
resources to conduct the calculations and the human resources to analyze failed calculations can be strained.

Table 1: Density functionals, basis sets, and implicit solvent models for benchmark study
Density functionals Basis sets Implicit solvent models Solvents
B3LYP def2-SVP COSMO Tetrahydrofuran (THF)
B3LYP-D3 def2-SVPD SMD Water
CAM-B3LYP def2-TZVPD Vacuum
ωB97X-V def2-TZVPPD Vacuum + COSMO
M06-2X-D3 Vacuum + SMD

The candidate functionals, basis sets, implicit solvent models, and solvents for this benchmark are given in
Table 1. These candidates were chosen to represent broader classes of possible choices available to researchers.

Each of the functionals chosen are so-called hybrid functionals, using the exact exchange term from
Hartree-Fock theory to correct for electron self-interaction error;51 among these five functionals are a global
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hybrid generalized gradient approximation (GGA) functional (B3LYP),52,53 a global hybrid GGA func-
tional with dispersion correction (B3LYP-D3), a range-separated hybrid GGA functional (CAM-B3LYP),54

a range-separated hybrid GGA functional with dispersion correction (ωB97X-V),55 and a global hybrid
meta-globalized gradient approximation (meta-GGA) functional with dispersion correction (M06-2X-D3).56

Both B3LYP-D3 and M06-2X-D3 use Grimme’s D3 dispersion correction,57 while ωB97X-V uses the VV10
nonlocal correlation functional58 to account for dispersion.

All basis sets are from the “def2” family developed by Alrichs and coworkers59 and augmented with
diffuse functions by Rappoport and Furche.60 This family was chosen because its members have similar
accuracy across most of the periodic table,61 making them appropriate for use in a wide range of chemical
systems. The specific basis sets chosen (def2-SVP, def2-SVPD, def2-TZVPD, def2-TZVPPD) represent a
gradual increase in size through addition of core and valence functions, polarization functions, and diffuse
functions.

Two implicit solvent models were selected: COSMO,62 a member of the PCM family of methods,63 and
SMD,64 a member of the SMx family of methods and a representative method that includes non-electrostatic
energy contributions; all calculations were also conducted in vacuum. In molecular DFT studies, solvent
effects are often treated through corrections, wherein geometry optimization and vibrational analysis will
take place in vacuum, and the energy will then be corrected by a single-point calculation in solvent. To
determine if this method would lead to accurate prediction of redox potentials, we performed single-point
calculations on all structures optimized in vacuum, using both COSMO and SMD.

Because the efficacy of implicit solvent models can depend on the solvent of interest, we selected two
solvents with very different electrostatic behavior: tetrahydrofuran (ε = 7.43) and water (ε = 78.36).
Parameters for these solvents were taken from the Minnesota Solvent Descriptor Database.65 It should be
noted that redox potentials can change based on the solvent used, and so this introduces a possible source
of error.

Six molecules relevant to various electrochemical applications (metal-ion battery electrolyte solvents,
redox shuttles, and redox-flow catholytes) were selected to form the benchmark set. Three of these molecules
- anisole, (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO), and 10-methylphenothiazine - were chosen
to test the ability of LOTs to calculate oxidation potentials, while the other three - lithium ethylene carbonate
(LiEC), lithium fluoroethylene carbonate (LiFEC), and lithium ethylene sulfite (LiES) - were chosen to test
the ability of LOTs to calculate reduction potentials. These molecules, along with their relevant redox
potentials (either oxidation potentials or reduction potentials) can be seen in Table 2.

For this benchmark, redox potentials are calculated with DFT as

E(Li/Li+) = −(Greduced −Gnon−reduced)/F − 1.4 V (1)

for reduction and
E(Li/Li+) = (Goxidized −Gnon−oxidized)/F − 1.4 V (2)

for oxidation, where F is the Faraday constant. The scaling factor of ∼ −1.4 V , derived from the difference
between the energy of an electron in vacuum (−4.44 eV ) and the absolute potential of a Li electrode
(−3.05 eV ),66 converts the calculated redox potential to be relative to a Li/Li+ reference electrode, as is
commonly done in studies concerning lithium-ion batteries and related electrochemistry.

The computed redox potential values were compared against experimentally measured values for the test
set molecules (Table 2). Each of the 100 possible combinations of the LOTs - including density functional,
basis set, and implicit solvent model - were considered. For each LOT (and, where applicable, each combi-
nation of LOT and solvent), geometry optimization and vibrational frequency calculations were performed
for each molecule in the test set in two charge states; note that this procedure was only performed once in
vacuum, although three of the five solvent models use these vacuum-optimized geometries. For the LOTs
including “Vacuum + COSMO” or “Vacuum + SMD” implicit solvent methods, a single-point calculation
was performed on the final optimized vacuum geometry in solvent in order to correct the final energy. All
calculations used the Frequency-Flattening Optimization procedure, which we describe below. We note that
the experimental redox potentials for the test set molecules were measured in a variety of solvents. In an
attempt to minimize the effect of the solvent on our results, when reporting errors, we report the average of
the error for the calculations in water and THF.

In general, for each molecule, a single initial guess geometry was provided and used for both charge
states. This was not possible in the case of LiEC and LiFEC. For these two molecules, the carbonate carbon
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is planar in the non-reduced (+1) state and nonplanar in the reduced (0) state. In almost all LOTs tested,
when a planar geometry was provided for the reduced calculations involving LiEC and LiFEC, the resulting
optimized geometry incorrectly remained planar. In some cases, this occurred because of an extra electron
residing on the lithium atom, as determined by the Mulliken population analysis.67 These planar geometries
generally resulted in poor estimations of the reduction potential. For these two molecules, to remedy this
idiosyncratic issue, slightly non-planar guess geometries were provided for the reduced calculations, which
resulted in lower energy non-planar configurations with appropriate Mulliken charges on the lithium atom
and better estimates of the reduction potential.

Table 2: Molecules used in the level of theory benchmark, along with their redox potentials vs. Li/Li+.
Number Molecule name Structure Oxidation Oxidation states

potential
(vs. Li/Li+)

1 Anisole 4.2068 0, +1

2 TEMPO 3.568 0, +1

3 10-methylphenothiazine 3.4768 0, +1

Number Molecule name Structure Reduction Oxidation states
potential

(vs. Li/Li+)

4 LiEC 0.7569 0, +1

5 LiFEC 1.1569 0, +1

6 LiES 2.170 0, +1

During the course of the benchmark study, eight calculations failed due to various errors, and two failed
to optimize to a stationary point. 36 calculations successfully optimized to a stationary point but could
not optimize to a PES minimum (this issue is discussed more below). All LOTs involved in these 46
failed calculations, 18 in total, have been excluded from further analysis (see Table S2.1 in the Supporting
Information for a list of these LOTs). Given that one of our main goals is to identify a LOT that is not
likely to fail given complex and potentially reactive molecules, no LOT that fails during a relatively small
and simple benchmark can be considered appropriate for our use case.

We ranked the remaining 82 LOTs in terms of their MAE compared to experimental values. The 10
LOTs with lowest mean absolute error (MAE) are listed in Table 3; a complete list is provided in Table S2.2
in the Supporting Information. Table 3 also includes relative cost with respect to the least expensive LOT
in the table (B3LYP-D3/def2-TZVPD/COSMO).
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Table 3: Benchmark study errors, mean absolute error (MAE), and average costs.
Functional Basis Set Solvent Method 1 2 3 4 5 6 MAE Rel. Cost
B3LYP def2-TZVPD SMD 0.413 0.211 0.080 0.152 -0.007 0.306 0.219 7.65
B3LYP def2-TZVPPD SMD 0.412 0.221 0.078 0.152 -0.005 0.303 0.220 12.37
B3LYP def2-TZVPD Vacuum + SMD 0.402 0.200 0.070 0.051 -0.002 -0.505 0.255 1.09
B3LYP-D3 def2-TZVPD Vacuum + SMD 0.405 0.198 0.075 0.049 0.001 -0.520 0.259 1.18
B3LYP def2-SVPD SMD 0.446 0.304 0.137 0.200 0.099 0.371 0.263 2.16
ωB97X-V def2-TZVPPD SMD 0.465 0.241 0.300 0.023 -0.131 0.384 0.274 14.34
ωB97X-V def2-TZVPD SMD 0.466 0.241 0.302 0.024 -0.131 0.385 0.275 8.48
B3LYP-D3 def2-TZVPD COSMO 0.580 0.425 0.182 -0.092 -0.195 0.132 0.278 1.00
B3LYP-D3 def2-TZVPPD COSMO 0.597 0.428 0.213 -0.090 -0.195 0.130 0.285 1.62
M06-2X-D3 def2-SVPD SMD 0.643 0.301 0.373 0.159 -0.041 -0.045 0.288 2.57

Table 3: Redox potential errors and overall mean absolute error (MAE) in V for the ten selected LOTs in the benchmark study,

along with the average cost relative to the least computationally expensive LOT listed. LOTs are ordered in terms of their

MAE.

Even given the limited size of the benchmark, definite trends emerge regarding the suitability of different
components of the LOT. It is clear that basis sets augmented by diffuse functions are essential for accurate
prediction of redox potentials (10 of the top 10 LOTs use basis sets augmented with diffuse functions), and
that triple-zeta basis sets lead to better results than split-valence basis sets (8 of the top 10 use basis sets
of triple-zeta quality). It also appears that the SMD model often outperforms COSMO in this domain,
with 8 of the top 10 LOTs using SMD either for all calculations or as a single-point correction. The use
of an some implicit solvent model is critical for calculations involving molecules in solution; the 13 worst-
performing LOTs all performed calculations in vacuum with no implicit solvent correction (see the Supporting
Information for details). The effect of the density functional is less clear. Only 6 of the 10 top-performing
LOTs use dispersion corrections, and none of the top 3 do. Very few (2 out of the top 10) use density
functionals that are range-separated; the majority use global hybrid functionals. This is not to say that
attributes like dispersion correction and range separation are not beneficial, but that they are perhaps less
essential for the accurate prediction of redox potentials, provided that an appropriate basis set and solvent
method are used.

Based on our benchmark, any of the LOTs listed in Table 3 should be considered adequate for the cal-
culation of redox potentials of electrochemically relevant molecules. In this work, we have chosen to use
ωB97X-V/def2-TZVPPD/SMD; while several LOTs using B3LYP and its derivatives outperform ωB97X-
V/def2-TZVPPD/SMD somewhat in our relatively small benchmark, a previous study with a broader bench-
mark found that the ωB97X-V functional is better able to predict a wide range of thermochemical as well
as kinetic properties when compared to B3LYP.71 In our experience, this functional also tends to avoid
saddle points comparatively well, particularly for complex reactive fragments, which can potentially reduce
the likelihood of calculation failure and reduce computational time by avoiding additional calculations to
eliminate imaginary frequencies. Generally, we make the following recommendations:

• For applications where computational resources are not significantly limited or where an extremely
high degree of accuracy is needed, use a LOT with a hybrid functional, a diffuse-augmented basis set of
triple-zeta quality, and an implicit solvent model accounting for non-electrostatic energy contributions.
Ex: ωB97X-V/def2-TZVPPD/SMD, B3LYP/def2-TZVPD/SMD.

• If computational resources are limited, or for use in coarse high-throughput screening involving ex-
tremely large numbers of species, consider using a diffuse-augmented split-valence basis set. Alter-
natively, one could consider using a triple-zeta basis set with an implicit solvent model used only as
a correction to the electronic energy. A high-quality implicit solvent model should be considered es-
pecially important in these cases. Ex: B3LYP/def2-SVPD/SMD, B3LYP/def2-TZVPD/Vacuum +
SMD.
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Fully Automating Molecular DFT

Implementation Overview

We have implemented a computational infrastructure for high-throughput and automated DFT calculations
using the Q-Chem electronic structure code in existing open-source Python packages developed by the
Materials Project,9,10 namely pymatgen,72 custodian, and atomate.73 The modules in these codes used
specifically for Q-Chem, along with their purposes, are described in Figure 2a.

Some of the work reported here is based on previous methods developed for the Electrolyte Genome
project.74 The workflows designed for the Electrolyte Genome project facilitated analysis of electrolyte
molecules, with a particular emphasis on calculation of redox potentials and ion pair dissociation energies.
While this effort required many of the features that we describe below, including automated error handling
and elimination of imaginary frequencies, its narrow focus on generally stable electrolyte molecules and their
reduced or oxidized counterparts meant that the workflows developed for the Electrolyte Genome were not
well suited to more complex analysis, for instance the consideration of reactive molecular fragments that
we describe below. We have improved upon the work of the Electrolyte Genome to be able to handle more
challenging electrochemically relevant molecules and a wider range of molecular properties - including bond
dissociation energies - in a high-throughput fashion.

Figure 2: An overview of our automated high-throughput framework, as implemented in pymatgen (blue), custodian (green),

and atomate (yellow) (a); an example calculation (Firework) for geometry optimization (b), indicating the different steps and

the ways in which pymatgen, custodian, and atomate interact. First, the input file is written using default parameters defined

in pymatgen. Then, the geometry optimization calculation is performed using the Q-Chem interface in custodian and an

automated error handler. Finally, once the calculation is finished, the input and output files are parsed using pymatgen, and

the results from the calculation are added to a database.

The basic functionality to generate, process, analyze, and manipulate molecules is included in pymatgen.
We have added functionality to read and write Q-Chem input files and to parse Q-Chem output files. In
addition, we have developed a number of “Sets”, pre-defined collections of input parameters appropriate for
common types of calculations. These Sets, by default, use one of the combinations of density functional
and basis set identified above as appropriate for electrochemical applications (ωB97X-V/def2-TZVPPD); no
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implicit solvent method is used by default, as users may be interested in vacuum calculations. Both PCM
and SMD are supported, though as noted above, for electrochemical applications, SMD is strongly preferred.

The custodian Q-Chem module defines the interface between Q-Chem and our automation framework in
atomate. It can execute arbitrary Q-Chem jobs and can automatically check for, detect, and correct errors in
Q-Chem calculations. One specific type of calculation, which we call a Frequency-Flattening Optimization,
or FFOpt, is also included in custodian. This calculation uses the exact Hessian calculated during a
vibrational frequency analysis to confirm that an optimized structure is a minimum on the PES, rather than
some other stationary point (transition state or higher-order saddle point); if the optimization has not led
to a minimum structure, the exact Hessian informs further optimization, leading to imaginary frequencies
being successfully “flattened”.

The Q-Chem module in atomate combines the Q-Chem input and output modules in pymatgen and
the Q-Chem interface and error handlers in custodian to perform Q-Chem jobs and analyze their data
in a high-throughput fashion. An example calculation, the OptimizeFW, is schematically shown in Figure
2b. First, based on some input parameters, a Q-Chem input file for a geometry optimization calculation is
written. Then, the optimization job is run, with custodian waiting for completion and, upon completion,
checking for errors. If the job completes without errors, then the output is parsed and stored in a database.
Individual Q-Chem calculations, represented in atomate by Fireworks like OptimizeFW, can be combined to
form more complex workflows.

We note that, while our code is presently designed to work only with Q-Chem, the methods that we
describe here could be applied in general to most molecular DFT codes.

Error Correction

Once a calculation, deployed through custodian and atomate, has terminated, its output file is parsed
for errors. If any errors are detected, then a recipe-based error correction process is conducted. Through
extensive experience with DFT calculations, we have developed a series of rules governing which remedies
should be applied to eliminiate particular errors. If possible, the error handler applies the appropriate
remedy, generally by altering the input parameters for the Q-Chem calculation, generating a new input file,
and restarting the calculation. If an error is encountered in the re-started calculation, the same recipe-based
error correction procedure is applied. If the error handler is unable to interpret the error, or if no remedy
has been implemented for a particular error type, the calculation is allowed to fail.

Even if there are several possible remedies, only one remedy is applied at a time. The appropriate remedy
for a given error may be sensitive to the parameters with which the calculation was run. Those parameters,
in turn, may depend on the type and number of errors that the calculation has encountered previously.
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Figure 3: A flowchart for correcting an SCF convergence error. When the error is encountered only a single remedy will be

applied. If there is no possible remedy, or if too many errors have already been encountered, then the error handler will quit,

and the calculation will be allowed to fail.

To illustrate the error-correction process, Figure 3 depicts the logic dictating how a convergence error for
an SCF calculation should be remedied. The first possible remedy involves increasing the number of SCF
cycles allowed; if the number of SCF cycles is lower than a maximum defined by custodian, then the number
of cycles are increased to that maximum. If that remedy cannot be applied, either because it has already
been applied or because the user specified a large number of SCF cycles initially, then the error handler
will attempt to tighten the threshold for neglect of two-electron integrals. Tightening this threshold means
that a greater number of two-electron integrals must be calculated, thereby increasing the computational
cost. However, a tight threshold increases precision, which in our experience can improve SCF convergence
behavior. If the threshold cannot be tightened, then the next remedy is to alter the SCF algorithm. The
geometric direct minimization (GDM) method75 tends to be highly robust at converging SCF calculations
even for challenging molecules. However, because of its higher cost, we generally begin either using the more
rapid Direct Inversion of the Iterative Subspace method (DIIS)76,77 or a combination of the two methods
(DIIS GDM in Q-Chem), using GDM only as a method of last resort. Finally, the SCF settings are altered
such that an initial guess electron density is generated for each SCF calculation, with no knowledge of prior
calculations. Using the previous solution as a starting point for an SCF calculation can improve efficiency,
but it can also fail to capture electronic state reordering in a newly visited region the PES, occasionally
resulting in SCF convergence problems. If none of these remedies can be applied, if all of them have been
applied already, or if the number of errors encountered in total has exceeded a user-defined limit, then the
calculation will fail without further attempt to remedy the error.

In addition to SCF convergence errors, we have implemented remedies for a range of errors that might
arise during a calculation (failing to optimize the molecular geometry, failing to transform from internal to
Cartesian coordinates, failing to calculate the Hessian eigenvalues for a vibrational frequency calculation,
etc.) or while preparing a calculation (failing to parse the input file, failing to access the DFT code executable
file, failure to access a license file, etc.). We continue to actively develop these error handlers, adding new
types of errors that can be corrected and improving the remedies used to correct those errors.
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Frequency Flattening to PES Minima

The goal of geometry optimization is to minimize the energy and to determine the stable molecular geometry.
Generally, a optimizer will seek to reduce the gradient to zero, indicating that a stationary point has been
found. However, convergence to a stationary point does not guarantee convergence to a minimum of the PES;
it is also possible to converge to an nth-order saddle point, where n is the number of imaginary frequencies.
It is important to know when a calculation has converged to a saddle point and how to remedy it. Saddle
points may provide poor approximations to the minimum-energy structure and may present significantly
higher energy than the nearest minimum energy structure. Furthermore, saddle points can exhibit different
bonding behavior or even different connectivity from the minimum, as in the example shown in Figure 4.

Most often, geometry optimization in DFT is conducted using a quasi-Newton-Raphson method; at each
step, the energy and gradient are calculated, and the gradient is used to generate an approximation of the
second derivative (Hessian) matrix.78 While, in some methods, the exact Hessian is calculated at each step,
this is prohibitively expensive in most cases and is therefore inappropriate for high-throughput applications.
Because the Hessian used in quasi-Newton-Raphson optimization is not exact, the optimizer’s knowledge of
the curvature of the PES is limited. This makes it relatively common for geometry optimization algorithms
to converge to saddle points instead of minima, especially for complex reactive fragments.

Figure 4: A frequency-flattening optimization trajectory. From an initial structure, the molecule is optimized first to a saddle

point (in this case, a first-order saddle point, or transition state) as identified by a frequency calculation at the stationary point.

From there, the optimization is restarted with knowledge of the exact Hessian at the saddle point, leading to a true solution,

e.g. a converged minimum of the PES. Along this trajectory, the bonding and geometry of the molecule change considerably.

Here, an artificial PES is used to illustrate the different features of the potential energy landscape.

During an FFOpt calculation, as illustrated in Figure 5, we perform successive optimization calculations
until the structure has converged to a true PES minimum. In order to determine if a converged structure
lies on a PES minimum or a saddle point, we perform a vibrational frequency calculation following each
completed optimization calculation. Frequency calculations serve a dual purpose, simultaneously providing
information about the curvature of the PES (the exact Hessian) and the nature of the converged stationary
point while also providing some thermodynamic information, including the molecular enthalpy and entropy.
If there are no imaginary frequencies, then the structure is a PES minimum, and no further calculations
are needed. If there are imaginary frequencies, then the structure is a PES saddle point. In the subsequent
optimization calculation, we use the exact Hessian reported by the frequency calculation to provide a better
description of the local PES, allowing the optimizer to move away from the saddle point and towards a true
minimum. This procedure can be repeated as many times as needed until a minimum is found.
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Figure 5: The frequency-flattening optimization (FFOpt) procedure. In the initial step, the geometry is optimized and a

vibrational frequency calculation is performed. If there are no imaginary frequencies, or if there is a single imaginary frequency

with very small magnitude, the calculation completes successfully. Otherwise, the Hessian from the vibrational frequency

calculation will be used to inform the next cycle of optimization.

Typically, in order to limit the computational cost of an individual calculation, the user will define some
maximum number of optimization-frequency cycles. Additional cycles will not be pursued if there is only one
imaginary mode with a very small frequency magnitude (|ν| ≤ 15 cm−1) or if the energy has changed by less
than 10−7 Hartree from the previous cycle to the current cycle. Very small, singular imaginary frequencies
are allowed because they may not correspond to true transition states; rather, they could be artifacts of
numerical noise in the frequency calculation. If there is a single imaginary mode with a small frequency
magnitude, the calculation is still considered a success; otherwise, a calculation which terminates with at
least one imaginary frequency is considered a failure.

Case study - solid-electrolyte interphase formation in Li-ion bat-
teries

To demonstrate both the necessity of error correcting and frequency-flattening procedures and the efficacy
of these procedures as we have implemented them, we attempted 12,218 FFOpt calculations on molecules
- primarily reactive fragments - that may be involved in electrolyte decomposition and SEI formation in
Li-ion batteries. The methods used to generate these molecular fragments are outside the scope of this
work and will be discussed in a future publication. All calculations were conducted at the ωB97X-V/def2-
TZVPPD/SMD level of theory, identified above to be appropriate for electrochemical applications. We
employed the measured dielectric constant of a 3:7 ethylene carbonate (EC)/ethyl methyl carbonate (EMC)
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mixture (ε = 18.5),79 a commonly used electrolyte solvent blend, with all other SMD solvent parameters
based on EC.74 The threshold for neglect of two-electron integrals was set to 10−14, the most stringent
threshold allowed in Q-Chem. We note that both the use of this advanced LOT and the elevated threshold
should reduce the number of errors encountered during these calculations.

Data set composition

Some basic information about the calculations included in the case study is provided in Figure 6. The
molecules involved in these calculation include 9 different atomic species (C, H, O, N, F, P, S, Li, and Mg),
three molecular charge states (-1, 0, and +1), and three spin multiplicities (singlet, doublet, and triplet).
While this data set does include some neutral, closed-shell organic molecules, 66.1% (8,082) are charged,
53.8% (6,573) are radical, and 60.7% (7,419) contain at least one coordinated metal. All calculations were
conducted in an SMD implicit solvent environment. Thus, on the whole, these calculations pose a significant
challenge, even considering the LOT used.

Figure 6: Composition of a data set of 12,218 FFOpt calculations at the ωB97X-V/def2-TZVPPD/SMD level of theory, including

the number of calculations that include at least one instance of the elements C, H, O, N, F, P, S, Li, and Mg (a) and with

various charges (b) and spin multiplicities (c). Information about calculation outcomes (d) and the occurrence of various issues

in the test set (e) is also included.

From Figure 6 we note that error correction and frequency flattening were both used frequently while
compiling this data set, signaling their importance for reducing failure rates in high-throughput molecular
DFT. Error correction procedures were used in 9.2% (1,187) of calculations, and frequency flattening was
used in 14.9% (1,816) of calculations. Molecules were found to be unstable in 3.6% (434) of cases. These
molecules dissociated into multiple fragments during geometry optimization, and the fragments continued to
move further apart as the optimization proceeded, implying that the most stable arrangement was infinite
separation. In total, some problem was identified in 27.8% (3,392) of calculations. For reference, in the
dataset generated by the Electrolyte Genome project,74 problems were encountered in only 9.2% of cases,
indicating that the molecules considered here are considerably more challenging to simulate.

13



Calculation failure

Remarkably, in spite of the large number of calculations that encounter errors or converge to saddle points,
only 4.7% (576) of the calculations failed due to any error or other problem. Table 4 lists the various
ways in which calculations in this data set failed. Perhaps surprisingly, calculation failure by errors in the
DFT calculation are relatively uncommon (8.0% of all failures). Within this category, the most common
errors encountered are related to failure to converge SCF calculations, failing to optimize the geometry to
a stationary point in a finite number of optimization steps, and failing to converge the rational function
optimization step during a geometry optimization. Failure to flatten imaginary frequencies causes 16.7% of
all failed calculations. In these cases, the calculation was able to optimize to a saddle point but could not
move from that saddle point to a PES minimum in the user-defined number (here chosen as 10) of frequency-
flattening cycles. The remainder (75.3%) of calculation failures are caused by molecular instability. These
failures imply that the molecule being optimized is inherently unstable at the particular level of theory,
though that does not necessarily mean that they would be unstable in reality. For instance, such molecules
could be stabilized by explicit solvent molecules. If unstable species are removed from consideration, leaving
11,784 calculations, then from an initial failure rate of 25.1% (2,958), we are able to reduce the error rate
through frequency flattening and error correction to just 1.2% (142). We justify this exclusion by noting that
a species that is found to be unstable could never be expected to be optimized successfully at the chosen
LOT.

Table 4: Causes of failure for the case study data set
Failure type Number of failures
Error in DFT calculation 46
Unstable molecule 434
Frequency flattening failure 96
Total 576

Frequency flattening

In this data set, 1,720 calculations used frequency flattening successfully to converge to a PES minimum. In
14.9% (257) of cases, the geometry after the first optimization cycle (at a saddle point) was not isomorphic
to the final optimized geometry; in other words, the bonding changed during frequency flattening. On
average, when a single frequency was flattened (the geometry converged from a first-order saddle point to
a minimum), the electronic energy decreased by 0.271 eV. Even for reasonably small imaginary frequencies
(−50cm−1 < ν < −15cm−1), the electronic energy decreased by 0.093 eV from the saddle point to the
minimum on average. Thus, we can say that frequency flattening can be critically important to obtain
accurate bonding and energies.

Ideally, when an imaginary frequency is encountered, a single frequency-flattening cycle would be sufficient
to move from the saddle point to a true PES minimum. This is indeed often the case, even for higher
order saddle points. However, even when the full Hessian is provided at the beginning of an optimization
calculation, after a number of steps, the calculation’s internal approximate Hessian can rapidly diverge from
reality, causing the optimizer to converge once again to a saddle point (though usually a different one).

Table 5 reports the average number of frequency-flattening cycles required to eliminate all significant
imaginary frequencies (with magnitude |ν| > 15cm−1) for calculations that initially converged to saddle
points of various orders (1-7). Note that we encountered only one sixth-order saddle point and one seventh-
order saddle point that converged to a minimum; these data points are included in Table 5 for completeness
but should not be considered in statistical analysis due to the extremely small sample size. Fifth-order saddle
points, for which there are only three data points in this set, could be excluded on similar grounds.

Table 5: Average number of frequency-flattening cycles required to converge saddle points to minima
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Order Average cycles Data points
1 1.08 (0.01) 1154
2 1.18 (0.03) 402
3 1.35 (0.07) 124
4 1.34 (0.14) 35
5 1.67 (0.67) 3
6 7.00 (N/A) 1
7 3.00 (N/A) 1

Table 5: Values in parentheses are standard errors of the mean.

As might be expected, higher-order saddle points are relatively uncommon. First-order saddle points
are the most common, making up 67.1% of all successful cases of frequency flattening, though second-order
(23.4%) and third-order (7.2%) saddle points also occur with reasonably high frequency. The number of
frequency-flattening cycles required to reach a minimum increases as the order of the saddle point increases;
however, from first-order saddle points to fifth-order saddle points, this average increases by less than one
frequency-flattening cycle. Therefore, even when higher-order saddle points are encountered, the computa-
tional cost of flattening the imaginary frequencies does not increase dramatically.

Discussion

Methods of Reducing Cost

Often in high-throughput molecular DFT studies, a low-cost pre-optimization step will be used to determine
a reasonable guess geometry in order to reduce the overall computational cost of the geometry optimization.
Common tactics for pre-optimization include using a force-field or semi-empirical method or using a lower
LOT within DFT (most commonly using a smaller basis set). For calculations of solvated molecules, many
studies begin by optimizing in vacuum before optimizing in an implicit solvent environment.

As we have shown, the choice of the LOT is important in order to reduce the likelihood of errors and
improving accuracy. For the challenging, electrochemically relevant molecules that we have focused on here,
especially charged, radical, metal-coordinated, or solvated molecules, we have found that pre-optimization
methods may be inappropriate or lead to poor results. Semi-empirical codes are often parameterized ex-
clusively or primarily against relatively stable and well-behaved (neutral and closed-shell) molecules,80,81

making their efficacy for charged and open-shell molecules suspect. It should be noted that there are some
semi-empirical codes that are designed to be utilized with metal-containing systems.82,83

Even using lower LOTs within DFT can be problematic; in general, there is no guarantee that two levels
of theory will produce similar optimized geometries. For calculations of solvated molecules, the elimination
of the implicit solvent method from the LOT will generally affect the optimized structure and may be
especially damaging for calculations involving ions, as the solvent often critically stabilizes such species.
In our benchmark, we did find that in some cases, pre-optimizing in vacuum with a large basis set, when
corrected by an advanced implicit solvent model, can lead to adequate results at relatively low cost. However,
we note that our benchmark did not include the types of reactive fragment species where spurious bonding
changes in vacuum would be more likely and especially detrimental. Further, calculations in vacuum also
appear to be more prone to failure. The majority of the LOTs excluded from the benchmark because the
calculation failures were conducted in vacuum; this remains true even if solvent-corrected LOTs (Vacuum +
SMD, Vacuum + COSMO) are not counted.

To examine the possible utility of low-cost computational methods to pre-optimize, we performed geom-
etry optimization calculations of all 11,642 successful calculations in our case study using the GFN2-xTB
method from Grimme’s group.83 We chose GFN2-xTB because it was designed in part to produce reason-
ably accurate molecular geometries and to model non-covalent interactions such as long-range coordinate
bonding. In addition, GFN2-xTB includes an implicit solvation model, allowing for a closer comparison to
our chosen LOT (ωB97X-V/def2-TZVPPD/SMD). In all geometry optimizations, the initial structure used
for the DFT calculations were also used for the calculations with GFN2-xTB. We used the most stringent
optimization criteria (“extreme”, requiring a maximum energy change of 5.0× 10−8 Ha, maximum gradient
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of 5.0 × 10−5 Ha Å−1). The implicit solvation model in GFN2-xTB is only parameterized for a set of
common solvents; we used acetone, as its dielectric constant (ε = 20.493) is similar to that used in the case
study (ε = 18.5).

Overall, it appears that for this case study, GFN2-xTB did not provide suitable geometries. Of the 11,642
structures, 42 failed to optimize completely, and only 6,286 (54.2%) of the remaining 11,600 calculations
optimized to a structure with the same connectivity as the DFT-optimized structure. As Table 6 shows,
the results are similar regardless of the molecule’s charge state or spin multiplicity, though GFN2-xTB is
somewhat more successful on molecules without metals (65.7%) than for molecules with metals (46.8%). If
a semi-empirical method designed for molecular geometry optimization only captures the correct bonding
behavior in slightly over one-half of molecules, to say nothing of the actual molecular coordinates (bond
lengths, angles, dihedrals, etc.), we suggest that semi-empirical methods should be avoided for data sets
involving molecules with complex electronic structure, such as those described in this work.

Table 6: Performance of GFN2-xTB geometry optimization on the case study data set
Type of Molecule Number of Molecules Successful Optimizations Success Rate (%)
Neutral 3,948 2,340 59.3
Charged 7,652 3,946 51.6
Closed-shell 5,277 2,579 48.9
Radical 6,323 3,707 58.6
Contains Metal 7,076 3,314 46.8
No metal 4,524 2,973 65.7
Overall 11,600 6,286 54.2
Failed to Converge 42 N/A N/A

Table 6: Here, a successful optimization is one that produces a structure that is isomorphic (has the same bonding) as the

DFT-optimized geometry, while an unsuccessful optimization produces a non-isomorphic structure. Radical molecules here

include both doublets and triplets.

Handling Failed Calculations

The error correction procedures that we have described and implemented are based on template responses.
These responses have been designed based on human intuition coupled with extensive experience. While not
reported here, tens of thousands of calculations were used to test a wide variety of possible error correction
schemes, leading to those currently included in custodian. These error handlers are capable of reducing
calculation failure rate from over 25% to under 5% if unstable molecules are included, or just above 1%
if they are excluded. Nonetheless, these error correction procedures do still fail in a non-trivial number of
cases.

Calculation failure can be reflective of problems in the original molecular geometry, in the LOT used, or
in the error correction scheme (if applied). For example, it is possible that the particular error encountered
simply had not been adequately addressed by the error handlers. Without further information about the
specific calculation involved, it may be impossible to know which of these possibilities is true.

Regardless of the root cause, failed calculations necessitate more thorough human intervention. In our case
study, over 500 calculations failed with some error or problem. Analyzing these calculations individually could
take many hours of human time. In some cases, analyzing all failures individually may be truly necessary.
However, depending on the scale of the high-throughput effort, this level of effort may be daunting or even
impossible.

Assuming that our case study is a representative data set for the study of complex and reactive molecules,
unstable geometries provide the most significant challenge for high-throughput DFT. Two options available
to researchers aiming to avoid analysis of every error would be either to perturb the structures that failed to
converge to a minimum (providing a possibly better guess geometry) or to optimize at a different, perhaps
more accurate, level of theory. In either case, the primary goal would be to avoid errors and successfully
optimize the structure. However, even if these modified calculations fail as well, this could provide valuable
additional information about the nature of the failure. Note that, if the molecule is predicted to be unstable
at a high LOT, it is unlikely that any further remedies will be effective.
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The Effect of Explicit Solvent

All calculations conducted here, either as part of the level of theory benchmark study or the case study, have
exclusively relied on implicit solvent models to approximate the effect of a solvent environment. In some
cases, for redox potentials, the effect of explicit solvent is small,84 and an implicit solvent model may be highly
accurate. However, as Cheng et al. pointed out,14 for applications such as multivalent batteries, explicit
solvation may be highly important for accurate redox potential calculations. Aside from redox potentials,
it is well known that the presence of explicit solvent can in some cases significantly effect reaction energy
barriers.85–87

The consideration of explicit solvation for high-throughput calculations is inherently challenging. Not
only do such calculations require some idea of the solvent shell around the solute of interest, but they also
dramatically increase the computational cost, possibly limiting the amount of calculations which can be
conducted or the level of theory that can be used. To the knowledge of the authors, no high-throughput
DFT study has included explicit solvent in all calculations. However, such methods may be capable of
achieving even higher accuracy than those discussed here.

Conclusion

In this work, we developed a methodology for accurate high-throughput molecular DFT calculations with a
low rate of failure. Through a combinatorial benchmark of five hybrid density functionals, four basis sets,
and five implicit solvent models, we identified a group of 10 levels of theory that are appropriate for use
in high-throughput electrochemical studies. We also presented an open-source framework for automated
high-throughput DFT calculations involving robust error correction procedures. Using one of the identified
appropriate levels of theory (ωB97X-V/def2-TZVPPD/SMD) and our automation framework, we conducted
a case study on over 12,000 calculations of reactive, electrochemically relevant molecules. These calculations
fail in only 1.2% of cases, compared to 25.1% without any intervention. While this work has primarily
focused on electrochemistry, these methods could be widely applied to a variety of complex chemistries.
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