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Abstract

It is challenging to evaluate machine learning approaches developed for accelerat-

ing materials search and discovery in a realistic way. Machine learning approaches to

materials stability prediction are typically assessed by their ability to reproduce results

from direct physical modeling, whereas ideally both machine learning and direct phys-

ical modeling should be assessed by their ability to reproduce reality. Additionally,

traditional evaluation metrics do not directly reflect the experience of an experimental

search for unknown compounds in a large candidate phase space, and often result in

overly optimistic assessments. Here, we (i) present a framework that combines density

functional theory and traditional supervised machine learning methods (ML/DFT),

and (ii) introduce the concepts of search completeness – the fraction of discoverable

compounds found relative to the fraction of search space explored – and search ef-

ficiency – the rate of discovery relative to the fraction of search space explored –
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to evaluate it. The ML/DFT framework is an iterative approach to predict stable

chemistries of a fixed crystal structure (here, spinels) that uses DFT to generate a

training set of unstable compounds. The training set of stable compounds is given by

experimentally known spinels. The method is carried out using random forest, LASSO,

and ridge regression to predict as-of-yet undiscovered spinel chemistries. TreeSHAP

analysis is used to determine features that most contribute to stability/instability clas-

sification. While no single feature dominates, several emerge that align with chemical

intuition. To estimate the efficacy of ML/DFT compared to pure DFT, we introduce

a Bayesian description of DFT distribution of energies for stable and unstable spinels.

The Bayesian model enables quantifying the search completeness and search efficiency

of DFT, which is then compared to that of ML/DFT. ML/DFT achieves search com-

pleteness and efficiency on par with pure DFT, despite requiring fewer DFT simulations

(∼300 vs. 14,200). More importantly, by quantitatively assessing ML approaches in

ways that better reflect how they would be used in materials discovery experiments,

we obtain key insights into the challenges that need to be overcome by such methods:

that the small number of stable compounds to be found in a search space orders of

magnitude larger places stringent demands on model accuracy to achieve good search

efficiency. Finally, we report the top candidates of our spinel search, which may be of

interest for synthesis experiments.

Introduction

Prediction and discovery of new materials using computation remains a longstanding chal-

lenge.1–7 The challenge arises in part from the vast compositional and structural phase space

in which materials live.1,8,9 The large phase space, combined with the complex way the ma-

terials energy landscape varies with chemistry and crystal structure,8 makes discovering a

new stable compound akin to finding a needle in a haystack. To date, there is no robust and

scalable method that can achieve the needed accuracy and precision for efficient materials
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discovery.1

For a material to be stable, it should be the lowest energy compound in the chemical phase

space of all its competing compounds. Assessing stability requires knowing the decomposition

reaction energy to all other possible compounds, which in turn requires distinguishing relative

formation energies. Decomposition reaction energies are often shown on a plot of formation

energy vs. composition, as in Figure 1(a) which shows a hypothetical AB binary composition

space. On this plot, the envelope of compounds with lowest formation energy forms the

convex hull. All compounds that appear on the hull are thermodynamically stable. As

Figure 1(a) shows, formation energies can differ from each other by small amounts. Small

uncertainties in formation energies can translate to greater uncertainties in decomposition

reaction energies, and ultimately in the determination of stability. To illustrate, in Figure

1(b) a random shift in formation energy has been drawn from a gaussian distribution centered

at zero with width 0.2 eV/atom and applied to all compounds. For compounds estimated

to be on or close to the convex hull, the uncertainty gives rise to both false negatives and

false positives. By contrast, the uncertainty is less detrimental for compounds estimated to

be far enough above the hull – they are likely to be unstable in spite of the uncertainty.

Improving our ability to predict stability necessitates reducing uncertainties in particular for

compounds that are believed to be on or in proximity to the hull.

The current workhorse for computational prediction of stability is density functional the-

ory (DFT).10,11 Many materials databases12–19 that provide large datasets of DFT-computed

material properties are now available. Depending on the DFT functional and material chem-

istry, estimates of the mean absolute error (MAE) in DFT-computed formation energies lie

between 0.15 – 0.25 eV/atom.14,20 Even when the systematic component to the error is ac-

counted for, the residual MAE is around 0.05 eV/atom,15 which is better but still leaves

the possibility of false positives and false negatives. These limitations of DFT propagate

to materials discovery methods that rely on DFT energies, such as genetic/evolutionary

algorithms,21–23 particle swarm optimization24 and simulated annealing.25
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Figure 1: (a) Schematic illustration of convex hull in a hypothetical AB binary system. (b)
The same hull, now with an 0.2 eV/atom uncertainty applied to formation energies. The
uncertainty not only reshapes the convex hull itself, but also leads to false positives and
negatives. Compounds that appear more than 0.2 eV/atom above the hull (red shading)
have a low probability of producing false negatives. (c) The structure of the normal (Fd3̄m,
left) and proxy inverse (Imma, right) spinel with stoichiometry AB2C4. Gold, brown, and
purple atoms correspond to species A, B, C respectively.
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Distinct from physics-based models, machine learning and data-driven approaches have

recently emerged as avenues for materials discovery.2,26,27 One challenge is that acquiring

large sets of both stable and unstable compounds for model training and evaluation can

be difficult. For stable compounds the Inorganic Crystal Structure Database (ICSD)28–31

contains ∼ 105 known compounds, orders of magnitude smaller than the phase space of

possible compounds. Knowledge of the space of unstable compounds, orders of magnitude

larger in reality, is even more limited. Another challenge lies in evaluating the performance

of ML methods. Since current methods typically seek to reproduce DFT energies, their

performance is evaluated based on their ability to reproduce DFT.2–7 Given DFT’s own

uncertainties, this makes it impossible to compare whether an ML approach can outperform

DFT. It is currently unclear if ML errors relative to DFT are larger or smaller than the

errors of DFT itself. Ideally, both ML and DFT should be assessed based on their ability to

reproduce reality. Additionally, traditional metrics used to evaluate data-based approaches

do not directly represent how completely or efficiently a model can discover the small number

of stable compounds in a search space that is orders of magnitude larger. It is difficult to

generate data sets that properly reflect the search space, and as such data sets may be biased

and result in an overly optimistic assessment of model efficacy.32,33

A recent analysis1 of several supervised learning approaches to materials stability2–7

showed that, despite being able to learn DFT formation energies with reasonable accu-

racy, the methods struggled to reproduce DFT decomposition energies. The difference was

attributed to the observation that DFT-computed energies benefit from a systematic can-

cellation of errors not present in ML, that helps DFT better distinguish relative formation

energies. Only a crystal graph convolutional neural network7 (and also Ref.34) that includes

structural and compositional information could reasonably reproduce DFT stability predic-

tions. Since structure contains information about bonding that is critical to distinguish

between compounds with otherwise similar compositions, it is not surprising that models

that include structure in the material representation outperform those that don’t.
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These findings invite two questions: what will it take for ML to perform as well as or

better than pure DFT, as measured under conditions that represent an true experimental

search for new materials?, and how can the determination even be made? Based on the

observations above, there are several aspects to achieve accelerated materials discovery using

machine learning. (i) Although challenging, it would be most beneficial to improve predictive

capability for the stability of compounds that according to DFT are on or close to the

convex hull. (ii) Demonstrating improvements over DFT is challenging, since DFT benefits

from a cancellation of errors in formation energies not present in ML. (iii) Demonstrating

improvements over DFT will likely require structural as well as chemical representations

of materials. (iv) An approach to evaluating performance relative to reality, rather than

relative to DFT, is needed.

To address these considerations, in this work we design a framework that combines DFT

and ML for materials stability prediction (called ML/DFT), and critically assess whether it

is possible for this framework to outperform pure DFT in a hypothetical materials search.

We limit our search space to the prediction of only one crystal structure, spinel compounds,

to obviate the need to provide structural information. Spinels serve as a good test case

due to the large number of known stable compounds for model training. They are known to

exhibit a range of properties, including magnetism,35 superconductivity,36 ion transport37–42

and transparent conduction.43,44 In our approach, DFT is only used where its uncertainties

are least detrimental: to generate the dataset of unstable compounds. We label candidate

compounds as unstable when they are found in DFT to lie > 0.2 eV/atom above the hull

(as in Figure 1(b)), where the likelihood of false negatives is small.

To assess the performance of our approach in a realistic way, we introduce the concepts

of search completeness and search efficiency. Search completeness measures the proportion

of discoverable compounds found as a function of the fraction of search space explored.

Search efficiency measures the discovery rate, also as a function of the fraction of search

space explored. We develop a Bayesian model that describes the distribution of stable and
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unstable spinels’ distance to the convex hull in DFT. This model allows us to infer true

distributions, compared to DFT, and assess the search completeness and search efficiency

of a hypothetical materials search for undiscovered spinels using pure DFT and ML/DFT.

We find that within the reduced structural space, the search completeness and efficiency of

ML/DFT is on par with that of pure DFT, due to its ability to identify the few undiscovered

stable compounds within a large data set of mostly unstable compounds. However, ML/DFT

has the advantage of achieving this efficiency with substantially fewer DFT simulations.

Therefore, the approach may be an effective way to prioritize synthesis experiments with

a limited amount of DFT data. By highlighting the importance of quantitatively assessing

ML approaches in ways that better reflect how they would be used in materials discovery,

we obtain key insights into the challenges that will need to be overcome by such methods.

Namely, the small number of discoverable stable compounds in a search space that is orders

of magnitude larger places stringent demands on accuracy to achieve a high search efficiency.

Methods

Crystal Structure

Spinels have chemical formula AB2C4, and crystallize in a cubic structure, illustrated in

Figure 1(c). The anions C are arranged in a cubic closed-packed arrangement and the

cations A and B occupy some or all of the octahedral or tetrahedral sites. In the prototype

spinels (the ‘2-3’ spinels considered here), the formal charges of cations A and B are +2

and +3 respectively, although other valences are possible. For 2-3 normal spinels, the A2+

cations occupy tetrahedral sites and the B3+ cations occupy octahedral sites. In the 2-3

inverse spinel, all A2+ and half of the B3+ occupy octahedral sites, while the other half

of the B3+ occupy tetrahedral sites. In this case, the octahedral sites exhibit a disordered

arrangement of two elements. Intermediate structures between normal and inverse are also

possible. We consider the possibility of both normal and inverse spinels. When simulating
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Figure 2: The sequential learning procedure for exploring the spinel phase space. Machine
learning is used to predict undiscovered spinels using a training set consisting of experi-
mentally known stable compounds and DFT-labeled unstable compounds. These candidates
are relaxed in DFT and their distance from the convex hull calculated. Compounds with a
distance greater than 0.2 eV/atom are labeled unstable and added to the training set. The
procedure is repeated until performance metrics stabilize and the predicted top candidates
become fixed.
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the inverse spinel in DFT, we utilized a universal ordering of the cations that exhibits the

the lowest electrostatic energy.45

Energetic Stability Calculations

Stability is governed by the Gibbs formation energy ∆Gf and Gibbs decomposition energy

∆Gd. When DFT is used, we compute the formation enthalpy ∆Hf and the decomposition

enthalpy ∆Hd, respectively, and therefore neglect temperature/entropy effects. This does

not impact the ML/DFT approach, since the stable set of compounds used for testing and

training is given by the experimentally known spinels and is independent of DFT. DFT is used

to generate the unstable set, but our criterion ∆Hd > 0.2 eV/atom to label a compound

unstable is sufficient to ensure actual instability. For instance, according to our data set

only four known stable spinels out of 200 have a DFT-computed ∆Hd > 0.2 eV/atom. If

a candidate compound’s DFT-computed distance from the hull is ≤ 0.2 eV/atom, it is left

unlabeled. Here onwards, in our notation, the symbol ∆Hd always refers to DFT-computed

distance to hull (in contrast to actual or experimental values).

Combined DFT/ML Iterative Approach

The combined DFT/ML framework operates cyclically and is described in Figure 2. The

initial training set consisted of both stable and unstable compounds. The set of stable spinels

consisted of the ∼ 200 known stable spinels reported in the ICSD. The initial training set

also contained 40 DFT-labeled unstable compounds. These were generated by elemental

substitution into the AB2C4 spinel normal and inverse structures. The C anions are restricted

to the chalcogens {O, S, Se, Te}, and A and B cations were selected from elements that have

known oxidation states of 2+ and 3+, respectively. This results in a search space of ∼ 14,200

candidate spinels (200 of which are the known stable spinels). Utilizing archetype normal and

inverse spinel structures, we populate the A, B and C sites with the new potential elements

selected at random, and use DFT to compute ∆Hd. The first forty candidates found to have
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∆Hd > 0.2 eV/atom were included in the unstable training set.

Using this initial training set, three traditional supervised machine learning algorithms

– LASSO, ridge regression, and random forest – were used to predict new candidate spinels,

ranked according to their likelihood of stability. If any of the top twenty predicted candidates

were found to exist in the literature (not all reported spinels are present in the ICSD),

they were added to the dataset as stable compounds, and the step was repeated. The

union of the top fifty new candidates from each learning approach were then simulated in

DFT and classified according to the ∆Hd > 0.2 eV/atom cutoff criterion. Any predicted

unstable spinels were added to the dataset, and the procedure was repeated until both

model performance and the new compounds predicted become stabilized. With each cycle,

the training set therefore grows. It is updated with new unstable compounds, which are the

ones that the model had assigned a high probability of stability to in the previous round.

In other words, for each subsequent round the training set contains new information on

compounds that the model mis-classified in the prior round. We also note that according

our criterion, compounds with 0 < ∆Hd < 0.2 eV/atom are not used for training or testing

in our ML/DFT approach, since they remain unlabeled.

Machine Learning Approach and Features

All three machine learning approaches (LASSO, ridge regression, and random forest) utilized

the scikit-learn python library.46,47

The random forest classifier uses a set of decision trees (1000 tree estimators in our case)

to determine the classification of a sample input. Each decision tree divides a training set

into two groups at each node, based on one of the features and a splitting threshold. Splitting

features are chosen from a random subset of sample features and splitting thresholds and

optimized to produce the best class split utilizing gini impurity.

The LASSO and ridge regression classifiers are logistic regressions regularized, respec-

tively, with the L1-norm and L2-norm of their constituent weighting parameters. Using an
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appropriate regularization parameter λ, one can reduce overfitting, while maximizing model

applicability. We use k-fold cross validation, and one of the folds is held out as a validation

set and the rest are optimized for a set of penalty constants λ. The error is then determined

by predicting classifications for each sample in the validation set and comparing the model

prediction to the true classification. This is repeated with a different fold withheld as the

validation set, for all folds, and the accuracy of the model is evaluated by averaging over all

folds. The optimal value of λ is the one that yields the highest accuracy.

We used 10-fold cross validation for all regression models, and fit and tested each one

hundred times utilizing a 90/10 train/test split to determine statistical metrics for each. To

account for the asymmetry in the number of unstable and stable labels, in each iteration

we oversampled the dataset so that there were equal amounts of stable and unstable labels.

The training set was mean–centered and variance–normalized. After cross-validation, the

final model was refit with all of the training data for making predictions. An example of

predictions for part of a test set for the random forest model is shown in Table 1.

Table 1: Example predictions on a test set from the random forest model.

Predicted Class True Class

FeCr2O4 Stable Stable
RhCo2O4 Stable Stable
SnAl2Te4 Unstable Unstable
MgHo2Se4 Unstable Stable
TiV2Te4 Unstable Unstable
ClTc2Te4 Unstable Unstable
CuCr2O4 Stable Stable
MgEr2Se4 Unstable Stable
MgTm2Se4 Unstable Stable
MnCo2O4 Stable Stable

The features used were the experimental atomic mass, atomic radius, Pauling electroneg-

ativity, elemental row and elemental group for each species present. Products and quotients

of the atomic mass, atomic radius and Pauling electronegativity for all combinations of the

constituent atoms were added to account for interactions between attributes. Feature engi-
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neering of existing attributes in this way has been previously used when applying machine

learning to materials.48,49

Density Functional Theory Simulation Parameters

DFT calculations were carried out using VASP.50–53 We used the PBE+U approximation,54

with U applied to transition metal elements, and PAW pseudopotentials.55,56 The parame-

ter U was chosen to match settings used in Materials Project12 and the resulting energies

were adjusted in accordance with Material Project’s settings12,57–59 to make total energies

comparable. An energy cutoff of 500 eV and a 4x4x4 Monkhorst-Pack mesh was used for

all calculations, with ferromagnetic starting spin configurations. We did not check antifer-

romagnetic configurations. Typically antiferromagnetic orderings exhibit energy differences

of around 0.04–0.08 eV/atom relative to the ferromagnetic configuration.60,61 Since we only

use DFT to classify compounds as unstable, neglecting antiferromagnetic configurations has

the effect of only slightly blurring the threshold cutoff of ∆Hd > 0.2 eV cutoff, and is not

expected to substantially alter our results. All candidate spinels were fully relaxed (lat-

tice constants and internal degrees of freedom) for both the normal and the proxy inverse

configuration.

Results and Discussion

Model Performance – Traditional Metrics

Traditional metrics – accuracy, precision, and recall – were recorded for each cycle. These

metrics are defined as

Accuracy = TP+TN
P+N

(1)

Precision = TP
TP+FP

(2)

Recall = TP
TP+FN

(3)
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where TP is the number of correctly labeled stable compounds, TN is the number of

correctly-labeled unstable compounds, and P and N are respectively the total number of

stable and unstable compounds in the entire population. The accuracy is the overall fraction

of spinels correctly classified, precision is the likelihood that a compound predicted to be

stable is in fact stable, and recall is the fraction of truly stable spinels predicted to be stable.

The results for each metric over seven cycles are plotted in Figure 3(a-c), with final

values displayed in Table 2. The random forest classifier outperforms both LASSO and ridge

regression across all model metrics. Additionally, all three metrics drop somewhat as the

number of cycles increases. This is likely due to the increasing complexity of the data set,

since with each cycle a larger number of unstable compounds are are present. For instance,

initially the training/testing set contains only 40 unstable compounds, but by the end of the

seven rounds there are ∼160 compounds labeled unstable using our cutoff criterion.

Figure 3(d) shows the precision–recall curves for all three classifiers at the end of the

cycles. A precision–recall curve is an effective way to measure success of prediction when the

classes are imbalanced. It highlights the tradeoff between high precision (low false positive

rate, i.e. that materials predicted to be stable are in fact stable) and high recall (low false

negative rate, i.e. ability to identify all discoverable compounds) as a threshold (likelihood

of stability) is varied. It illustrates how well-separated the stable and unstable classes are

with respect to a predicted score, here the likliehood of stability. For RF/DFT the plots are

made by adjusting the threshold score required to classify an outcome as stable and plotting

the resulting precisions and recalls. A high area under the curve represents both high recall

and high precision, indicating confidence that both a compound predicted to be stable is

actually stable and that actually stable compounds are not missed. All three classifiers show

good precision–recall here, but we will later show how this changes when searching a more

realistic space.

Accuracy is often used as a primary means of quantifying model performance, but it

may not give a good representation of a model when working with asymmetric test sets
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Figure 3: (a) Accuracy, (b) precision, (c) recall and (d) precision-recall for random forest
(blue), LASSO (red) and ridge regression (green) across seven rounds of the sequential
learning procedure. The solid lines refer to the scores for each method. In (b), the dashed
lines indicate the improvement of the precision over that of a random classifier. This shows
that although the precision drops slightly over the cycles, the improvement grows. (d)
Precision–recall curve.
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Table 2: Results for the final round of the sequential learning process for accuracy, recall,
precision and improvement over a random classifier for precision as defined in Equations
(1–3). The random forest classifier outperforms both LASSO and ridge regression.

Random Forest LASSO Ridge Regression

Accuracy 0.87± 0.06 0.77± 0.07 0.78± 0.07
Recall 0.90± 0.06 0.84± 0.09 0.85± 0.09
Precision 0.87± 0.07 0.77± 0.09 0.77± 0.09
Improvement 0.31± 0.11 0.22± 0.12 0.23± 0.12

(the large difference in the number of stable vs. unstable compounds) since a model that

favors classification of the majority class will show high accuracy but low precision. When

recommending experimental synthesis of a candidate new compound, precision is perhaps

more important as certainty that a predicted stable compound is truly stable is desirable.

Recall is also valuable since it reflects the capability to exhaustively search a phase space

and be sure that a stable compound is not missed. It is useful to compare the precision

of the model to that of a random classifier, since a random classifier that labels candidates

as stable or unstable 50% the of the time would show a precision equal to the fraction of

stable samples in the test data. For asymmetric test sets like ours, comparison to random

classification can be used as a benchmark for efficacy. The dashed lines in Figure 3(b)

indicates the improvement in precision between the model scores and those of a random

classifier. It shows that while the model precision drops somewhat over the seven cycles, the

improvement of the model over random selection grows.

Before comparing the efficacy of ML/DFT to pure DFT, some aspects of the results of

the model and an analysis of the feature space is presented.

Comparison of Random Forest, Ridge, and LASSO

Some of the reasons for the improved metrics for random forest compared to both LASSO and

ridge regression can be understood from Figure 4. Figure 4 shows histograms of the scores

for candidate spinels for each method, further categorized by the anion (O,S,Se,Te) present.

A score near one indicates that the method attributes a greater likelihood of stability. All
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Figure 4: Histogram of predicted stability probabilities by C-anion chalcogen for (a) random
forest, (b) ridge regression and (c) LASSO. Random forest shows more selectivity, with fewer
high scoring candidates and disfavoring compounds with tellurium and selenium.

16



three methods show some degree of selectivity with a smaller proportion of compounds with

high scores than with low scores. However, random forest prediction frequencies appear to

exponentially decay with score (the histograms appear linear on a logarithmic plot). On the

other hand ridge regression and LASSO show a spike towards the lowest scores, a rapid drop,

and then a relatively flat profile for scores >∼ 0.3. The comparatively large proportion of

high scores for these latter methods suggests that they may be overestimating the likelihood

of stability. A possible reason may be that the sets of stable and unstable spinels cannot be

well separated in feature space for linear methods (there may not be a hyperplane that can

easily delineate the two classes).

Also from Figure 4 it can be seen that random forest disfavors both selenium and tel-

lurium based spinels, whereas ridge regression and LASSO predict all four anions with high

probability. This again may arise if the anions cannot be separated in feature-space using

the linear methods. Ultimately, it is possible that random forest is capturing the reality that

there are fewer stable (Se,Te) spinel compounds than (O,S). Alternatively, random forest

may be responding to a bias in the dataset since there are at present fewer known stable Te

and Se based spinels.

The relative selectivity of random forest is further illustrated in Figure 5, where the ma-

chine learning scores of each candidate compound are plotted. Each data point represents

a candidate, and the x and y axis the candidate’s score according to random forest and

LASSO, respectively. The color bar shows the score according to ridge regression. There is

clear correlation between the two linear techniques, indicating that the choice of regulariza-

tion penalty did not have much of an effect. Additionally, it is notable that compounds that

have high probability of stability according to random forest also have high probability of

stability in both LASSO and Ridge, whereas the converse does not hold. In the Supporting

Information, we provide a list of the top candidates according to each of the three methods

at the end of the seven iterative cycles, in case they are of interest for potential synthesis

experiments.
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Figure 5: Scatter plot of the results of the sequential learning procedure after seven itera-
tions. The model scores for each candidate compound are plotted for LASSO vs. random
forest and colored according to the ridge regression score. The linear models are highly
correlated suggesting the choice of penalty term did not have an appreciable effect on the
outcome. However, there are some disparities between the linear models and random forest.

Given its superior performance, our results suggest random forest is the best classifier for

predicting new compounds. Consequently, we choose to focus our attention on this method

for further analysis and refer to it as RF/DFT.

Feature Importance

A challenge when applying machine learning to materials discovery is to determine which

features are most important, and whether any physical significance can be ascribed to them.

To determine the contribution of the different features to the model output, we conducted

SHAP (SHapley Additive exPlanations) analysis on the random forest model, using the

TreeSHAP code.62,63 SHAP provides a way to determine how important each feature is (its

contribution) within the full feature set to the predicted outcome. For each feature xi in

full set x, its SHAP value φi is determined from the difference in the value v(S) of a subset

of features S that does not contain xi and the corresponding value v(S ∪ xi) of the subset
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S with feature xi added. The value function v maps subsets S to the real numbers, and

describes how effective a model based on the combination of features in S is. Formally the

Shapley value for feature xi given value function v is

φi(v) =
!

S⊆{x1,...xp}\{xi}

|S|! (p− |S|−1)!

p!
(v(S ∪ xi)− v(S)) (4)

where p is the total number of features. The sum extends over all subsets S of the full

feature set not containing xi. The summation can be understood by imagining that the

complete feature set is formed one feature at a time, with feature xi assigned a contribution

v(S∪xi)−v(S), and then for each feature we average over the possible different permutations

in which the feature set can be formed.

Here, for value function v we use the probability of stability itself. Then the SHAP values

define an additive attribution model

g(z′) = φ0 +
M!

j=1

φjz
′
j (5)

where φ0 is an intercept, M is the number of features in the full feature set, and vector z′

is a possible ‘coalition’ (subset) of features. In coalition z′, element z′j = 1 when feature j is

present and z′j = 0 when it is not. For the full set of features where z′ = {1}, then g(z′ ={1})

is simply the probability of stability, and SHAP value φi describes the extent to which feature

i contributed to that probability. Large positive (negative) values of φi indicate that feature

i contributed to the determination of stability (instability). Defined this way, SHAP has

properties of local accuracy, consistency, and missingness. Local accuracy allows for a clear

explanation of how features combine to form the output, which makes interpretation of

attributions easier. Consistency ensures that if one model relies on a feature more than

another model, then the feature’s attribution will be greater. Missingness ensures that

missing features have no attribution.

Using SHAP, for each candidate spinel and within each cycle, we can compare the attribu-
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Figure 6: (a) The mean absolute SHAP calculated from the unlabeled portion of the dataset
on the random forest model, for each iteration. The top 22 features in the final round are
labeled. (b) Histogram of the mean absolute SHAP values for the unlabeled portion of the
dataset with the top 22 features highlighted in green and the top three features labeled. (Xr:
row, Xm: mass, Xe: electronegativity where X is an element in AB2C4)
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tion of each feature to the determination of stability. These feature attributions are plotted

in Figure 6(a), where each line represents the mean absolute SHAP value for a particular

feature. It is clear from the plot that no single feature dominates the attribution. Rather,

the output is dependent on a number of input features, rather than a few key inputs. More-

over, the SHAP values and their relative ordering vary from round to round. The addition

of new data to the training set after each round causes a reorganization. For instance, the

addition of new data causes the feature Ae∗Br (electronegativity of atom A times the radius

of atom B) to be the most important by the final round, while feature Ar/Br (radius of

atom A divided by radius of atom B) declines in importance. In spite of the reorganization

from one round to the next, the set of 15-20 features with the largest attribution become

reasonably consistent by the end of the cycles, suggesting that these features are important

factors rather than the consequence of variance error from different training sets.

Figure 6(b) contains a histogram of the mean absolute SHAP values in the final round.

We examined the top 22 features (highlighted in green) for further analysis, which are also

colored and labeled in Figure 6(a). These top attributions are almost all from interacting

features, which supports the utility of using feature engineering in this instance.

In order to determine how these features interact with the outcome, Figure 7 plots the

SHAP values for the predictions of the random forest classifier in the final round of calcu-

lations for the top 22 features. Each point represents the SHAP value for a feature corre-

sponding to a particular candidate spinel. The points are colorized in accordance with their

feature value and jittering is added to better demonstrate the density of instances. While it

can be difficult to interpret the significance of some of these interacting features, some values

stand out. For instance, it can be seen that lower values of Be/Ce, i.e. lower electronega-

tivity of the B-site cation relative to the anion is preferable for stability, which is expected

chemically. By contrast, larger values of the B-site cation to anion electronegativity result

in predictions of instability. The effect of Ar/Br is also interesting as it appears that very

low and very high values signify instability, but intermediate values contribute to stability.
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Figure 7: The SHAP value for each predicted compound derived from random forest from the
final round. Only the top 22 features are shown. The location along the x-axis corresponds
to the feature’s SHAP value for a particular candidate. The color bar corresponds to the
feature value and jittering is added along the y-axis to illustrate candidate density. (Xr:
row, Xm: mass, Xe: electronegativity where X is an element in AB2C4)
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Ratios of atomic radii have long been used as a descriptor for structural stability, such as

the Goldschmidt factor for ABO3 chemistries.64 The atomic radius of the A cation and the

electronegativity of the B cation appear to play a big factor in the predictions as both the

individual attribute and its square appear in the top attributions. In this case, low values

of the electronegativity and average values of the atomic radius of the respective cations

correlates to greater probability of stability.

Search Completeness and Search Efficiency of Materials Discovery

via RF/DFT and DFT

Figure 8: Histogram of the distance to convex hull and their random forest predicted stability
for known stable compounds across all cross-validated test sets, for a bin size of 0.01 eV.
Random forest performs well throughout and identifies stable compounds even when their
DFT distance to hull is large; the compounds predicted as unstable by random forest are
distributed evenly amongst all data points and appear not to be correlated to DFT distance
to hull.

We turn to the question of how to compare the effectiveness of RF/DFT to pure DFT

when searching for new materials. The question of interest is “which approach should an

experimentalist use to guide their search for new materials?”. The RF/DFT approach pre-

sented here is distinct from prior ML frameworks, most of which2–7 are predicated on learn-
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ing DFT formation energies across a variety of materials. While it has been demonstrated

that DFT formation energies can be learned with reasonable accuracy, DFT decomposition

energies typically are not as well–reproduced.1 Also since these methods are assessed by

comparison to DFT, there is no way to determine if they can outperform DFT.

Here, rather than learning a formation enthalpy we trained an RF model to make a binary

classification of stable or unstable. The assessment of RF/DFT in Figure 3 shows good

performance on traditional metrics. However, the training and testing sets used are different

from what would be encountered when actually searching through chemical phase space for

new spinels. First, they contain a roughly equal number of stable and unstable compounds.

When trying to discover a new composition, reality presents a much more challenging search

problem: there are a relatively small number of stable compounds contained within a large,

mostly unstable search space. An effective approach should select the few stable compounds

from a set that is several orders of magnitude larger. Second, based on how our approach

is formulated, candidate compounds for which 0 ≤ ∆Hd ≤ 0.2 eV/atom (perhaps the more

uncertain compounds) are not included in testing or training. When assessing both ML/DFT

and DFT, it is important to assess the models based on an unbiased sample. In the following

discussion, we consider a hypothetical search for new spinels based on a phase space that

more closely reflects this reality.

Additionally, model efficacy should be measured in a way that reflects the outcomes of

a series of synthesis experiments on candidate compounds. In a realistic scenario, candidate

materials would be rank ordered by their likelihood of stability, and synthesis experiments

would be carried out starting from the highest ranked candidate downwards. To an experi-

mentalist, the important quantities may be (i) how many new compounds will be discovered,

if 10, 100, or 1000 synthesis experiments are carried out? and (ii) how many experiments

need to be done to ensure that, say 50%, 75%, or 99% of the discoverable compounds in

the search space are found? These questions can be answered by assessing search complete-

ness and search efficiency. Search completeness measures the proportion of discoverable
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compounds found as a function of the fraction of search space explored. It reflects how

exhaustively a search space needs to be explored to identify specified proportions of all miss-

ing compounds. Search efficiency measures the discovery rate. It indicates the number of

compounds found per experiment carried out, also as a function of the fraction of search

space explored. Because search efficiency and search completeness reflect the actual experi-

ence and outcomes of a hypothetical search, they are useful measures of model performance.

However, existing analyses of DFT or ML have rarely (if ever) attempted to evaluate these.

Bayesian Model of DFT Distribution of Distance to Hull for Stable and Unstable

Compounds

Comparing the search completeness and efficiency of DFT and RF/DFT is complicated by

the fact that knowledge of the ‘ground truth’, i.e. the true sets of stable and unstable AB2C4

spinels, is unknown. The lack of this knowledge makes it impossible to strictly assess either

method. To carry out the analysis, a model for the distribution of DFT ∆Hd for both true

stable and unstable spinels is needed. We present a Bayesian model that estimates these

distributions. A DFT-based classification scheme can be tested on the distributions, and its

search completeness and efficiency compared to that of ML/DFT. The Bayesian model is

based on that of Narayan et al. developed while investigating transition metal sulfides and

selenides.65 The main quantity of interest is the probability that a spinel is stable given that

its DFT-computed distance to hull ∆Hd lies within a designated cutoff #. It is given by

P (S|∆Hd ≤ #) =
P (∆Hd ≤ #|S)P (S)

P (∆Hd ≤ #)
. (6)

This quantity can also be interpreted as the precision of a DFT-based classification scheme

at a particular value of #, if all compounds with ∆Hd ≤ # are classified as stable.

To get an idea of the distribution of ∆Hd for stable spinels, Figure 8 shows the set of

experimentally known spinels for which we have DFT calculations (138 out of 200 total)
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plotted according to their DFT distance to hull ∆Hd. The distribution peaks near zero,

and then decays with increasing distance to hull. Figure 8 shows that if DFT results were

interpreted ‘as-is’, only the compounds on the hull would be classified as stable and many

stable compounds would be missed (false negatives). Of the 138 spinels, 83 are on the hull –

yielding an estimated recall of ≈ 0.60. Additionally, there are 32 additional spinels predicted

to be on the hull, that are not experimentally known. Assuming these are false positives,

this yields DFT a precision of ≈ 0.72 for compounds on the hull. The estimated precision

and recall here will be used as boundary conditions for our Bayesian model for # → 0.

We also note that only 4 of the 138 compounds exhibit DFT ∆Hd > 0.2 eV/atom,

supporting the criterion adopted in our ML/DFT approach that compounds that have DFT

∆Hd > 0.2 be labeled as unstable. The data points in Figure 8 have also been colored based

on their classification according to random forest. Random forest consistently labels the

stable compounds as stable, even for those compounds that according to DFT lie farther

from the convex hull. One observation is that large DFT ∆Hd do not necessarily result in

a classification of unstable within random forest. Rather, of the stable compounds that are

(incorrectly) labeled as unstable, they appear to be distributed largely in proportion to the

density of compounds at each given ∆Hd.

To obtain P (S|∆Hd ≤ #) in Equation (6), we approximate the quantities on the right

hand side using the dataset generated by our study. This model and the resulting distribu-

tions are therefore applicable to the space of compounds considered: candidate 2–3 spinels

AB2C4 where A,B are elements with known oxidation states of +2,+3 respectively and C

is restricted to O, S, Se, and Te. From pure elemental substitutions, this generates a set of

∼14,200 total possible compounds of which 200 are the known stable spinels.

In Equation (6), the distribution P (S)/P (∆Hd ≤ #) represents the total number of stable

spinels divided by the total number of spinels with ∆Hd ≤ #. It is approximated by

P (S)

P (∆Hd ≤ #)
≈ NS

N(∆Hd ≤ #)
(7)
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where NS is the total number of stable compounds in the dataset and N(∆Hd ≤ #) is the

total number of compounds within # of the hull. Moreover, N(∆Hd ≤ #) = NS ∗ P (∆Hd ≤

#|S) + NU ∗ P (∆Hd ≤ #|U), where NU is the number of unstable compounds. Assuming

the number of undiscovered experimentally stable spinels in our dataset is small, we can

approximate NS as the number of stable compounds in our dataset (200) and NU as all

spinels in our dataset not labeled stable (∼14,000). P (∆Hd < #|S) and P (∆Hd < #|U)

represent, respectively, the probability of finding a stable or unstable compound with hull

distance ∆Hd < #.

These two distributions are estimated from histograms of our DFT computed data, the

blue and red bars shown in Figure 9. The logspline package in the statistical computing

language R66 was employed to estimate their respective distributions, which fits a spline

function to the log-density of the inputs. This method is effective for bounded data (since

∆Hd ≮ 0) and utilizes a Bayesian information criterion to determine the number of knots

in the spline. The resulting distributions generated by the logspline estimator are shown

in black. The splines were fitted to our DFT data, ensuring that boundary conditions at

∆Hd = 0 are matched (precision and recall are fixed to ≈ 0.72 and ≈ 0.60). The stable

distribution is clustered around ∆Hd = 0 and rapidly decaying, showing that given a stable

compound, its most probable ∆Hd is zero. The unstable distribution resembles a lognormal

distribution. It initially increases and peaks around ∆Hd ≈ 0.2 eV/atom, and then decreases

(the dip around ∆Hd = 0.3 eV/atom is likely an artifact). The initial increase reflects that,

given that a compound is unstable, the most probable ∆Hd is not on the hull but lies

some distance above it. The subsequent decrease might reflect our selection criteria for the

compounds under consideration (i.e. AB2C4 compounds where A,B element have known

oxidation states of +2,+3), as such compounds are not so unreasonable so their ∆Hd lies

within a finite distance of the hull.

Figure 10(a) plots P (S|∆Hd ≤ #) for DFT from Equation (6), equivalent to the precision

of the DFT classifier. As expected, the precision is highest close to or on the convex hull,
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Figure 9: Distribution of DFT distance to hull ∆Hd for (a) stable and (b) unstable spinels,
with log-spline smoothing superimposed. Fitted curves are normalized to integrate to one.
The stable spinel compounds primarily group around the convex hull, whereas unstable
compounds are offset and exhibit a greater variance.
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≈ 0.72 at # = 0. As cutoff # increases (blue line in Figure 10(a)), DFT precision drops and

lies below 0.1 for cutoff # = 0.2 eV/atom.

Results for RF/DFT and DFT

We can now evaluate the search completeness and efficiency of ML/DFT and DFT based on

the Bayesian prediction of the DFT distributions of ∆Hd for stable and unstable compounds.

We use the Bayesian model for P (S|∆Hd ≤ #), and define a DFT classification scheme in

which a compound is classified as stable if ∆Hd ≤ # and unstable if ∆Hd > #.

Figure 10: (a) Precision of DFT model as a function of energy cutoff #. (b) Experiment
efficiency for each approach is shown by plotting the fraction of discoverable compounds
found (recall) against the fraction of the phase space explored. (c) The precision-recall
curves for DFT and the RF/DFT models. The random forest model in (b) and (c) have
been averaged across 100 tests using LOESS regression. (d) The distribution of stable and
unstable compounds with respect to their random forest score (bin size 0.01 eV).

In order to also assess ML/DFT on an unbiased dataset that more closely matches the
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Bayesian model that DFT is evaluated on, we fitted another random forest model. The

training set is similar to before and is comprised of 75% of the stable spinels and all ∼160

unstable labeled spinels as classified by the∆Hd > 0.2 eV/atom energy cutoff. The remaining

25% of the stable spinels (50 in total) were withheld for testing. The testing set also included

all other compounds not found in the training set, which were labeled unstable based on the

assumption that there are few stable spinels that remain to be discovered. This results in

a test set that contains 50 stable compounds to be discovered mixed in with a set of ∼

13900 unstable compounds. This better reflects the inherent challenge for any approach to

materials prediction: there are typically a few undiscovered compounds in a large search

space (the ‘needle in a haystack’). An effective method should cleanly separate the few

stable compounds from the unstable ones.

To begin we compare the precision–recall curves of DFT and RF/DFT in Figure 10(b).

The threshold varied is the the probability of stability for RF/DFT as before, and cutoff

parameter # for DFT. This was done on each of the 100 test sets and the resulting combined

data was smoothed using LOESS regression. To perform the LOESS regression, we utilized

the R package fANCOVA, implementing generalized cross validation in order to determine

the bandwidth.67 For the DFT model, # was varied and the resulting precisions and recalls

plotted. Here, RF/DFT and DFT show qualitatively different behaviors. In DFT (area under

curve: 0.57), the horizontal dotted line is associated with the cluster of stable compounds

with ∆Hd = 0, where precision and recall are fixed to ≈ 0.72 and ≈ 0.60. In DFT as

threshold # increases, recall further increases (fewer false negatives) as more of the stable

instances are classified correctly, but the precision decreases too as more unstable instances

are incorrectly classified as stable (more false positives). For RF/DFT (AUC: 0.25), initially

the precision exceeds that of the DFT-model, demonstrating a high selection capability and

low false positive rate amongst the highest scoring candidates. However, the precision very

rapidly decreases as the threshold score is decreased – showing that unstable compounds

quickly become mixed in to the stable classification. The difference between the precision–
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recall curves in Figure 3(d) and Figure 10(b) shows the sensitivity of the model performance

to the data set, and highlights the importance of using data sets that better reflect reality.

Figure 10(c) shows the search completeness and the inset shows the search efficiency for

DFT and RF/DFT. The vertical axis – the fraction of discoverable compounds discovered

– is equivalent to the model recall. Ideally, the recall would rise rapidly with increased

testing, limiting the need for excess experimentation. For the DFT model, we assume that

experiments are carried out in order of ∆Hd, smallest to largest. For RF/DFT, as before,

the tests were done 100 times with random splitting of the stable data to gather statistics.

The ML/DFT model is LOESS–regressed across the 100 tests. The search completeness of

RF/DFT is on par with DFT with the two curves close to each other. For instance, the

RF/DFT approach is able to discover half of the discoverable compounds by scanning only

≈ 1.25% of the search space, similar to DFT. The inset shows the search efficiency, which is

the derivative of the search completeness. For both DFT and RF/DFT the search efficiency

is highest at the beginning, but decreases quickly as more of the search space is explored.

As more of the search space is explored, more unstable compounds become mixed in to the

high scoring candidates.

While the search completeness and efficiency of RF/DFT and DFT are comparable, the

DFT results assume that ∆Hd has been computed and is available for all ∼14200 com-

pounds. In contrast, the RF/DFT approach required only ∼280 simulations throughout the

seven iterative cycles to generate the ∼160 unstable labeled compounds. Rather than being

provided the complete unstable set of compounds, i.e. all compounds in the full set for which

∆Hd > 0.2, RF/DFT was fitted to only a small subset of the full data set, and then tested

on the full data set. So, ML/DFT shows a nearly indistinguishable search efficiency, despite

requiring substantially fewer DFT calculations. This demonstrates the possible utility of

such an approach, which could be used to prioritize experiments using a limited amount of

DFT calculations in order to improve success rate.

To better understand the comparable search efficiencies in spite of the qualitatively dif-
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ferent precision/recall curves for RF/DFT and DFT, Figure 10(d) shows the distribution of

RF scores for stable and unstable compounds according to RF/DFT. The challenge becomes

evident here. As desired most of the stable compounds score high and most of the unsta-

ble compounds score low, indicating that there is reasonable separation in the two classes.

This can be more clearly seen in the inset of Figure 10(d) which shows the proportion of

compounds relative to each separate classification (stable or unstable). Although the classes

are reasonably well separated, the sheer number of unstable compounds causes the tail of

the unstable distribution to overwhelm the higher scoring stable distribution. This points

to possible directions for improving the model’s selectivity, such as including more unstable

training data. The challenge revealed by this analysis is inherent to any data-based approach

to materials discovery, and will be faced by all materials discovery frameworks. We hope

that by clearly elucidating the nature of the challenge, we can provide some guidelines for

identifying effective routes to overcome it.

Conclusion

In this work we present a combined ML/DFT framework to predict stable chemistries of a

given crystal structure, and introduce an approach to assessing the efficacy of the approach

in comparison to that of direct physical modeling (DFT) alone. In ML/DFT, DFT is used

as a generator of unstable compounds to be used for ML training and testing, while the

stable set of compounds is given by those that are experimentally reported. The method

is applied to spinel compounds, and traditional supervised ML methods (random forest,

ridge regression, and LASSO) are used to predict new compounds with high probability of

stability. Rather than comparing the performance of ML/DFT to the predictions of DFT

itself, the performance of both DFT and ML/DFT is assessed by comparison to reality. We

approximate reality by introducing a Bayesian model that allows us to infer the distribution

of the DFT-predicted distance to hull for stable and unstable compounds. The concepts
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of search completeness – the ability to exhaustively search a phase space and identify all

missing compounds – and search efficiency – the success rate for finding a new compound

– are defined and proposed to be an appropriate measure of ML efficacy. On one hand, we

find that the ML/DFT approach described here obtains search completeness and efficiency

on par with that of DFT when searching for undiscovered spinels. On the other hand, the

use of realistic data sets highlights the inherent challenge to be overcome by all materials

discovery approaches: namely that being able to cleanly separate the few discoverable stable

compounds from the large phase space of unstable ones places stringent demands on model

accuracy to achieve high search completeness and efficiency.
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Highest ranking predicted candidate spinels at the end of the sequential learning procedure: 
 

LASSO Ridge Regression Random Forest 
Compound Probability Compound Probability Compound Probability 
CuNi2O4 0.9933 SiCl2O4 0.9987 VCr2O4 1 
CuCu2O4 0.9923 SiCl2Te4 0.9942 CuNi2S4 0.999 
NiCu2O4 0.9922 NiCl2O4 0.9904 NiCr2S4 0.998 
HgSc2O4 0.991 PCl2O4 0.9901 CoCo2S4 0.997 
CoCu2O4 0.9899 InSc2O4 0.9899 CoFe2S4 0.996 
FeCu2O4 0.9884 GaCl2O4 0.9894 CuFe2S4 0.996 
ZnSc2O4 0.9884 SiCl2S4 0.9886 NiFe2S4 0.995 
GaSc2O4 0.9882 CuCl2O4 0.9885 CuNi2O4 0.995 
GaNi2O4 0.9873 GeCl2O4 0.9883 CrV2O4 0.994 
NiCu2S4 0.9862 CdSc2O4 0.9874 MnMn2O4 0.992 
CuSc2O4 0.986 SiBr2O4 0.9871 ZnMn2O4 0.988 
CuCu2S4 0.9859 CoCl2O4 0.9868 FeFe2S4 0.987 
GeCu2O4 0.9857 ZnNi2O4 0.9863 CoCu2O4 0.986 
CuNi2S4 0.9856 ZnCl2O4 0.9859 CuMn2S4 0.986 
GaCu2O4 0.985 FeCl2O4 0.9849 FeCu2O4 0.984 
SnNi2O4 0.9839 AgSc2O4 0.9849 CuIn2S4 0.984 
NiSc2O4 0.9834 ZnSc2O4 0.9846 NiCu2O4 0.979 



SnLu2S4 0.9826 ZnCu2O4 0.9835 CuCu2O4 0.979 
SnCu2O4 0.9824 SnSc2O4 0.9834 ZnNi2O4 0.978 
ZnNi2O4 0.9824 CuNi2O4 0.983 CoMn2S4 0.976 
CuFe2S4 0.9822 GaNi2O4 0.9828 VAl2O4 0.976 
NiFe2S4 0.9822 SiS2O4 0.9822 FeCo2S4 0.976 
GaCo2O4 0.9816 InFe2O4 0.9805 CuCu2S4 0.973 
CuLu2S4 0.9815 ScSc2O4 0.9796 CoCu2S4 0.973 
SnSc2O4 0.9814 CuCu2O4 0.9795 CuAl2S4 0.971 
CoSc2O4 0.9814 GaCu2O4 0.9795 CrGa2O4 0.971 
CoCu2S4 0.9809 FeCu2O4 0.9787 MnAl2O4 0.971 
NiLu2S4 0.9804 NiCu2O4 0.9783 NiCu2S4 0.971 
GeSc2O4 0.9801 NiBr2O4 0.9766 NiMn2S4 0.969 
TeFe2O4 0.9798 SiCl2Se4 0.9752 TcNi2O4 0.968 
CrCu2O4 0.9798 AsCl2O4 0.9752 CoAl2S4 0.964 
ZnCu2O4 0.979 CrCl2O4 0.9748 MoCo2O4 0.964 
CrSc2O4 0.9787 SnNi2O4 0.9747 FeAl2S4 0.964 
CuNi2Se4 0.9787 GaCo2O4 0.9741 CoV2O4 0.963 
FeCu2S4 0.9787 MgSc2O4 0.9741 RhNi2O4 0.961 
CuCu2Se4 0.9782 AgFe2O4 0.9734 NiV2O4 0.961 
NiNi2Se4 0.9775 CuBr2O4 0.9733 TiTi2O4 0.959 
CdSc2O4 0.9772 PCl2Te4 0.9732 NiAl2S4 0.959 
NiCu2Se4 0.9769 CuSc2O4 0.9725 VNi2O4 0.955 
SnCu2S4 0.9762 VCl2O4 0.972 PdCo2O4 0.954 
HgLu2S4 0.9761 GaSc2O4 0.9718 CuV2O4 0.952 
CuFe2Se4 0.9758 CoCu2O4 0.9717 FeCu2S4 0.952 
CoFe2S4 0.9758 InNi2O4 0.9717 MoCu2O4 0.951 
TeNi2O4 0.9751 TeFe2O4 0.9707 CrCu2O4 0.95 
TeLu2S4 0.975 SnCu2O4 0.9701 TcCu2O4 0.95 
InFe2O4 0.9749 CrSc2O4 0.97 CoCr2Se4 0.949 
SnNi2S4 0.9746 GaBr2O4 0.9697 MoNi2O4 0.948 
CoLu2S4 0.9742 TeSc2O4 0.9692 TcFe2O4 0.942 
NiFe2Se4 0.9738 NiSc2O4 0.9689 RhCu2O4 0.942 
SnFe2S4 0.9735 FeBr2O4 0.9675 CuMn2Se4 0.941 

 


