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Porosities of several metal-organic frameworks (MOFs) are computationally analyzed and dis-
cussed regarding their sensitivity to numerical parameters. Further, we investigate and discuss the
influence of the probe radius on the calculated porosities. A clear differentiation between void and
accessible porosity is carried out. This is essential as it impacts the comparison to experimental and
theoretical results. We present two different approaches to calculate porosities, and discuss their
advantages and drawbacks. All results are compared to well established methods. It will be high-
lighted that the calculated properties are numerically sensitive to the choice of the used approach
and numerical parameters.

I. INTRODUCTION

Metal-organic frameworks (MOFs) are a material class
aiming for different possible applications1, such as gas
absorbers2,3, catalysts4–6, optical sensors7,8, and post-
synthetic modification (PSM) of MOFs for modulating
reaction outcomes and biomedical applications9. The
class of amorphous MOFs (aMOFs) has possible applica-
tions as liquids or melt quenched glasses10. Recently, it
has been shown that the pore sizes in MOFs can be var-
ied by enforcing an external pressure on a given MOF11.
Many applications of MOFs are based on the porous na-
ture of these materials, as MOFs typically exhibit several
pores. These pores usually have different sizes. With
that, an accurate determination of the porosity and the
pore sizes is important12.

In general, the porosity Φ is defined as the empty vol-
ume Vempty within a given total volume Vtotal (e.g. the
unit cell of a MOF)

Φ =
Vempty

Vtotal
. (1)

While the total volume for crystal structures is always
well defined, the empty volume misses this general def-
inition. One major aim of this work is to define and
clearly separate two different empty volumes, namely the
void volume Vvoid and the accessible volume Vacc. The
void volume is the space that is not occupied by any
atom in the unit cell. This volume can easily be ana-
lyzed given the sizes of the atoms, e.g. their respective
van der Waals (vdW) radii13. With this volume, the
void porosity Φvoid can be obtained, which serves as a
first descriptor of a porous material. However, it has to
be considered that a void porosity does not necessarily
reflect the volume/porosity which can be assumed by ad-
sorbed species. Such a porosity strictly depends on the
size of that species. With that, another volume occurs,
i.e. the accessible volume. Accordingly, the accessible
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porosity Φacc can be defined. This porosity, in contrast
to Φvoid, depends on a probe radius rprobe which varies
for different species. One has to be careful when analyz-
ing the porosity in a material, as the porosity of interest
is usually Φacc. When reporting this quantity, one needs
to provide the respective probe radius, such as the vdW
radius of H (rprobe = 1.20 Å) or Xe (rprobe = 2.16 Å).

Within this work it will be shown that choosing differ-
ent probe radii significantly impacts the evaluated poros-
ity. A systematic analysis of the probe radius dependence
allows to evaluate the porosity for any adsorbed species,
i.e. any atom or molecule with an effective probe ra-
dius. Furthermore, additional details about the under-
lying MOF (i.e. pore sizes) are automatically obtained
when using such a systematic study.

This manuscript is structured as follows: in the next
section, the theoretical background as well as detailed as-
pects of the implementation for the different approaches
- an overlapping spheres approach (OSA) and a grid
point approach (GPA) - are presented. Afterwards, the
grid size dependence for the GPA is analyzed for several
MOFs. The importance of the probe radius dependence
regarding the accessible porosity is discussed. Additional
discussions about the computational effort and a com-
parison to reference values are presented. A conclusion
is given in the end.

II. THEORETICAL BACKGROUND

We developed the FORTRAN code porE to ana-
lyze the porosities and related properties numerically.
Only the unit cell parameters and the coordinates of
the atoms are needed as input, similar to alternative
implementations14–18. Two different approaches are
implemented, namely an overlapping spheres approach
(OSA) and a grid point approach (GPA). While the OSA
is very fast and gives a good approximation for the (void)
porosity, the GPA is able to distinguish between void and
accessible properties and can be tuned to any desired ac-
curacy. Both approaches are summarized below.

For this study, the MOFs UiO-6619–21, UiO-6720–22,
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DUT-8(Ni)open
23–25, DUT-8(Ni)closed

23, IRMOF-1026,
MOF-527, HKUST-128–30 and MOF21031 are investi-
gated. For convenience, the two structures (open, closed)
of DUT-8(Ni) are abbreviated with DUT-8(Ni)o and
DUT-8(Ni)c. Further, MOF-210 is only analyzed with
the OSA, as its structure is currently to large to be prop-
erly analyzed with the GPA.

For illustration, pore centers determined using porE
are plotted as spheres within the periodic structures of
the investigated MOFs (see Fig. 1).

FIG. 1. Pores visualized as spheres for the test set of MOFs.
HKUST-1, UiO-66, and UiO-67 have three distinct pores.
DUT-8(Ni)o and MOF-5 have two characteristic pores, while
IRMOF-10 only has one pore, which is repeated within the
periodic structure. The individual pictures are generated with
VESTA using the calculated pore centers as additional species
with an effective radius equal to the determined pore size. The
entire picture was generated using the inkscape program.

A. Overlapping sphere approach (OSA)

To evaluate the porosity within MOFs (or any porous
material), a hard sphere model can be used. In such a
model, the overlap of atomic spheres is evaluated and

consequently subtracted from the total volume of all
spheres/atoms. The volume which is left, Vvoid, can be
compared to the total volume of a unit cell, providing the
(void) porosity Φvoid as

Φvoid =
Vvoid
Vtotal

, (2)

with the void, total, occupied, atomic and overlap vol-
umes given by

Vvoid = Vtotal − Vocc (3)

Vtotal = a · (b× c) (4)

Vocc = Vatoms − Voverlap (5)

Vatoms =
∑
i

Vi,vdW (6)

Voverlap =
∑
i,j>i

Vij,overlap. (7)

Here, a, b and c are the unit cell vectors and Vi,vdW is
the volume of a sphere with a radius equal to the vdW
radius of atom i. The sum of the volumes of all atoms
Vatoms minus the overlap Voverlap between pairs of atoms
defines the occupied volume Vocc. The overlap volume
can be calculated analytically following the derivation in
the supplemental material. This is done if the sum of
the covalent radii is smaller than the distance between
atoms i and j, thus if rcovalenti + rcovalentj ≤ dij . This
simple approach gives reasonable results (see Tab. I, a
comparison to literature values is given in Tab. III) at
essentially no computational cost.

TABLE I. All volumes (in Å3) for the determination of the
porosity (in %) of all considered MOFs based on the simple
hard sphere approach (OSA).

MOF Vtotal Vatoms Voverlap Vocc Vvoid Φvoid

DUT-8(Ni)o 3190 1953 709 1244 1946 61
DUT-8(Ni)c 648 976 324 652 −4 −1
UiO-66 2308 1992 823 1169 1139 49
UiO-67 4972 2906 1308 1599 3374 68
IRMOF-10 10099 2549 1297 1252 8847 88
MOF-5 17305 6536 2592 3944 13362 77
HKUST-1 4546 2499 1062 1437 3109 68
MOF210 144400 29385 14937 14449 129952 90

As higher-order terms are neglected, only the two-
center overlap is calculated. However, the OSA recovers
the total overlap (three-order and higher terms) almost
entirely for the benzene molecule. The literature value32

of the occupied volume in benzene, treating only the C-C
overlap, is V ref

occ = 114.8 Å3. The proposed OSA deliv-
ers a value of V OSA

occ = 115.2 Å3. For comparison, the
sum of the vdW spheres of all atoms is 166.9 Å3. The
molecular geometry is taken from the CCCBDB33 with
dC-C = 1.397 Å, in analogy to Gibson and Scheraga [32].
Given this result, it can be assumed that the results for
the overlap should be accurate, even without the higher-
order terms.
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The main advantage of the OSA is the access of rea-
sonable results with essentially no numerical effort. For
example, the calculation for MOF210 (1854 atoms per
unit cell) takes about 1 s (see supplemental material).
The main disadvantage is that technically only the void
porosity is calculated and there is no information about
accessible terms. The approach presented in the next
section overcomes this shortcoming.

B. Grid point approach (GPA)

An alternative approach is based on a numerical grid
inside the unit cell. This procedures requires the ex-
plicit treatment of each grid point. Any grid point is
either close to an atom (inside its vdW sphere) and can
be considered occupied. If no such occupation is found,
the grid point is considered unoccupied. In analogy to
equation (2), the void porosity can be evaluated by the
number of unoccupied points divided by the total number
of grid points

Φvoid =
Nunoccupied

Ntotal
. (8)

A suitable amount of grid points will provide accurate
results. Using this ansatz, one obtains an insight into
the void volume and thus the void porosity. This is not
equivalent to the accessible volume and porosity, which is
often given in the literature. Thus, one needs to be care-
ful when comparing e.g. the values for DUT-8(Ni)closed
as explained in the supplemental material.

The accessible volume can be obtained by modifica-
tions to the presented ansatz. Grid points need to be
evaluated such that around each grid point, a sphere with
a probe radius rprobe is assumed. If this sphere has no
contact with the vdW surface of the MOF, all points in-
side this sphere are considered to be unoccupied as well
as accessible. With that, points can be occupied, unoccu-
pied and not accessible or unoccupied and accessible (see
Fig. 2). This ansatz gives rise to another quantity, the ac-
cessible porosity Φacc, which depends on the probe radius
Φacc = Φacc(rprobe). The relation Φacc(rprobe) ≤ Φvoid is
clearly fulfilled. The basic outline of the procedure is
given in Fig. 3.

The used grid is defined either as a total number of
grid points for each cell vectors or as an approximate
grid density per Å for all cell vectors. In either case,
the grid points are placed along the cell vectors. With
that, we have a unique grid for any system. This grid
can either be uniform (grid density along all cell vec-
tors is the same) or non-uniform. In this work, we only
investigate uniform grids. It should be noted that the
accessible pore windows, i.e. the maximum size to ac-
cess a pore at all, has not been investigated. While other
codes like Zeo++18,34–37 provide such an analysis which
is of importance regarding a better comparison with e.g.
experimental values, the main goals of this manuscript

Atom 1 Atom 2
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be

r v
dW

FIG. 2. Visual explanation of different grid points in the
GPA. If a grid point is inside the vdW sphere of an atom, it
is occupied (red). Otherwise, it is unoccupied. Then, two dif-
ferent cases can occur. If the point is in a region which can be
accessed as described by a given probe radius rprobe (green),
it is unoccupied and accessible. Otherwise, it is unoccupied
and not accessible (blue). The difference in the blue and the
green points defines the difference between the void and the
accessible porosity.

are unaffected by not analyzing this property. An anal-
ysis will be provided in future versions of the code. The
effect of studying the pore windows on the porosities was
investigated using Zeo++, see supplemental material.

From a numerical point of view, the variable Ncheck acc

is introduced (see Fig. 3). With this variable, there is
no longer the need to loop over all accessible points to
determine which unoccupied points are also accessible.
Only selected points have to be evaluated (see Fig. 4).
This reduces the computational time while not changing
the results. The variable Ncheck acc is defined as a subset
of points chosen from all immediately accessible points,
i.e. all points with a distance larger than rvdW + rprobe
for all atoms. This subset contains points which have a
distance within rvdW + δ, with δ = rprobe · (1.0 + h),
h = 1.0/n and n is the average grid point density
per Å. Accordingly, δ becomes smaller for larger grids.
All points k within this subset are within a distance of
rvdW+rprobe ≤ dk ≤ rvdW+δ. Visually, this subset forms
a layer of thickness δ− rprobe = rprobe ·h = rprobe/n over
the vdW surface of the MOF (indicated in gray in Fig. 4).

The obtained subset (Ncheck acc) is used to identify
whether unoccupied points are also accessible. If the dis-
tance of any unoccupied point to any point in Ncheck acc

is smaller than rprobe, the unoccupied point is accessible
(green point in Fig. 4). Otherwise, the point is not ac-
cessible (blue point in Fig. 4). Further modifications to
this approach can be introduced, where Ncheck acc is only
obtained per atom. If an unoccupied point is close to an
atom i, only the points Ncheck acc,i need to be evaluated.
This is the basis of GPAsub-grid (see section Computa-
tional Time and the supplemental material), which gives
an additional speed-up.
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Input
Atomic coordinates

Unit cell vectors a, b, c
Probe radius rprobe

Grid points N

Loop 1
Occupied (occ): d < rvdW

Unoccupied (unocc): d > rvdW
Accessible (acc): d > rvdW + rprobe

For i = 1, N : occ, unocc or acc
For j = 1, Nacc: use rvdW + δ
→ set of points (check acc)

Loop 2
For i = 1, Nunocc:

If close to the vdW surface:

For j = 1, Ncheck acc:
If dij ≤ rprobe:

Add i to accessible points

Output

FIG. 3. Outline of the grid point approach (GPA) to evaluate
void and accessible porosities (and related properties). In
loop 1, everything regarding the void porosity is collected
(occupied, unoccupied and all immediately accessible points).
During loop 2, it is determined which unoccupied points are
also accessible. This ensures that all remaining accessible
points are collected for the accessible porosity. Here, δ =
rprobe · (1.0 + h), with h = 1.0/n and n = (nx + ny + nz)/3
being the average grid point density per Å in all directions.
Thus, the denser the grid, the smaller δ.

rvdW,1 rvdW,2

rprobe

δ
d ≤ rprobe

d > rprobe

FIG. 4. Visualization of Ncheck acc. Circles for Atom 1 and
Atom 2 indicate their respective vdW radii rvdW. The subset
of points Ncheck acc is chosen from all immediately accessible
points, i.e. all points with a distance larger than rvdW+rprobe
for all atoms. This subset (indicated in gray) contains points
which have a distance within rvdW + δ, where δ = rprobe ·
(1.0 + h), h = 1.0/n and n is the average grid point density
per Å. Accordingly, δ becomes smaller for larger grids. If the
distance of an unoccupied point to any Ncheck acc is smaller
than rprobe, this point is also accessible (green). Otherwise,
it is not accessible (blue, color code adopted from Fig. 2).

III. GRID SIZE DEPENDENCE

As the GPA depends on the (uniform) distribution of
grid points, it is important to determine how dense the
grid needs to be to provide numerically reliable results.
For all structures (except MOF210), the grid was succes-
sively increased and the porosities (void and accessible)
were calculated. A probe radius of 1.20 Å was used for
all MOFs. In addition, a probe radius of 2.16 Å has
been employed for DUT-8(Ni)open, UiO-66 and UiO-67.
This was done to see whether the porosities converge dif-
ferently using different probe radii. The results for all
MOFs are summarized in the supplemental material. For
UiO-66, the results are given in Fig. 5.

FIG. 5. Grid size dependence for UiO-66. The void porosity
as well as the accessible porosity for two different probe radii
are shown. The x-axes denote the used grid. Maximum grid:
≈ 35/Å→ 1.42 ·108 points for rprobe = 1.20 Å and ≈ 29/Å→
8.17 · 107 points for rprobe = 2.16 Å.

Clearly, the void porosity converges very fast with an
increasing grid, and even a smaller number of grid points
provides good results. For the presented example, a grid
point density of 5 points/Å seems to be sufficient for
the void porosity. On the other hand, the accessible
porosity converges much slower, and more grid points
are needed to reach convergence. Using our example, at
least 10 points/Å are needed to sufficiently converge the
results. This is true for the other MOFs as well.

Using different probe radii influence the convergence
as well. Furthermore, the accessible porosity for the dif-
ferent probe radii is very different. This will be discussed
in the next section in detail.

As a note here, the results can be systematically im-
proved by using larger grids.

IV. PROBE RADIUS DEPENDENCE

After establishing that a grid size of ca. 10 points/Å is
sufficient for an accurate description of the porosities,
the next question is how the accessible porosity changes
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for different probe radii. This becomes especially impor-
tant if the porosity is analyzed with respect to different
adsorbed species, having different effective probe radii.
Furthermore, it is important to analyze this behavior re-
garding the comparison with literature values. Usually,
the accessible porosity is reported, while the probe radius
is typically disregarded. Here we show that the accessi-
ble porosity strongly depends on the probe radius, which
can be seen for all MOFs in Fig. 6. Individual pictures
and values for each MOF are given in the supplemental
material.

FIG. 6. Probe radius dependence for some MOFs. The ac-
cessible porosity is given on the y-axis, while the probe ra-
dius is shown on the x-axis. The used grid is approximately
10 points/Å for all MOFs besides UiO-66 (12.5 points/Å) and
DUT-8(Ni)closed (20 points/Å). The drops in the accessible
porosity correspond to different pore sizes/radii.

Fig. 6 should make it clear that different species have
different accessible porosities. For example, the vdW ra-
dius of a Xe atom is 2.16 Å, the one of CH4 is ≈ 2.29 Å,
the one for SO2−

4 is ≈ 3.01 Å and the one for C2H6 is
≈ 5.48 Å. These values were determined by using the
bond distances and the vdW radii of the atoms. For
C2H6, the distance between the most distant H atoms
was used. It should be noted that all molecules are ap-
proximated as spheres having some effective probe ra-
dius. The goal here is to make the comparison and the
used probe radii more intuitive to understand. This shall
not be interpreted as an accurate approximation for e.g.
adsorption investigations (clearly, C2H6 is not spherical
and shape effects become important), but only as a way
to analyze the probe radius dependence. The accessible
porosity for such species will be smaller than for e.g. a
H (rprobe = 1.20 Å) or a He atom (rprobe = 1.40 Å). To
illustrate this more quantitatively, the accessible porosi-
ties for different probe radii are listed in Tab. II. The
same analysis was done with Platon14 and Zeo++18,34–37

(see supplemental material). The general trends for the
probe radius dependence for all investigated MOF are
consistent between the used codes. As an example,
the accessible porosity for UiO-66 behaves as follows:
59.1 % (rprobe = 0.00 Å) to 53.3 % (rprobe = 1.20 Å)

to 50.8 % (rprobe = 1.40 Å) to 42.9 % (rprobe = 2.16 Å)

to 39.9 % (rprobe = 2.29 Å) to 34.2 % (rprobe = 3.01 Å)

to 0.0 % (rprobe = 5.48 Å). Furthermore, it should
be mentioned that the void porosity is recovered for
rprobe = 0.00 Å. In addition, the accessible porosity has
to become zero for rprobe →∞.

TABLE II. Accessible porosities (in %) for some MOFs de-
pending on different probe radii (in Å). The used grid con-
tains ca. 10 points/Å, except for UiO-66 where the grid point
density is 12.5 points/Å.

rprobe 0.00 1.20 1.40 2.16 2.29 3.01 5.48
DUT-8(Ni)o 70.5 66.3 65.6 55.7 54.5 51.7 0.0

UiO-66 59.1 53.3 50.8 42.9 39.9 34.2 0.0
UiO-67 72.4 68.8 67.8 64.1 63.2 56.4 23.2

IRMOF-10 87.8 86.6 86.5 85.0 84.6 82.8 76.4
MOF-5 80.2 78.3 77.9 75.4 75.0 72.6 64.5

HKUST-1 71.4 69.1 68.9 65.1 64.6 57.3 47.0

Besides its fundamental importance, one can use a
screening of different probe radii to analyze the pore sizes
of MOFs. First, one can calculate the porosities for dif-
ferent probe radii. Then, the accessible porosity is mon-
itored. Once the probe radius is larger than a specific
pore, all grid points within this pore become not acces-
sible. Accordingly, the accessible porosity drops signif-
icantly. This gives an intuitive way to characterize the
pore sizes (see Fig. 6). More information is given in the
supplemental material.

Furthermore, any effective probe radius corresponding
to any molecule, e.g. CH4, can be analyzed regarding
the porosity. With that, one can define a porosity for
any species, and check whether it fits into specific pores
of a MOF or not.

A different approach to analyze the pore dimensions/
pore size distribution is discussed in the supplemental
material.

V. COMPUTATIONAL TIME

Considering the grid point approach, the computa-
tional time for any structure which has a certain amount
of accessible volume should scale roughly like N2, with
N being the number of grid points. This is due to loop
2 (see Fig. 3). For structures without any accessible vol-
ume, there is nothing to be done in loop 2 and the compu-
tational time should scale roughly linearly with N . This
trend is found, as can be seen for UiO-66 in Fig. 7. Com-
putational times for all MOFs can be found in the supple-
mental material, where additional discussions regarding
the dependence of the computational time with respect
to the probe radius are given.

To make the GPA more efficient, a modification was
introduced. The idea is to sub-divide the Ncheck acc grid
points into atom-centered sub-grids. With that, if an
unoccupied point is close to atom i, only Ncheck acc,i grid
points are needed in loop 2. More details are given in the
supplemental material. Using this alternative approach
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FIG. 7. Computational times for the calculation of the porosi-
ties for UiO-66 using two different probe radii and an in-
creasing amount of grid points. A typical grid density of
5 points/Å corresponds to ≈ 4.2 · 105 grid points, and the
respective calculation takes about 68 s.

(GPAsub-grid), the computational time is drastically re-
duces and a near-linear dependence of the computational
time with respect to the grid is achieved. An example for
these computational times using UiO-66 is given in Fig. 8.

FIG. 8. Computational times for the GPA in UiO-66 using
a probe radius of 1.20 Å and an increasing amount of grid
points. A comparison between GPA and GPAsub-grid is carried
out. With the latter, a near-linear behaviour is achieved.

VI. COMPARISON TO REFERENCES

To validate the implementation in porE, several ref-
erence calculations were performed. For this, we used
the codes RASPA216,17, Poreblazer15, Platon14 and
Zeo++18,34–37.

The RASPA2 code provides various features for the
calculation of porous materials. The porosity can be ac-
cessed using the calculation mode for the determination
of the helium void fraction. For that, the porous struc-
ture is probed with a helium atom at room tempera-
ture. The helium atom itself is described with a TraPPE
force field16,17,40, while the porous structure can be de-
scribed with various available force fields. For our ref-
erence calculations, we used the CrystalGenerator force

TABLE III. Comparison of calculated porosities be-
tween reference codes (RASPA216,17 (π), Poreblazer15 (ρ),
Platon14 (γ), Zeo++18,34–37 (ξ)), literature values and the
presented approaches (OSA (α) and GPA (ω)). For the GPA,
a differentiation between void and accessible porosities (using
rprobe = 1.20 Å and the largest possible grids) is done. All
porosities are given in %. The literature values (REF) are:
DUT-8(Ni)23, UiO-66 and UiO-6738, IRMOF-1026, MOF5
and MOF21031, HKUST-112,39.

MOF π ρ γ ξ α ωvoid ωacc ΦREF

DUT-8(Ni)o 70 68 66 68 61 70 67 67
DUT-8(Ni)c 0 0 0 0 −1 27 1 0
UiO-66 52 51 53 55 49 59 54 53
UiO-67 72 72 69 70 68 72 69 68
IRMOF-10 91 90 86 87 88 88 87 87
MOF-5 81 81 76 79 77 80 79 79
HKUST-1 73 72 69 69 68 71 69 68
MOF210 93 — — 88 90 — — 89

field16,17, 2000 Monte Carlo cycles and the unit cell of the
MOFs. The used unit cells contain the following amount
of atoms: DUT-8(Ni)open (132), DUT-8(Ni)closed (66),
UiO-66 (114), UiO-67 (174), HKUST-1 (156), IRMOF-
10 (166), MOF-5 (424) and MOF210 (1854). All struc-
tures are available at https://github.com/kaitrepte/
porE. The Platon code offers several analysis techniques
for crystal structures. It allows to analyze the accessi-
ble porosity using a grid based approach, similar to the
GPA presented here. The Poreblazer code can be used
to analyze the surface areas, the pore size distribution
and the porosity. In Poreblazer, the porous system is
describe using the universal force field (UFF41) and the
helium atoms are describe using a Lennard-Jones force
field description. The (helium) void volume is calculated
using a cublet procedure. In Zeo++, the accessible vol-
ume is calculated by placing points randomly in the unit
cell. Afterwards, each point is analyzed regarding its ac-
cessibility with respect to a given probe radius using a
Voronoi decomposition scheme18.

In general the void porosities using porE with the GPA
agree well with the results of the RASPA2 and the Pore-
blazer code (see Tab. III). The accessible porosities ap-
plying porE with the GPA for the set of MOFs is in
excellent agreement with the results calculated with the
Platon and the Zeo++ codes (see Tab. III). Further,
a comparison to literature values is carried out. Here,
one essential point is that literature values are accessi-
ble porosities, while the corresponding probe radius is
usually not provided. Clearly, the void porosities do not
accurately reflect the porous nature of the MOFs.

This is especially true for systems with more complex
pores. There, the probe radius plays an even more crucial
role (compare e.g. UiO-66 and MOF-5). In MOFs with
large, open pores the void porosity will already reflect
the porous nature of the MOF fairly accurately. If a pore
would be entirely spherical, i.e. the pore would have a
spherical symmetry, the calculated porosity would be in-
dependent of the probe radius (unless rprobe ≥ rpore). Us-
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ing any probe radius smaller than the pore radius would
sample the pore entirely, as there are no areas/volumes
which are inaccessible. With that, the porosity is in-
dependent of the probe radius and the void porosity is
already a good quantity.

However, if the pores are different from the spherical
symmetry, e.g. having tetrahedral or octahedral sym-
metries as in the UiOs, the probe radius dependence is
significantly larger. In such a case, a sphere is not a suit-
able approximation for the pores (see Fig. 1 for UiO-66
and UiO-67). Quantitatively, this can be seen e.g. for
UiO-66 (see table III), where the void and the accessible
porosities are quite different (59 % and 54 %). This is
true even at a fairly small probe radius of 1.20 Å. The
dependence becomes clearer the larger the probe radius
becomes. Further, this explains the rather small depen-
dence of the accessible porosity for rprobe = 1.20 Å in
the MOFs IRMOF-10, MOF-5 and HKUST-1 (see ta-
ble II and the supplemental material), as for these three
MOFs spheres are a fair approximation to describe the
respective pores.

In summary, the accessible porosities from the GPA are
in excellent agreement with literature values, reassuring a
proper implementation. Considering its limitations, even
the OSA provides reasonable results.

VII. CONCLUSION

We present two approaches to analyze the poros-
ity in porous materials, in specific for metal-organic
frameworks (MOFs). Various MOFs (DUT-8(Ni)open,

DUT-8(Ni)closed, UiO-66, UiO-67, IRMOF-10, MOF-5,
HKUST-1, MOF210) have been studied using these ap-
proaches. One approach is based on overlapping spheres
(OSA) and their corresponding volumes, from which the
void porosity is calculated. This approach is computa-
tionally very efficient. The other approach (GPA) uses
a grid within the unit cell. With this approach, a clear
differentiation between accessible and void porosities can
be made. It was shown that it is essential to converge the
results with respect to the used grid. Further, the crucial
importance of a clear differentiation between accessible
and void porosity for the correct description of porosities
in MOFs was demonstrated. For the accessible poros-
ity, it was shown that a correct treatment of the probe
radius is essential for reliable results. Thus, this depen-
dence must be considered in any case. A comparison to
reference calculations and literature values confirms that
both approaches work as intended, and that the GPA
gives very accurate results. The poreE code developed
for all investigations and used for all primary calcula-
tions can be found under OpenSource licence (Apache
2.0) at github:
https://github.com/kaitrepte/porE.
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