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Abstract. Artificial intelligence is driving one of the most important revolutions
in organic chemistry. Multiple platforms, including tools for reaction prediction and
synthesis planning based on machine learning, successfully became part of the organic
chemists’ daily laboratory, assisting in domain-specific synthetic problems. Unlike
reaction prediction and retrosynthetic models, reaction yields models have been less
investigated, despite the enormous potential of accurately predicting them. Reaction
yields models, describing the percentage of the reactants that is converted to the desired
products, could guide chemists and help them select high-yielding reactions and score
synthesis routes, reducing the number of attempts. So far, yield predictions have
been predominantly performed for high-throughput experiments using a categorical
(one-hot) encoding of reactants, concatenated molecular fingerprints, or computed
chemical descriptors. Here, we extend the application of natural language processing
architectures to predict reaction properties given a text-based representation of the
reaction, using an encoder transformer model combined with a regression layer. We
demonstrate outstanding prediction performance on two high-throughput experiment
reactions sets. An analysis of the yields reported in the open-source USPTO data set
shows that their distribution di↵ers depending on the mass scale, limiting the dataset
applicability in reaction yields predictions.

1. Introduction

Chemical reactions in organic chemistry are described by writing the structural formula

of reactants and products separated by an arrow, which describes the chemical

transformation by specifying how the atoms rearrange between one or several reactant
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molecules and one or several product molecules [1]. Economical, logistic and energetic

considerations drive chemists to prefer chemical transformations that are capable of

converting all reactant molecules into products with the highest yield possible. However,

the quantitative conversion of reactants into products is undermined by side-reactions,

degradation of reactants, reagents or products in the course of the reaction, equilibrium

processes with incomplete conversion to product, or simply by product isolation and

purification, rarely reaching optimal performance.

Reaction yields are usually reported as a percentage of the theoretical chemical

conversion, i.e. the percentage of the reactant molecules successfully converted to the

desired product compared to the theoretical value. It is not uncommon for chemists

to synthesise a molecule in a dozen or more reaction steps. Hence, low-yield reactions

may have a disastrous e↵ect on the overall route yield because of the multiplicative

e↵ect between the individual steps. Therefore, it is not surprising that much e↵ort in

organic chemistry research is dedicated to designing new reactions with higher yields

than existing ones.

In practice, specific chemical reaction classes are characterised by lower or higher

yields, with the actual yield depending on the reaction conditions (temperature,

concentrations, etc.) and on the specific substrates.

Estimating the reaction yield can be a game-changing asset for synthesis planning.

It provides chemists with the ability to evaluate the overall yield of complex reaction

paths, addressing possible shortcomings well ahead of investing hours and materials in

wet lab experiments. Computational models for the prediction of reaction yields could

support synthetic chemists in the choice of an appropriate synthesis route among many

predicted by data-driven algorithms. Moreover, reaction yields prediction models could

also be employed as scoring functions in computer-assisted retrosynthesis route planning

tools [2, 3, 4, 5], to complement forward prediction models [6, 4] and in-scope filters [2].

Most of the existing e↵orts in constructing models for the prediction of reactivity or

of reaction yields focused on a particular reaction class: oxidative dehydrogenations of

ethylbenzene with tin oxide catalysts [7], reactions of vanadium selenites [8], Buchwald–

Hartwig aminations [9, 10, 11], and Suzuki–Miyaura cross-coupling reactions [12, 13, 14].

To the best of our knowledge, there was only one attempt to design a general purpose

prediction model for reactivity and yields, without applicability constraints to a specific

reaction class [15]. In this work, the authors design a model predicting whether the

reaction yield is above or below a threshold value, and come to the conclusion that the

models and descriptors they consider cannot deliver satisfactory results.

Here, we build on our own legacy of treating organic chemistry as a language to

introduce a new model that predicts reaction yields starting from reaction SMILES

[16]. More specifically, we fine-tune the rxnfp models by Schwaller et al. [17] based on

a BERT-encoder [18] by extending it with a regression layer to predict reaction yields.

BERT encoders belong to the transformer model family, which have revolutionised

natural language processing [19, 18]. These models take sequences of tokens as input

to compute contextualised representations of all the input tokens, and can be applied
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to reactions represented in the SMILES [20] format. Here, we demonstrate for the first

time, that these natural language architectures are very e↵ective not only when working

with language tokens, but also to provide descriptors of high quality to predict reaction

properties such as reaction yields.

Our approach can be trained both on data specific to a given reaction class or on

data representing di↵erent reaction types. Accordingly, we evaluate it on two di↵erent

kinds of data sets. First, we train the model on two high-throughput experimentation

(HTE) data sets. Several HTE reaction data sets have been published in recent years.

We selected the data sets for palladium-catalysed Buchwald–Hartwig reactions provided

by Ahneman et al. [9] and for Suzuki–Miyaura coupling reactions provided by Perera et

al. [21]. Second, we train our model on patent data available in the USPTO data set

[22, 23].

Both data sets are very di↵erent in terms of content and quality. HTE data sets

typically cover a very narrow region in the chemical reaction space. The analysed

reactions belong to one or a few reaction templates for which the outcomes of

combinations of selected precursors (reactants, solvents, bases, catalysts, etc.) are

investigated. In contrast, patent reactions cover a much wider reaction space. In

terms of quality, in the HTE data sets the reactions are represented in a uniform

manner and the reported yields reported were all measured with the same analytical

equipment, providing a robust quality assurance protocol. In comparison, the

yields from patents were measured by a di↵erent scientist using di↵erent equipment.

Incomplete information, such as unreported reagents or reaction conditions, in the

original documents and the extensive limitation in text mining technologies makes the

entire set of patent reactions quite noisy and sparse. An extensive analysis of the

USPTO data set, revealed that the experimental conditions and reaction parameters,

such as scale of the reaction, concentrations, temperature, pressure, or reaction duration,

may have an important e↵ect on the measured reactions yields. This poses additional

constraints, as the model presented in this work does not consider explicitly those values

in the reaction descriptor. In fact, the basic assumption is that every reaction yield

reported in the data set is optimised with respect to the reaction parameters.

Our best performing model reached an R2 score of 0.952 on a random split of

the Buchwald-Hartwig data set while the highest R2 score on the smoothed USPTO

data was 0.388. These numbers reflect how the intrinsic data set limitations increase

the complexity of training a su�ciently good performing model on the patent data,

resulting into a more di�cult challenge than training a model for the HTE data set.

2. Models & experimental pipeline

We base our models directly on the reaction fingerprint (rxnfp) models by Schwaller et

al. [17]. Accordingly, the encoder model size is fixed and we only consider the dropout

rate and learning rate for hyperparameter tuning, thus avoiding often encountered

di�culties of neural networks with numerous hyperparameters. During our experiments,
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we observed good performances for a wide range of dropout rates (from 0.1 to 0.8) and

conclude that the initial learning rate is the most important hyperparameter to tune. To

facilitate the training, our work uses simpletransformers [24], huggingface transformer

[25] and PyTorch framework [26]. The overall pipeline is shown in Figure 1.
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Figure 1. Training/evaluation pipeline and task description.

The input format must be compatible with the rxnfp model and we therefore use

the same RDKit [27] reaction canonicalisation and SMILES tokenization [6] as in the

rxnfp work [17].

3. High-throughput experiment yield predictions

3.1. Buchwald–Hartwig reactions

Ahneman et al. [9] performed high-throughput experiments on Pd-catalysed Buchwald–

Hartwig C-N cross coupling reactions and measured the yields. For the experiments,

they used three 1536-well plates spanning a matrix of 15 aryl and heteroaryl halides,

4 Buchwald ligands, 3 bases, and 23 isoxazole additives resulting in 4140 reactions.

As inputs for their random forest models, Ahneman et al. computed 120 molecular,

atomic and vibrational properties with density functional theory using Spartan for every

halide, ligand, base and additive combination. The descriptors included HOMO and

LUMO energy, dipole moment, electronegativity, electrostatic charge and NMR shifts

for atoms shared by the reagents. The work of Ahneman et al. [9] was challenged

by Chuang and Keiser [10], who pointed out several issues. First, by replacing the

computed chemical features with random features of the same length or one-hot encoded

vectors Chuang and Keiser got similar performance than the original paper with the

chemical features. Therefore, they weakened the original claim that additive features

were the most important for the predictions. Moreover, the additive features were still

estimated to be the most important features by the random forest model when the

yields were shu✏ed. Recently, Sandfort et al. [11] used a concatenation of multiple
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molecular fingerprints as alternative reaction representation to demonstrate superior

yield prediction performance compared to one-hot encoding.

Unlike previous work, we use directly the reaction SMILES as input to a

BERT-based reaction encoder [17] enriched with a regression layer (Yield-BERT). To

investigate the suggested method, we used the same splits as Sandfort et al. [11]. In

contrast, to their work, we used 1/7 of the training set from the first random split as

validation set to select optimal values for our two hyperparameters, namely, learning

rate and dropout probability. Once selected, the hyperparameters were kept the same

for all the subsequent experiments. The number of training epochs was set to 15.

Table 1. Summary of the results on the Buchwald–Hartwig data set. We used the
same 10 random splits as in the work of Sandford et al. [11]. The Yield-BERT results
shown in this table used the rxnfp pretrained model as base encoder [17]

R2 Ahneman one-hot MFF Yield-BERT

random 70/30 0.92 0.89 0.927 ± 0.007 0.944 ± 0.009

random 20/80 0.85 ± 0.01

random 10/90 0.78 ± 0.02

random 5/95 0.61 ± 0.08

test 1 0.8 0.69 0.85 0.84

test 2 0.77 0.67 0.71 0.90

test 3 0.64 0.49 0.64 0.70

test 4 0.54 0.49 0.18 0.35

test avg. 1-4 0.69 0.59 0.60 0.70

.

The results are shown in Table 1. Using solely a reaction SMILES representation,

our method achieves an average R2 of 0.9443 on the random splits and outperforms not

only the MFF by Sandfort et al. [11], but also the chemical descriptors computed with

DFT by Ahneman et al. [9]. Moreover, for the out-of-sample tests where the isoxazole

additives define the splits our method performs on average better than MFF and one-

hot descriptors and comparable to the chemical descriptors. As in the work of Sandfort

et al. [11], the test 3 split resulted in the worst model performance. For the rest of

the out-of-sample, our method performs better than the others. We also reduced the

training set to 5% (207 reactions), 10% (414 reactions) and 20% (828 reactions) and

observed that the model learned to reasonably predict yields despite the significantly

smaller training set.

3.2. Suzuki–Miyaura reactions

Perera et al. [21] performed another HTE analysing Suzuki–Miyaura reactions. They

considered 15 pairs of electrophiles and nucleophiles, each leading to a di↵erent product.
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For each pair, they varied the ligands (12 in total), bases (8), and solvents (4), resulting

in a total of 5760 measured yields. The same data set was also investigated in the work

of Granda et al. [12].

For this data set, we first trained our yield prediction models with the same

hyperparameters as for the Buchwald–Hartwig reaction experiment above and achieve

already an R2 score of 0.79±0.01. Second, we tuned the dropout probability and learning

rate, similarly to the previous experiment, using a split of the training set of the first

random split. The resulting hyperparameters were then used for all the splits. The

hyperparameter tuning did not lead to better performance compared to the parameters

used for the Buchwald–Hartwig reactions. This shows that the models have a stable

performance for a wide range of parameters and that they are transferable from one

data set to another related data set.

Table 2. Summary of the average R2 scores on the Suzuki–Miyaura reactions data set
using a Yield-BERT with di↵erent base encoders. We used 10 di↵erent random folds
(70/30).

Base encoder rxnfp [17] pretrained pretrained ft ft

Hyperparameters same as 3.1 tuned same as 3.1 tuned

random 70/30 0.79 ± 0.01 0.79 ± 0.02 0.81 ± 0.02 0.81 ± 0.01

We also compared two di↵erent base encoder models that are available from the

rxnfp library [17], namely the BERT model only pretrained with a masked language

modelling task, and the BERT model which was subsequently fine-tuned on a reaction

class prediction task. The results are displayed in Table 2. In contrast to the Buchwald–

Hartwig data set, where no di↵erence between the two base encoders was observed, the

ft model achieving an R2 score of 0.81 ± 0.01 outperforms the pretrained base encoder

on the Suzuki–Miyaura reactions.

3.3. Discovery of high yielding reactions with reduced training sets

One of the experiments performed by Granda et al. [12] was to train on random 10% of

the data to evaluate the rest of the reactions and select the next reactions to test. In

this study, we ran a similar experiment. We trained our models on di↵erent fractions of

the training set and used them to evaluate the yields of the remaining reactions. The

aim here is to evaluate how well the models are at selecting high-yielding reactions after

having seen a small fraction of randomly chosen reactions.

As can be seen from Figure 2, training on only 5% of the reactions already enables

a chemist to select some of the highest yielding reactions for the next round of the

experiments. With a training set of 10% the yields of the selected reactions are close

to the best possible selection marked with “ideal” in the Figure. For the Buchwald–

Hartwig reaction, using a model trained on 10% of the data set, the 10 reactions from

the remaining unseen data set predicted to have the highest yields, have an average yield
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Figure 2. Average and standard deviation of the yields for the 10, 50, and 100
reactions predicted to have the highest yields after training on a fraction of the data
set (5%, 10%, 20%). The ideal reaction selection and a random selection are plotted
for comparison.

of 95 ± 4 %, compared to the ideal selection of 98.7 ± 0.9 %. In contrast, a random

selection of 10 reactions would have let to yields of 34 ± 27 %. The selection works

similarly for the Suzuki–Miyaura reactions.

We performed a purely greedy selection, as we aimed to find highest yielding

reactions after one training round. A wider chemical reaction space exploration with

a reaction selection using more elaborate uncertainty estimates and an active learning

strategy was investigated by Eyke et al. [14].

4. Patent yield predictions

In this section, we analyse USPTO data set [22, 23] yields. We started from the same

set as in our previous work [28], keeping only reactions for which yields and product

mass were reported. In contrast to HTE, where reactions are typically performed in

sub-gram scale, the patent data contains reactions spanning a wider range, from grams
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sub-grams scales.

4.1. Gram versus sub-gram scale

When investigating the yields for di↵erent mass scales, we observed that gram and sub-

gram scales had statistically di↵erent yield distributions, as shown in Figure 3. One

reason could be that the reaction sub-gram scale reactions are generally less optimised

than gram-scale. In sub-gram scale, the primary goal is to show that the desired product

is present. To be able to synthesise a specific compound on a larger scale, reactions are

optimised and predominantly high yielding reactions are employed. Therefore, we split

the USPTO reactions into two data sets according to the product mass. If for the same

canonical reaction SMILES multiple yields were reported in the same mass scale, we

took the average of those yields.

Figure 3. USPTO yields distribution separated in gram and sub-gram scale

We performed various experiments summarised in Table 3. The R2 scores for the

randomly train-test splits with 0.117 for gram scale and 0.195 low. As expected, the

tasks becomes even more di�cult when the time split is used. In our experiment, we

took all reactions first published in 2012 and before as training/validation set and the

reactions published after 2012 as test set. To show that the model was still able to learn

something from the reactions we performed a sanity check, where we randomised the

yields across the training reactions. The resulting performance on the test set was a R2

score of 0.

Unfortunately, the yields from the USPTO data set could not be accurately

predicted. To better understand why, we further inspected the USPTO reaction yields

with a visual analysis using reaction atlases built using TMAP [29], faerun [30] and our

reaction fingerprints [17]. Figure 4 reveals that globally reaction classes tend to have

similar yields. However, if a local neighbourhood is analysed the nearest neighbours

often have extremely diverse reaction yields. Those diverse yields make it challenging

for the model to learn anything but yield averages for similar reactions and hence,
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Table 3. Summary of the R2 scores on the di↵erent USPTO reaction sets.

scale gram sub-gram

random split 0.117 0.195

time split 0.095 0.142

random split (smoothed) 0.277 0.388

randomized yields 0.0 0.0

explain the low performance on the patent reactions. This analysis opens up relevant

questions on the quality of the reported information (relative to the mass scale) and its

extraction accuracy from text, which could severely hamper the development of reaction

yield predictive models. The need of cleaned and consistent reaction yields data set is

even more important than for other reaction prediction tasks.

In Table 3 the ”random split (smoothed)” row shows an experiment inspired from

the observations above. As some of the yields values are probably incorrect in the data

set, we smoothed the yields by computing the average of the three nearest neighbour

yields plus twice the own yield of the reaction. The nearest neighbours were estimated

using the rxnfp ft [17] and faiss [31]. On the smoothed data sets, the performance of our

models more than triples in the gram scale and doubles on the sub-gram scale, achieving

R2 scores of 0.277 and 0.388, respectively. The removal of noisy reactions [32] or reaction

data augmentation techniques [33] could potentially lead to further improvements.

5. Conclusion

In this work, we combined a reaction SMILES encoder with a reaction regression task

to design a reaction yield predictive model. We analysed two HTE reaction data sets,

showing excellent results. On the Buchwald–Hartwig reaction data set our models

outperform previous work on random splits and perform similar to models trained on

chemical descriptors computed with DFT on test sets where specific additives were held

out from the training set.

We analysed the yields in the public patent data and show that the distribution of

reported yields strongly di↵ers depending on the reaction scale. Because of intrinsic lack

of consistency and quality in the patent data, our proposed method fails to accurately

learn to predict patent reaction yields. While we cannot rule out the existence of

any other architecture potentially performing better than the one presented in this

manuscript, we raise the need for a more consistent and better quality public data set

for the development of reaction yields prediction models. The suspect that the yields

in the patent data are inconsistently reported is substantiated by the large variability

of methods used to purify and report yields, by the di↵erent reaction mass scales and

by the di↵erent amount of optimisation in each reported reaction. Our reaction atlases

[30, 29, 17] reveal globally higher yielding reaction classes, however, nearest neighbours
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Figure 4. Reaction Atlases. Top: gram scale. Bottom: sub-gram scale. Left:
Reaction superclass distribution, reactions belonging to the same superclass have the
same colour. Right: Corresponding reaction yields.

often have significantly scattered yields. We show that better results can be achieved

by smoothing the yields in the patent data using the nearest neighbours.

Our approach to yield predictions can be extended to any reaction regression task,

for example, for the prediction of reaction activation energies [34, 35], and is expected

to have a broad impact in the field of organic chemistry.

The code and public data will be made available on https://github.com/

rxn4chemistry/rxn_yields upon publication.
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1. Detailed results on Buchwald Hartwig reactions

Figure S1-S17 show the correlation between the measured yields and the predicted yields

for all the di↵erent splits published by Sandfort et al. [1].
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Figure S7. Measured vs predicted yields [%] - FullCV 07
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Figure S9. Measured vs predicted yields [%] - FullCV 09

Figure S10. Measured vs predicted yields [%] - FullCV 10
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Figure S11. Measured vs predicted yields [%] - Test1

Figure S12. Measured vs predicted yields [%] - Test2
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Figure S13. Measured vs predicted yields [%] - Test3

Figure S14. Measured vs predicted yields [%] - Test4
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Figure S15. Measured vs predicted yields [%] - Plates1-3

Figure S16. Measured vs predicted yields [%] - Plates1-3
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Figure S17. Measured vs predicted yields [%] - Plates1-3

Figure S18. Measured vs predicted yields [%] - Plate2 new
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2. Detailed results on Suzuki-Miyaura reactions

Figure S19-S28 show the correlation between the measured yields and the predicted

yields for model with the rxnfp ft base encoder on the 10 random splits.

Figure S19. Measured vs predicted yields [%] - random split 0
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Figure S20. Measured vs predicted yields [%] - random split 1

Figure S21. Measured vs predicted yields [%] - random split 2
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Figure S22. Measured vs predicted yields [%] - random split 3

Figure S23. Measured vs predicted yields [%] - random split 4
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Figure S24. Measured vs predicted yields [%] - random split 5

Figure S25. Measured vs predicted yields [%] - random split 6
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Figure S26. Measured vs predicted yields [%] - random split 7

Figure S27. Measured vs predicted yields [%] - random split 8



CONTENTS 16

Figure S28. Measured vs predicted yields [%] - random split 9

3. Detailed analysis of USPTO yields data

Tables S1 and S2 show the yields average in the random split test set for the di↵erent

reaction superclasses.

Table S1. Test set sub-gram scale. Average and standard deviation per class.

Class Name Mean [%] Std Count

0 Unrecognised 52.1 26.8 12359

1 Heteroatom alkylation and arylation 53.3 25.8 12995

2 Acylation and related processes 54.8 25.6 10583

3 C-C bond formation 53.2 25.6 5111

4 Heterocycle formation 48.0 25.1 2043

5 Protections 69.8 22.3 527

6 Deprotections 68.7 25.2 8542

7 Reductions 67.5 26.1 3528

8 Oxidations 63.4 25.3 1078

9 Functional group interconversion (FGI) 62.3 25.2 2779

10 Functional group addition (FGA) 56.2 25.1 863

Figure S29 shows the distributions of the smoothed yields. To smooth the yields of

the USPTO data set [2, 3] we calculated the average of the 3 nearest-neighbours of the
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Table S2. Test set gram scale. Average and standard deviation per class.

Class Name Mean [%] Std Count

0 Unrecognised 69.4 22.0 10327

1 Heteroatom alkylation and arylation 71.9 20.9 7912

2 Acylation and related processes 74.5 19.7 4745

3 C-C bond formation 70.7 20.0 2547

4 Heterocycle formation 67.1 22.9 1417

5 Protections 79.9 18.5 1154

6 Deprotections 82.2 16.9 3332

7 Reductions 81.2 18.2 3105

8 Oxidations 76.0 18.8 742

9 Functional group interconversion (FGI) 74.9 20.1 2751

10 Functional group addition (FGA) 71.7 21.7 1491

reaction, computed using the rxnfp ft [4] and faiss [5], and twice the own reaction yield.

Figure S29. Smoothed USPTO yields distribution separated in gram and sub-gram
scale

4. Model selection

The two hyperparameters we tuned were dropout rate (between 0.05 and 0.8) and

learning rate (between 1e-6 and 1e-4). For the rxnfp pretrained model on the Buchwald-

Hartwig reactions a learning rate of 9.659e-05 and dropout probability of 0.7987 led to

the highest validation R2 score. We observe high R2 scores for a wide range of dropout
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probabilities. The hyperparameter tuning was performed on a single Nvidia RTX 2070

super GPU and the optimal hyperparameters were found in less than 12 hours. A typical

training run (10 epochs) on the same hardware takes 4 minutes and 30 seconds. We

trained the final models for 15 epochs.

On the Suzuki-Miyaura reactions, we selected a learning rate of 5.812e-05 and

dropout probability of 0.5848 for the rxnfp pretrained base encoder and a learning rate

of 9.116e-05 and dropout probability 0.7542 for the rxnfp ft base encoder model.

On the USPTO data we performed a hyperparameter search using a reduced

training set of 50k reactions and only 3 epochs. We selected a learning rate of 1.562e-

05 and dropout probability of 0.5237 for the gram scale and 2.958e-05 and 0.5826

respectively, for the sub-gram scale. The final models were trained for 2 epochs on

the complete training data, as an evaluation showed signs of over-fitting from the third

epochs on.
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