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ABSTRACT 29 

The rapid global spread of SARS-CoV-2, the causative agent of COVID-19, has set off the alarms of healthcare systems all 30 

over the world, the situation is exacerbated as no effective treatment is available to date. One therapeutic strategy consists in 31 

stopping the replication of the virus by inhibiting SARS-CoV-2 main protease, an important enzyme in the processing of 32 

polyproteins from viral RNA. Applying techniques like virtual screening, molecular docking and molecular dynamics 33 

simulations, our study evaluated the biomolecular interactions generated between more than 200 thousand natural products 34 

structures collected from the Universal Natural Product Database and the main protease active site. Through successive 35 

docking filters, we identified 3 molecules with a good affinity profile for the enzyme. These were subjected to molecular 36 

dynamics simulations and their binding free energies were calculated. Structures of the best natural products identified 37 

could be a starting point for developing novel antiviral candidates targeting SARS-CoV-2 Mpro. 38 

Keywords: SARS-CoV-2 Mpro, natural products, virtual screening, molecular docking, molecular dynamics simulations 39 

 40 

ABBREVIATIONS 41 

Mpro  : SARS-CoV-2 Main protease 42 

COVID-19 : Coronavirus disease-19 43 

SARS-CoV-2 : Severe acute respiratory syndrome coronavirus 2 44 

UNPD  : Universal Natural Product Database 45 

UNPD-ISDB  : Universal Natural Product Database - In-Silico MS/MS DataBase 46 

IFD  : Induced Fit Docking 47 

VS  : Virtual Screening 48 

RMSD  : Root Mean Square Deviation 49 

RMSF  : Root Mean Square Fluctuation 50 

Rg  : Radius of Gyration 51 

NPs  : Natural products 52 

MDS  : Molecular Dynamics Simulations 53 

MM-GBSA : Molecular Mechanics - Generalized Born Surface Area 54 

PR  : Phillyraeoidin E 55 

PHF  : Pseudoheptafuhalol-C 56 

GPA  : [28-(beta-d-glucopyranosyloxy)-28-oxoolean-12-en-3-beta-Yl] 57 

2-O-beta-D-xylopyranosyl-3-O-alpha-L-rhamnopyranosyl-beta-D 58 

glucopyranosiduronic acid 59 

 60 

1. INTRODUCTION 61 

On December 12, 2019, a patient with apparent signs of acute respiratory disease, vitreous opacity in pulmonary X-rays, 62 

hypoxia, and impaired kidney and liver functions entered the Central Hospital of Wuhan, Hubei, People's Republic of China 63 

(F. Wu et al., 2020). By January 11, 2020, the number of patients rose to 41, all of them related to Wuhan's Huanan Seafood 64 

Wholesale Market, which also sold wild animals for human consumption. Chinese health authorities indicated that patients 65 

were tested negative for viruses and bacteria typically associated with respiratory diseases, but they were however 66 

subsequently tested positive for a new pathogen of the genus betacoronavirus (Chen et al., 2020). Once its genome was 67 
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sequenced, the new virus (formerly known as 2019-nCoV) was named by WHO as Severe Acute Respiratory Syndrome 68 

Coronavirus 2 (SARS-CoV-2) (Chen et al., 2020; Lu et al., 2020) and later the disease was named Coronavirus Disease 69 

2019 (COVID-19) (World Health Organization, 2020b). 70 

Despite the enormous efforts of the Chinese government to control SARS-CoV-2 within its borders, it spread to 114 71 

countries, infected 118,000 people and caused the deaths of 4,219, urging the WHO to declare COVID-19 as a global 72 

emergency, and subsequently as a pandemic (WHO Director-General’s Conference, 2020). By September 29, 2020, the 73 

disease has already spread around the world with an estimated total of 33,511,752 cases and 1,004,808 deaths (COVID-19 74 

Map, 2020). 75 

Transmission of SARS-CoV-2 occurs through close contact between a carrier and a healthy individual as the virus 76 

spreads in droplets when coughing, sneezing, talking or singing (World Health Organization, 2020a). The average 77 

incubation period for COVID-19 is around 7 days, considering the interquartile range from 2 to 7 days (Guan et al., 2020). 78 

Moreover, it was estimated that an asymptomatic person carrying the virus can be contagious for 2 to 3 days before 79 

developing any symptoms and up to 44% of disease transmission cases occurred during the asymptomatic stage (He et al., 80 

2020). This evidence explains the rapid spread of SARS-CoV-2 around the globe (Paules et al., 2020). 81 

SARS-CoV-2 is a positive-strand RNA virus wrapped in a lipid bilayer, which fuses with the host cell, releasing its 82 

genetic material to the cytoplasm in order to express its viral proteins and replicate its genome, assembling itself into new 83 

viruses which will be released from the host cell (Lu et al., 2020; Qinfen et al., 2004; F. Wu et al., 2020). His RNA contains 84 

10 open reading frames (ORFs) that encode a variety of viral proteins (Lu et al., 2020). ORF1ab encodes a polyprotein (PP) 85 

that contains non-structural proteins (NSP) involved in the replication and transcription of viral RNA. In addition, they 86 

contain two important proteases for fragmentation of PP1ab in 14 regions. The other ORFs (2 to 10) encode structural and 87 

auxiliary proteins (Lu et al., 2020; C. Wu et al., 2020). Within the proteome of the SARS-CoV-2, it is worth highlighting 88 

the importance of the protease NSP5 for the release of other functional proteins involved in replication and transcription of 89 

viral RNA (Muramatsu et al., 2016; Ratia et al., 2008; C. Wu et al., 2020). 90 

This NSP5 is a 3-chymotrypsin-like cysteine protease, 3CLpro, also known as main protease (Mpro). It is an enzyme 91 

composed of 306 amino acids with a theoretical isoelectric point of 5.95 and an aliphatic index of 82.12 (Tahir ul Qamar et 92 

al., 2020). Its main function is to hydrolyze PP1ab in at least 11 conserved sites, releasing the NSP4 proteins to NSP16 (Jin 93 

et al., 2020; Yang et al., 2005). Its sequence shares 96.08% identity with its SARS-CoV counterpart, with twelve mutation 94 

points (Val35Thr, Ser46Ala, Asn65Ser, Val86Leu, Lys88Arg, Ala94Ser, Phe134His, Asn180Lys, Val202Leu, Ser267Ala, 95 

Ser284Ala and Leu286Ala). However, both proteins conserve the catalytic dyad residues His41 and Cys145. Except for the 96 

Leu286Ala mutation, all other mutations retain their polar or hydrophobic properties (Tahir ul Qamar et al., 2020). 97 

At the structural level, the SARS-CoV-2 Mpro (hereafter referred to as Mpro) monomer has three domains: domain I 98 

(residues 8-101), domain II (residues 102-184), domain III (residues 201-303) and a loop (residues 185-200) that connects 99 

domains II and III targets for SARS-CoV-2 (Tahir ul Qamar et al., 2020; Yang et al., 2005). The Mpro active site is located 100 

in an opening between domain I and II, which contains both catalytic residues (Mirza & Froeyen, 2020; Tahir ul Qamar et 101 

al., 2020; Yang et al., 2005). In addition, close to the active site, three important subsites S1, S2 and S4 have been identified 102 

for substrate recognition together with the Tyr161 and His163 residues, forming the substrate-binding pocket (Yang et al., 103 

2005). The substrate recognition sequence is Leu-Gln*(Ser, Ala, Gly) (where * marks the cleavage site) and no human 104 

proteases have been found with a similar cleavage sequence (Zhang et al., 2020), and even more, this viral enzyme does not 105 
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have related homologous in humans (Jin et al., 2020). Therefore, potential inhibitory molecules would have a preference for 106 

the Mpro substrate recognition region. 107 

The rapid transmission of this coronavirus has caused global healthcare systems to face a daunting challenge, where 108 

social isolation and lockdowns implementation have been the first containment strategy (Karnon, 2020). Although 109 

lockdowns have significantly slowed down the transmission of SARS-CoV-2, they are not sustainable long-term strategies 110 

(Endstrasser et al., 2020; Thakur et al., 2020). For this reason, the scientific community has started a race against the clock, 111 

focusing their efforts on the search for efficient vaccines or drugs for effective treatment against COVID-19 (Arnold, 2020; 112 

Khuroo et al., 2020; Sharma & Surani, 2020). 113 

In response to the global emergency, many institutions are conducting clinical trials applying the drug repurposing 114 

technique (National Institutes of Health, 2020) and also pre-clinical studies with natural compounds (Khalifa et al., 2020) in 115 

order to find potential antivirals against SARS-CoV-2. In this way, medicinal plants are a key part of the history of 116 

humanity because they are a source of phytochemical compounds with therapeutic activity, and these compounds were and 117 

are used as lead compounds to develop drugs (Gu et al., 2013). In an effort to gather information on phytochemicals 118 

reported in various plants around the world, the Universal Natural Product Database (UNPD) was created (Gu et al., 2013), 119 

which is currently available in a mirror version, as the UNPD In-Silico MS/MS Database (UNPD-ISDB) (Allard et al., 120 

2016) containing 213,210 molecular structures of NPs and freely available at http://oolonek.github.io/ISDB. 121 

To accelerate the search for molecules with therapeutic potential, many research groups around the world are using 122 

techniques like molecular docking in virtual screening (VS) assays from compounds libraries to identify molecules which 123 

are most likely to bind to a drug target, and complementing with molecular dynamics simulations (MDS) to analyze the 124 

conformational dynamics of proteins under conditions that mimic biological systems (Lin et al., 2020). With this objective, 125 

these tools were used to evaluate the inhibitory potential of natural products (NPs) (C et al., 2020; Ibrahim et al., 2020; 126 

Majumder & Mandal, 2020; Mazzini et al., 2020; Oso et al., 2020; Rao et al., 2020; Sayed et al., 2020; Sen et al., 2020), 127 

approved drugs (Gurung et al., 2020; Jiménez-Alberto et al., 2020; Kandeel & Al-Nazawi, 2020) and both of them (Fischer 128 

et al., 2020; Gentile et al., 2020; Kanhed et al., 2020) against Mpro. The results of these projects show compounds that could 129 

be used for in vitro tests to verify their antiviral activity or optimize their structures to improve their affinity for the enzyme. 130 

Despite the efforts of the scientific community, until now there are no vaccines or drugs for a definitive treatment 131 

against COVID-19, and the discovery and development of new therapeutic agents is a long and expensive process (DiMasi 132 

et al., 2016). Therefore, computational tools such as the ones performed in this project can be used to predict the binding 133 

mode of ligands in the active site of interest and analyze the stability of a ligand-receptor complex under simulated 134 

biological conditions. Although computational techniques do not replace in vitro or in vivo tests, they offer a high 135 

throughput tool towards the discovery and development of efficient compounds (Lin et al., 2020). 136 

Keeping this in mind, our study aims to identify important biomolecular interactions between the NPs reported in the 137 

UNPD-ISDB and Mpro active site residues through VS, molecular docking and MDS. 138 

 139 

2. MATERIALS AND METHODS 140 

 141 

2.1. Overview of procedures used for selecting the NPs with the best affinity for Mpro 142 

In order to obtain ligands with the best ability to interact with residues of the active site of Mpro, the workflow had 143 

several steps. We used 213,038 molecules of the UNPD-ISDB without any filtering. Previously we carried out the 144 
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validation of VS and molecular docking protocols by redocking the co-crystallized ligand of Mpro. Then, a VS was 145 

performed with the AutoDock Vina v1.1.2 software (also referred to as Vina) (Trott & Olson, 2009). Based on the binding 146 

affinity values reported by Vina, the best 1000 compounds were docked using ligand flexible and rigid receptor with 147 

Schrödinger’s Glide module (Friesner et al., 2004) in standard precision (Glide-SP) and extra precision (Glide-XP) mode. 148 

The hits from the Glide-XP step were docked with the Induced Fit Docking (IFD) protocol (Sherman et al., 2006), that 149 

allows flexibility to the ligands and residues that are within the volume of the search box. The VS with the subsequent 150 

molecular docking was made to give reliability to the results (Berry et al., 2015; Lindert et al., 2015; Mirza & Froeyen, 151 

2020).  152 

From these results, the 3 best hits were selected to perform molecular dynamics simulations with GROMACS (Abraham 153 

et al., 2015) v2020-2  to verify the stability of the 3 ligand-receptor complexes. 154 

 155 

 156 

Figure 1. Workflow used to select potential Mpro inhibitors. The hits selection was based on the binding affinity value in the 157 

case of Vina, and the docking score in the case of Glide. 158 

 159 

2.2. Virtual screening and molecular docking 160 

 161 

2.2.1. Receptor preparation 162 

A protein model was prepared for each process. For VS, the crystal structure of SARS-CoV-2 Mpro (PDB ID 6W63, 2.10 163 

Å) (Mesecar, 2020) was retrieved in PDB format from the Protein Data Bank (http://www.rcsb.org/) (Burley et al., 2019). 164 

Using the AutoDockTools-1.5.6 (Morris et al., 2009), all water molecules and ions were removed from the receptors. Polar 165 

hydrogens were added to the receptors (Musa et al., 2018; F. Wang et al., 2019) and the structure was saved in PDBQT 166 

format. 167 

For molecular docking, the same protein retrieved from PDB was prepared using the Protein Preparation Wizard module 168 

(Madhavi Sastry et al., 2013) included in the Schrödinger suite. Also, all water molecules and ions were removed, and bond 169 

orders and explicit hydrogens were assigned to the structure (Nakladal et al., 2019). Protonation states at pH 7.4 for residues 170 
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were prepared by using PROPKA module (Olsson et al., 2011; Rostkowski et al., 2011) implemented in the Protein 171 

Preparation Wizard 172 

 173 

2.2.2. Ligands preparation 174 

For VS, the UNPD-ISDB was used as it is currently the unique available mirror of the original UNPD. Using the Open 175 

Babel v3.0.0 program (O’Boyle et al., 2011), NPs in linear InChI notation (Heller et al., 2015) were converted to three-176 

dimensional structures (Panda et al., 2020), minimized by 20 thousand steps with the MMFF94 force field and hydrogens at 177 

pH 7.4 (Gyebi et al., 2020; Tsuji, 2020) were added. The prepared ligands were then saved in PDBQT format ready for VS. 178 

In the preparation, 172 molecules were discarded because they had arsenic in their constitution, and this element is not 179 

parameterized in the MMFF94 force field (Halgren, 1996). 180 

For molecular docking, the best 1000 hits of the VS were prepared with the LigPrep module (LigPrep, 2018) of 181 

Schrödinger suite, performing a geometric minimization with the OPLS_2005 force field and assigning appropriate 182 

ionization states at pH 7.4 (Sigalapalli et al., 2020). 183 

 184 

2.2.3. Virtual screening  185 

Vina was used to perform VS of the NPs database in Mpro active site. The optimal size of the search box (40x40x40 Å in 186 

X, Y and Z axis, respectively), was calculated using the eBoxSize script (Feinstein & Brylinski, 2015) and the coordinates 187 

of the centroid of Mpro binding site (x=-20.7, y=17.3, z=-26.7), which covered the catalytic dyad residues, were determined 188 

with the POCASA server (Yu et al., 2009). The calculations were performed in the Quinde 1 supercomputer (Imbabura, 189 

Ecuador) with an exhaustiveness level of 24. 190 

We used all the UNPD-ISDB NPs structures without any filter, since the active site of Mpro has a tendency to undergo 191 

conformational changes that could not be stabilized by small inhibitors (Bzówka et al., 2020). In this way, high molecular 192 

weight NPs could be stabilized by more favorable biomolecular interactions with residues close to the active site. 193 

 194 

2.2.4. Molecular docking 195 

For increase the reliability of the results as shown in Figure 1, the best 1000 hits of VS with the best binding affinity 196 

values, after being prepared with LigPrep, were docked with Schrödinger’s Glide module using Glide-SP. From the new 197 

results, Glide-SP’s top 100 ligands with the best docking score were docked with Glide-XP. Steps with Glide-SP and Glide-198 

XP were done using flexible-ligand docking and rigid-receptor. Following, the top 10 hits from the Glide-XP step were 199 

docked with the IFD protocol, which performs an initial docking with Glide, then a relaxation of residues with Prime 200 

(Jacobson et al., 2004), and then a redocking of the ligands with Glide into the relaxed active site. 201 

All molecular docking studies were performed with the OPLS_2005 force field applying the same centroid coordinates 202 

and box dimensions that were used for the VS. To analyze the non-covalent interactions of the 3 best hits of the IFD 203 

protocol, the LigPlot+ v.2.1 program was used (Laskowski & Swindells, 2011). 204 

 205 

2.3. Molecular dynamics simulations (MDS) 206 

To evaluate the stability of the best three hits docked by IFD in the binding site of the Mpro, MDS were performed with 207 

the GROMACS software v2020-2. The topology of the systems was built using the pdb2gmx module of the GROMACS 208 

software. Each complex was solvated in a cubic box at 10 Å from the box edge using the explicit solvation model TIP3P 209 
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(Jorgensen et al., 1983), applying PBC conditions and the OPLS_AA force field. Subsequently, Na+ and Cl- ions were 210 

added to the solvent to neutralize the charges at a physiological concentration of 150 mM. The energy minimization of the 211 

system was carried out using the descending step algorithm, with 50,000 steps until obtaining forces of <10.0 kJ/mol. Then, 212 

the system was equilibrated using an isochoric-isothermal ensemble (NVT) and a subsequent isothermal-isobaric ensemble 213 

(NPT) for 2 and 4 ns, respectively. The temperature was maintained at 310 K with the Berendsen thermostat (Berendsen et 214 

al., 1984), while the pressure was at 1.0 bar with the Parrinello-Raman barostat (Parrinello & Rahman, 1980). The LINCS 215 

algorithm (Hess et al., 1997) was used to restrict interactions with long-range electrostatic forces calculated using Ewald's 216 

mesh particle algorithm (Darden et al., 1993). For the calculation of short-range non-bonded interactions a cutoff ratio of 217 

1.2 nm for Coulomb and van der Waals potentials were used. The simulation was performed during 200 ns with integration 218 

steps of 2 fs. Simulation trajectories obtained were used to analyze the root-mean-square deviation (RMSD), root mean 219 

square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA) and number of hydrogen bonds 220 

(H-bonds). 221 

 222 

2.4. Binding free energy calculations 223 

The binding free energy (ΔGbind) of the ligand-receptor complexes were calculated by the physic-based Molecular 224 

Mechanics - Generalized Born Surface Area (MM-GBSA) method (Genheden & Ryde, 2015) with the Prime module using 225 

the continuum VSGB solvation model (Li et al., 2011) and OPLS_2005 force field. The ΔGbind was calculated by the 226 

following equation: 227 

 228 

ΔGbind = Gcomplex – (Gprotein + Gligand) 229 

 230 

Where Gcomplex, Gprotein and Gligand are the free energy of the complex, protein and ligand, respectively. The ligand-231 

receptor complexes were subjected to ΔGbind calculation. For this purpose, 20 snapshots were taken at 10 ns time intervals 232 

throughout the MDS trajectory to calculate the MM-GBSA free energy differences. As a control, Mpro was also simulated 233 

with its co-crystallized native ligand X77. The results are presented as the average ΔGbind ± standard deviation. 234 

 235 

3. RESULTS AND DISCUSSION 236 

 237 

3.1. Validation of docking protocol 238 

To validate the molecular docking conditions, the co-crystallized ligand X77 was removed and re-docked applying the 239 

same parameters of box size and centroid coordinates, which corroborated the reliability of the parameters adopted by the 240 

program. This procedure was applied for the X77 co-crystallized Mpro ligand. Thus, after being re-docked and compared 241 

with its native crystallized conformation, it had an RMSD difference of 1.045 Å when docked with Vina, 1.233 Å with 242 

Glide-SP and 1.986 Å with Glide-XP (Figure 2). According to the methodology reported in literature, a reliable molecular 243 

docking protocol is the one in which the RMSD difference between the best docked conformation and the crystallized 244 

native conformation of a ligand is ≤2.0 Å (R. Wang et al., 2003). Therefore, the protocols used with Vina and Glide in our 245 

study are reliable and can be used to evaluate the interactions generated between the SARS-CoV-2 Mpro active site and NPs. 246 

 247 
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 248 

Figure 2. Results of the validation of the docking protocol in Mpro. The ligand X77 co-crystallized is shown in red, docked 249 

with Vina in blue, with Glide SP in cyan and with Glide XP in orange. As shown in all cases, RMSD difference values less 250 

than 2.0 Å. 251 

 252 

3.2. Virtual screening 253 

The results of the VS with Vina were grouped by binding affinity ranges of 1 kcal/mol versus the frequency of ligands 254 

that obtained such binding affinity values (Figure 3). Almost 36% (77,214) of all ligands were found to have a binding 255 

affinity between -7 to -7.9 kcal/mol. The 1000 top hits, with binding affinity values between -13.7 and -10 kcal/mol, were 256 

selected for further molecular docking analysis. 257 

 258 

 259 

Figure 3. Screened NPs binding affinities distribution. The graph shows the ranges for binding affinity values versus the 260 

frequency of ligands that reached these binding affinity values. The ligands for the molecular docking analysis were 261 

selected according to the best binding affinity values. 262 

 263 

3.3. Molecular docking 264 

Vina's 1000 top hits were docked with Glide-SP, obtaining among the best 100 conformations of docking score energies 265 

from -7.872 to -11.170 kcal/mol. Following the working protocol, the 100 top hits of molecular docking with Glide-SP were 266 

docked with Glide-XP mode. Based on this step, the top 10 conformations gave docking score values between -3.147 and -267 

15.980 kcal/mol. As a final step in molecular docking, Glide-XP's top 10 hits were again docked with the IFD protocol. The 268 
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best ligands were identified as phillyraeoidin E (PR), pseudoheptafuhalol-C (PHF) and [28-(beta-d-glucopyranosyloxy)-28-269 

oxoolean-12-en-3-beta-Yl]-2-O-beta-D-xylopyranosyl-3-O-alpha-L-rhamnopyranosyl-beta-D glucopyranosiduronic acid 270 

(GPA). Table 1 shows the main energy components reported by the IFD module for each hit. 271 

Ligands with better binding affinity are relatively large and under flexible ligand docking conditions, adopt a broad 272 

conformational spectrum. Thus, an energetic stability of the NPs and the receptor was expected, dependent on the surface 273 

area and short-distance biomolecular interactions. Table 2 shows that the ligands PR, PHF and GPA, acquire a high docking 274 

score with IFD protocol due to H-bonds and hydrophobic interactions in the Mpro active site and other residues close to that 275 

region. All 3 ligands interact with His41, while only PR and PHF interact with Cys145. These catalytic residues are of 276 

interest for the inhibition of Mpro activity. PR was docked with 15 of the 25 amino acids in the pocket and presents a 277 

docking score of -20.9 kcal/mol, obtained mainly by 20 H-bonds, where the oxygen atom O9, stands out (Figure 4a), due to 278 

its 4 H-bonds in the region polarized by Arg188, Thr190 and Gln192. On the other hand, hydrophobic interactions with PR 279 

occur with the residues Thr25, Met49 and Leu50, with Thr25 being relevant because it also interacts with PHF and GPA. 280 

PHF (Figure 4b) interacts with 15 amino acids, where 13 are by H-bond and 6 by hydrophobic interactions. Finally, GPA 281 

(Figure 4c) interacts with 14 amino acids, with 13 due to H-bond and 5 due to hydrophobic interactions. 282 

Interestingly, a recent study (Gentile et al., 2020) detected phlorotannins structurally similar to PHF and with great 283 

binding affinity for the Mpro active site. These were also present in the brown algae Sargassum spinuligerum. According to 284 

literature, several species of algae belonging to the Sargassum family have been used in traditional Chinese medicine as 285 

therapy against cancer, inflammations, bacteria and viruses (Liu et al., 2012). Such algae could thus be worth further 286 

investigations concerning their potential interest to fight SARS-CoV-2 infections. 287 

  288 
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Table 1. Information about the three top NPs from the IFD analysis. 289 

Name UNPD-ISDB ID Common name Structure Compound class Biological source 

PR 158047 Phillyraeoidin E 

 

 

Tannin 
Quercus phillyraeoides 

(Nonaka et al., 1989) 

PHF 194976 Pseudoheptafuhalol C 

 

Phlorotannin 

Sargassum spinuligerum 

(Keusgen & Glombitza, 1997) 

 

Carpophyllum angustifolium 

(Glombitza & Schmidt, 1999) 

GPA 121581 N/A 

 

Prenol lipids 
Dumasia truncata 

(Kinjo et al., 1995) 

 290 

Table 2. Main energy components of docking score reported by IFD module and interacting residues reported by LigPlot+. 291 

Name 
Docking score 

(kcal/mol) 

Main energy components (kcal/mol) Interacting residues 

H-bonds Lipophilic 

EvdW 

Electrostatic 

interactions 

H-bonds 

interactions 

Hydrophobic 

interactions 

PR -20.94 -15.62 -6.44 -2.00 

Thr24, Thr26, His41, Ser46, 

Asn142, Gly143, Ser144, Cys145, 

Glu166, Arg188, Gln189, Thr190, 

Gln192 

Thr25, Met49, Leu50 

PHF -19.28 -10.81 -7.41 -2.00 

Thr24, Thr26, Met49, Tyr118, 

Asn412, Cys145, His163, His164, 

Glu166 

Thr25, His41, Leu141, 

Met165, Pro168, Gln189 

GPA -19.25 -10.89 -6.69 -1.99 

His41, Asn119, Asn142, Gly143, 

Glu166, Arg188, Gln189, Thr190, 

Gln192 

Thr25, Thr26, Met49, 

Met165,Asp187 

 292 

 293 
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 294 

 295 
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 296 

Figure 4. 2D interaction diagram of (a) PR, (b) PHF and (c) GPA with the Mpro active site. The dotted green lines represent 297 

H-bonds and their distances in Angstroms. The diagrams were generated with LigPlot+ v.2.1. 298 

 299 

3.4. Molecular dynamics simulations (MDS) 300 

MDS were performed to analyze the stability of the 3 complexes with the best IFD docking score values, and the Mpro 301 

with its native ligand X77 was considered as control. Table 3 shows the average values for the various parameters 302 

calculated using MDS. The Origin software (Seifert, 2014) was used to generate the plots. Molecular dynamics trajectories 303 

are presented as movies in supplementary material.  304 

 305 

Table 3: Average values of RMSD, RMSF, Rg, SASA and number of H-bonds of the Mpro–ligand complexes calculated 306 

from MDS. 307 

Complex 
Average values ± SD 

RMSD (Å) RMSF (Å) Rg (Å) SASA (Å2) H-bonds 

Mpro-X77 1.82 ± 0.29 1.22 ± 0.58 21.92 ± 0.14 145.50 ± 2.45 1.89 ± 0.42 

Mpro-PR 2.84 ± 0.42 1.40 ± 0.48 22.01 ± 0.11 147.69 ± 2.21 6.49 ± 1.96 

Mpro-PHF 3.31 ± 0.65 2.00 ± 0.78 22.21 ± 0.27 150.33 ± 2.49 5.70 ± 0.83 

Mpro-GPA 2.03 ± 0.32 1.16 ± 0.49 21.78 ± 0.13 145.76 ± 2.48 5.11 ± 2.00 

 308 

3.4.1. Root-mean-square deviation (RMSD) 309 

RMSD is an essential criteria to quantify the structural stability of a protein from its initial to final conformation within a 310 

time frame. For this work, the Mpro backbone RMSD of each complex was calculated (Figure 5). The average values for 311 
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RMSD Mpro backbone in complex with ligands and co-crystallized ligand X77 are shown in Table 3. According to the 312 

Figure 5, the Mpro backbone RMSD in complex with GPA and their native ligand X77, reach equilibrium almost from the 313 

beginning, although both experience a small fluctuation between 130-140 ns, after which they regain their stability until the 314 

simulation is finished. Similarly, the Mpro backbone RMSD in complex with PR is seen, where it increases to ~90 ns and 315 

then stabilizes. The Mpro backbone RMSD with the PHF ligand is the most unstable of all complexes, with peaks close to 5 316 

Å, suggesting that PHF increases the instability of the Mpro. 317 

 318 

 319 

Figure 5. Mpro backbones RSMD over the simulation time. 320 

 321 

3.4.2. Root-mean-square fluctuation (RMSF) 322 

The RMSF was evaluated to identify the flexible or rigid regions of the protein structure, also this parameter can be used 323 

to inspect the flexibility of the residues. The Figure 6 shows the average backbone RMSF calculated for every residue 324 

throughout the simulation period. The mean RMSF values of Mpro and their ligands are shown in Table 3. We see that the 325 

average flexibility of Mpro is reduced when it is bound to the GPA ligand (1.16 ± 0.49 Å), even less than when its native 326 

ligand X77 (1.22 ± 0.58 Å) is bound, which suggests that the GPA ligand would grant more rigidity to the enzyme. The 327 

mean RMSF value with the PR ligand reaches a value close to (1.40 ± 0.48 Å) that does not differ significantly from the 328 

control Mpro-X77 complex, but in the case of the complex with PHF, this ligand generates fluctuations in various regions of 329 

the Mpro. The catalytic residues His41 (0.83 ± 0.15 Å) and Cys145 (0.73 ± 0.13 Å) show minimal fluctuations in the 4 330 

complexes, which is why they remain quite stable throughout the simulation. 331 

 332 



14 

 

 333 

Figure 6. Mpro backbones RSMF over the simulation time. 334 

 335 

3.4.3. Radius of gyration (Rg) 336 

The Rg generally is defined as the mass weighted root mean square distance of a group of atoms from their center of mass 337 

and shows the level of compaction of the protein. Figure 7 shows the evolution of the Rg for all Mpro-ligand complexes. The 338 

Rg average value for Mpro-PR, Mpro-PHF, Mpro-GPA and the control Mpro-X77 were found to be 22.01 ± 0.11 Å, 22.21 ± 339 

0.27 Å, 21.78 ± 0.13 Å and 21.92 ± 0.14 Å respectively. The Mpro-GPA complex shows the lowest average Rg value, even 340 

slightly less than the Mpro-X77 control, suggesting that the Mpro forms a more stable complex with the GPA. In the same 341 

way, the average value for Mpro-PR complex exhibit similar rigidity as Mpro-GPA and control Mpro-X77. While the Mpro in 342 

complex with the PHF ligand maintains a stable Rg up to ~90 ns from which it experiences fluctuation, suggesting that the 343 

PHF induces a loss of rigidity of the Mpro. 344 

 345 

 346 

Figure 7. Rg for the Mpro from every complex over the simulation time. 347 

 348 

 349 
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3.4.4. Solvent accessible surface area (SASA) 350 

SASA was calculated for the Mpro in every complex as shown Figure 8. This analysis is useful to understand the 351 

hydrophilic-hydrophobic behaviour of a protein structure or protein-drug complexes. Higher SASA protein values indicate 352 

the expansion of the Mpro structure, so small fluctuations are expected during simulation. According to the average SASA 353 

values for proteins in Table 3, the Mpro in complex with the GPA ligand shows the average SASA value (145.76 ± 2.48 Å2) 354 

almost comparable to the Mpro bound to its native ligand X77 (145.50 ± 2.45 Å2) so these ligands would reduce the 355 

expansion of Mpro; while when the protein binds to the PHF ligand, the SASA value increases (150.33 ± 2.49 Å2), which 356 

would indicate that the PHF would induce an expansion in the protein structure, increasing the solvent accessible surface of 357 

the Mpro. This assessment is apparently correctly associated with the previous analysis of Rg. 358 

 359 

 360 

Figure 8. SASA analysis of Mpro from every complex over the simulation time. 361 

 362 

3.4.5. Ligand-receptor hydrogens bonds (H-bonds) 363 

H-bonds generated between the Mpro and their ligands is a useful parameter to understand the affinity of the NPs towards 364 

a protein structure. Several H-bonds present in a ligand-receptor complex suggest a strong union. Due to the amount of 365 

hydroxyl groups in the molecular structures of the best hits, all of them presented several H-bonds throughout the simulation 366 

(Figure 9), surpassing the native ligand X77 (1.89 ± 0.42). Thus, those who exhibit a greater number of H-bonds were PR 367 

(6.49 ± 1.96), PHF (5.70 ± 0.83) and GPA (5.11 ± 2.00). This suggests that despite slightly destabilizing the enzyme, PHF 368 

and PR ligands remain attached to residues of the Mpro active site through H-bonds. 369 

 370 
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 371 

Figure 9. Number of H-bonds between Mpro and their ligands during the simulation period. 372 

 373 

3.5. Free binding energy calculations 374 

The four complexes were subjected to ligand-receptor ΔGbind MM-GBSA analysis, for every 10 ns snapshots. The 375 

results shown in table 4 suggest that the NPs have an average ΔGbind higher than the control X77 (-66.39±5.65 kcal/mol) in 376 

all the cases. This could be due to the many hydroxyl groups that the ligands have and hydrophobic interactions, which 377 

would help stabilize the NPs with residues in the Mpro active site. Interestingly, it is observed that the ligand with less 378 

average ΔGbind is PHF, which altered the stability with Mpro according to the RMSD, Rg and SASA analyzes. These results 379 

suggest that the NPs would have superior stability to the co-crystallized ligand Mpro-X77. 380 

 381 

Table 4. ΔGbind values in kcal/mol ± SD, calculated by MM-GBSA for all the complexes. 382 

Mpro-X77 Mpro-PR Mpro-PHF Mpro-GPA 

-66.39±5.65 -121.41±12.13 -94.67±9.54 -120.88±10.90 

 383 

CONCLUSIONS 384 

COVID-19 is an infectious disease that to date, does not have a vaccine or antiviral with proven efficacy. Therefore, 385 

taking into consideration the outstanding track record of NPs as efficient drug candidates, we performed an extensive in 386 

silico evaluation of specialized metabolites reported in the literature to assess and understand the biomolecular interactions 387 

generated between these compounds and the active site of Mpro. VS allowed for rapid filtering based on binding affinity, 388 

while molecular docking refined the results through successive steps, thus verifying the affinity between NPs and important 389 

Mpro residues. After an initial VS with Vina, post-filtering of results and docking with Glide using standard and extra 390 

precision, three NPs were selected: two tannins, phillyraeoidin-E (PR), pseudoheptafuhalol-C (PHF) and a triterpenoidal 391 

saponin (GPA). They were subjected to MDS to verify their stability over 200 ns, resulting in two of them (PR and GPA) 392 

with a better conformational stability and energetic profile than the co-crystallized ligand X77 of the enzyme. Finally, the 393 
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affinity of the selected natural ligands during the MDS was confirmed through the calculation of the ΔGbind, showing for the 394 

3 ligands an average ΔGbind higher than the co-crystallized ligand. 395 

The NPs identified at present, do not pretend to directly enter into clinical trials as potential Mpro inhibitors, however, 396 

through our results we can consider the main biomolecular interactions and structural information of the best ligands for 397 

further design and optimization of SARS-CoV-2 Mpro inhibitors. 398 

 399 
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