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ABSTRACT: Here the diffusion and the stochastic adsorption of single diluted solute molecules on flat and 
patterned surfaces are analytically solved by integrating the single-molecule probability density function 
(PDF) of Fick’s 2nd law of diffusion. The solution is then compared to ensemble solutions such as the Lang-
muir-Schaefer equation and the Ward-Tordai equation. The equation is then corrected with several Monte 
Carlo random-walk simulations of model systems, namely diffusion of bulk solute molecules to a flat 
bouncing surface, an imaginary flat interface, and a flat adsorptive surface. In the short-time limit with a 
correction, the method reproduces the same result of the Langmuir-Schaefer equation. In the long-time 
limit, the back-diffusion term of the Ward-Tordai equation is obtained via simulation and explained. On 
the bouncing surface, a fixed solute-surface collision rate is observed for a given integration time (the time 
of each measurement cycle). However, the rate is dependent on the integration time because of the multiple 
collisions of the same molecules over different time regions as such a characteristic integration time to 
represent the upper limit of the mass flux is derived. The simulation also clarifies that the factor of two 
correction of the single-molecule equation is due to the missing of the self-mimetic fractal nature of diffu-
sion in the single-molecule PDF at a given time. Also, due to the mirror effect, the single-molecule equation 
should be multiplied with a factor of four for an imaginary interface, which offers a way to predict the 
diffusive collision frequency in bulk solutions. For the adsorptive surface, the power-law decay function over 
time of adsorption in the Langmuir-Schaefer equation is visualized during the simulations to come from an 
evolving concentration gradient near the surface along with the depletion of the bulk solute molecules near 
the surface. Finally, simulations on self-assembled monolayer formation with the Langmuir isotherm model 
are used to illustrate the limitations of the various methods. 

  



 

 

2 

INTRODUCTION 

Diffusion,1,2 adsorption, and absorption of single molecules inside a confined volume are fundamentally 

interesting in many fields such as cell biology,3–5 biosensing,6,7 separation,8 fluidic dynamics,9 reaction 

kinetics,10 catalysis,11,12 and batteries.13 For example, stochastic absorption of antibody and antigen is 

responsible for the immune response of a living cell. Absorption of a single messenger molecules triggers 

motions of ion channel proteins on a cell membrane which is an important function to exchange materials 

and information among cells such as muscles and neurons.14 Stochastic adsorption of single molecules on 

surfaces is responsible for many separation techniques such as chromatography, membrane filtration, and 

heterogeneous catalysis.15–17 The stochastic collision of molecules in a diluted solution is the key process 

for reaction kinetics. Biosensing and lab-on-a-chip synthesis are often realized by molecular diffusion. 

With the development of single-molecule detection methods,6,7,18–20 there is a need to simplify the diffu-

sion equations to estimate the order of magnitude of simple parameters such as collision rates. In this 

article, I am particularly interested in molecules or colloids diffusing in a solution and adsorbing on a 

surface. 

Diffusion has been empirically summarized by Fick’s laws of diffusion.1,2 For example, the diffu-

sion of materials from a high-concentration reservoir through an interface into the bulk volume of interest 

is described by a time- and space-dependent concentration gradient function C(x, t), which is summarized 

into the 1D diffusion equation that obeys the Fick’s second law of diffusion:1,2 

𝜕𝐶(𝑥,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷(𝑥, 𝑡)

𝜕𝐶(𝑥,𝑡)

𝜕𝑥
)   (1) 

where t is time (unit s), x is the distance away from the interface (m), C(x, t) is the concentration gradi-

ent (molecules m-3), and D(x, t) is the time-and-space-dependent diffusion coefficient (m2 s-1), a con-

stant if the time and space-dependent are negligible under certain conditions.  

In a special case for our interested molecules diffusing in a homogeneous bulk solution, when 

D(x, t) is averaged into a global constant 〈𝐷〉 = 𝐷, the equation resembles the heat equation formulated 

by Joseph Fourier in 1822 to describe heat conduction in materials2 which are phonon diffusion: 

𝜕𝑓

𝜕𝑡
=

𝜕2𝑓

𝜕𝑥2       (2) 

where f is the heat distribution along, say, a 1D rod with a hot end and a cold end.  

 This special case has a formal analytical solution of the concentration over space and time:1 

𝐶(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡  (3) 

where C(x, t) (unit mol/m3) is the concentration of the molecules at space x (m) from origin x = 0 and time 

t from initial time t = 0 that all molecules are at the origin. Equation 3 is a 1D Gaussian distribution 

function with the standard deviation 𝜎 = √2𝐷𝑡, and is normalized to the unit in all x space, i.e. at any 

giving snapshot of t, 𝐴∫ 𝐶(𝑥, 𝑡)
∞

−∞
𝑑𝑥 = 1 (mole) where A is a unit area. The Gaussian distribution is an 

approximation of the van Hove correlation function for the Brownian diffusion.21,22 To make the molec-

ular unit work, the equation assumes an area of A = 1 unit length2 (m2) which is hidden in the perpendicular 

dimensions, i.e., the infinitesimal volume along the box (or cylinder) will be Adx (m3).  

The diffusion constant D for a colloid, an organic molecule, or a protein in a liquid can be esti-

mated by the Stokes-Einstein equation:23,24 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
  (4) 



 

 

3 

Where kB is the Boltzmann constant, T is temperature, η is the viscosity of the solution, and r is the radius 

of the particle. For a molecule approximated to a small ball, r can be estimated from the molecular weight 

𝑀𝑤 =
4

3
𝜋𝑟3𝜌 (kg/m3), where ρ is the density of the neat molecule in the solid or liquid state. All SI units.  

An analytical solution of the adsorption kinetics of diluted diffusive molecules onto a flat surface 

was firstly reported by Ward and Tordai in a 1946 paper by integrating the diffusion equation:25 

𝛤(𝑡) = 2𝑐𝑏√
𝐷

𝜋
√𝑡 − √

𝐷

𝜋
∫

𝑐(𝜏)

√𝑡−𝜏
𝑑𝜏

√𝑡

0
)  (5) 

where Γ (unit mol m-2) is the number of molecules adsorbed on a unit area of the surface, t is the time 

since the formation of the fresh surface (s), D is the diffusion constant (m2 s-1), cb is the bulk and c(τ) is 

the sub-surface molar concentration of the solute in the solution (mol m-3), and τ is a dummy variable with 

the unit of time (s). The first part of the equation is the Langmuir-Schaefer Equation reported 1937 suit-

able for the short-time limit,26 and the second half of the equation is so-called the “back-diffusion” of 

molecules from the surface over a longer time, i.e. a correction to the desorption and self-repulsion of the 

molecules. We can picture this equation into an adsorption isotherm curve rises fast at the beginning 

dominated by the first term, slow down, and saturate over time because of the growth of the second term.  

This ensemble approach is mathematically complicated involving fraction calculus and Laplace 

transform of convolution and mechanistically confusing, e.g., the square-root-dependent growth of the 

first term is unusual in kinetics, the physical meaning of the time-dependent sub-surface concentration is 

not clear and the whole back-diffusion term is confusing.27,28 The sub-surface concentration is often been 

extracted from the experimental data which makes the equation semi-empirical in many cases. Specifi-

cally, the Ward-Tordai equation is often used to measure the effective diffusion constant from the exper-

imental data25,29 which beats the purpose of using the Stoke-Einstein equation to predict the adsorption 

kinetics. Besides, it is difficult to extract the underlying adsorption mechanism from the effective diffu-

sion constant that is often several orders of magnitude different from the value predicted by the Stoke-

Einstein equation.25,29 Thus, it has been an ongoing challenge to simplify the calculations and clarify the 

meanings.27–33 These complexities have limited the applications of the Ward-Tordai equation (Equation 

5) in many fields such as chemistry, biochemistry, biophysics, biotechnologies, and chemical engineer-

ing.27,28 In these fields, the diffusive adsorption is a critical process yet a simple-enough-to-understand 

model to describe the stochastic single-molecule behavior is still lacking, as far as I know from searching 

the literature and talking to many peers in the biophysics field. In this report, I am targeting the adsorption 

problem using a single-molecule approach that is intuitive to understand instead of the well-established 

ensemble approach. As a major motivation, once the single-molecule method is established, equations to 

calculate single-molecule collision frequencies among each other and to a surface with any shape and 

curvature in both semi-infinite and confined space can be derived in the future. 

 

RATIONAL  

The 1D diffusion distribution of many molecules, Equation 3, also represents the diffusion prob-

ability density function (PDF) of any molecule in any dimension inside the media.1 Giving no media flow 

and symmetric in the media structure, it is natural to assume that the molecule inside the media will diffuse 

symmetrically over any given direction, i.e., its PDF over time is a diffusion ball and symmetric. In the 

special case with an infinite area of the interface as we have assumed for Equation 3, the diffusion of the 

molecules in the lateral direction, the lateral fraction of the PDF, cancel with those of other molecules, 

i.e., the molecules switch positions and maintain the statistical distances in the media. As such, only the 

diffusion probability that is perpendicular to the interface survives for the measurement of the 1D gradient. 

We need two assumptions to extend the ensemble distribution to single-molecule PDF: (1) assuming all 
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molecules are equal for a normal diffusion,4 i.e., the ergodic hypothesis in thermodynamics, and (2) no 

inter-solute interaction, or the concentration difference over the space does not change the intermolecular 

interaction among the solutes, i.e., under the diluted condition.  

Thus, for single-molecule and single-particle diffusion, or Brownian motion, assuming all 3D di-

rections are symmetric and inherit the ensemble diffusion constant, the probability density function (PDF) 

becomes 

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = (
1

4𝜋𝐷𝑡
)
3/2

𝑒−
𝑥2+𝑦2+𝑧2

4𝐷𝑡 = (
1

4𝜋𝐷𝑡
)
3/2

𝑒−
�⃗⃗� 2

4𝐷𝑡    (6) 

where the vector �⃗�  representing the distance and the angles to the origin position of the molecule, at t = 

0, x0 = y0 = z0 = 0 for ease of expression. Equation 6 pictures the symmetric diffusing ball with the 

maximum at the center, Gaussian decaying over all directions, and normalized to one unit if integrated 

over all volume.  

The 1D PDF of single-molecule away from an origin has the same format as the ensemble Equa-

tion 3: 

𝑝(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡     (7) 

where the diffusion constant D is the same value from the ensemble measurement, t is time, and x is the 

distance from the origin interface. Equation 7 works if there is a large-area (semi-infinite) interface per-

pendicular to the direction of interest, or in a confined rod space where the sidewalls just simply bounce 

the molecules back. The SI unit of p is m-1, with hidden area m-2 in the perpendicular dimensions, i.e. the 

probability is normalized to one unit in the cylindrical volume with 1 m2 area and semi-infinite length.  

This restriction is satisfied in many interesting questions to calculate the frequency of solute mol-

ecules diffusing to a target area on a flat surface, e.g. self-assembled monolayer, and typical biosensing 

platforms such as probes binding to immobilized protein or DNA on a flat surface. For example, we have 

measured the absorption rate of dye-DNA staining using single-molecule fluorescence microscopy which 

triggers the interest for this report.34  

The accumulated number of molecules collide on the surface can be calculated by assuming that 

the probability of any solute molecule hitting a nearby surface is its error function in the z dimension 

(perpendicular to the surface). A scheme is shown in Fig. 1. Integrating all molecules in the solution in 

the cylindrical volume of interest yields the most probable number of molecules (#) hitting the surface at 

a given time Δt:34,35 

𝛤(𝑖𝑛 ∆𝑡) = ∫ 𝐶𝐴
∞

𝑧=0
d𝑧

∫ 𝑒
−

𝑥2

4𝐷∆𝑡d𝑥
∞
𝑥=𝑧

∫ 𝑒
−

𝑥2

4𝐷∆𝑡d𝑥
∞
𝑥=−∞

= ∫ 𝐶𝐴
∞

𝑧=0
d𝑧 ∫

1

√4𝜋𝐷∆𝑡
𝑒−

𝑥2

4𝐷∆𝑡d𝑥
∞

𝑥=𝑧
   (8) 

where z and x are the lengths of space shown in Fig. 1A (unit m), A is the area of interest on the surface 

(unit m2), Adz is an infinitesimal volume in the solution of interest, C is the number concentration of the 

solute molecule in the solution (unit # m-3), thus, ACdz is the number of molecules in the volume Adz that 

is z (unit m) away from the surface, D is the diffusion constant of the molecule (unit m2/s), and Δt is the 

elapsed time (unit s).  
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Fig. 1. (A) Snapshot of particles (dots) showing at their origins and scheme of their 1D diffusing PDFs 

(Gaussian) over space at time Δt (curves). The probability of each particle hitting an interface perpen-

dicular to its diffusing direction is shown in the red-colored error functions. (B) Scheme of integrating 

all the error functions in Equation 8. 

 

Solving Equation 8 (Fig. 1B) yields a solution that the accumulated number of molecules collid-

ing to the surface area of A within time Δt is 

𝛤(𝑖𝑛 ∆𝑡) = 𝐴𝐶√
𝐷∆𝑡

𝜋
              (9) 

which has been erroneous integrated before34 and is corrected here. 

Comparing to the Langmuir-Schaefer equation,26 major problems of Equation 9 is missing a fac-

tor of two for it, and Δt instead of the elapsed time t. Missing the back-diffusion term of the Ward-Tordai 

equation is expected since no surface reaction model has been included and we will address it later with 

a model of a self-assembled monolayer. An additional question arises from Equation 9 is about the aver-

age single-molecule hitting rate (s-1) counted at Δt time resolution (by averaging number of hits observed 

in each time step): 

〈𝑟〉  =
𝛤(𝑖𝑛 ∆𝑡)

∆𝑡
= 𝐴𝐶√

𝐷

𝜋∆𝑡
  (10) 

where rate <r> is the average number of molecules hitting per second anywhere in the whole area A. 

Equation 9 has some elements of the Ward-Tordai equation and should be corrected to obtain 

consistency. Equation 9 suggests that the rate measured is a function of observation time Δt, i.e., the 

hitting rate counted in 1 ms and 1 s is ~33 times different, but intuitively it should be the same value that 

is independent on the counting time interval. Thus, justification and explanation are required, for which, 

I run a Monte Carlo numerical simulation35 using MATLAB with a random walking model24,36 to inves-

tigate what is happening under some experimental conditions. Two major suspects causing the problem 

of my approach are the fractal nature of the diffusion,37–39 and the complicated PDF at the surface caused 

by the mirror effect.  

 

METHODS 

The Monte Carlo simulation is carried out on a laptop equipped with an Intel i7 CPU (2.2 GHz) 

and 16 Gb of memory. A basic version of MATLAB 2014b with no toolbox is used for all simulations, 

i.e., single-CPU is used for all simulations. I use a previously coded fitting algorithm jcfit40 (Github) to 

fit the curves. The two major random functions to generate the step motion of each molecule are from 



 

 

6 

MATLAB, rand() creating evenly distributed random numbers and randn() generating Gaussian distrib-

uted random numbers. Detail parameters and settings for the simulations are listed with the simulation 

results in the later sections. The single-molecule diffusion of the solute molecules in confined semi-infi-

nite volumes and their collisions to the walls are simulated. Inter-molecular collisions are not simulated. 

Detail simulation parameters are shown in figure captions and associated text. Example source codes to 

generate 1D single-molecule displacements are included in the supporting information. Typical computer 

time used for the simulations is from a few seconds to a few hours.  

 

RESULTS AND DISCUSSION 

Monte Carlo control simulation of 1D diffusion 

I first test the random function rndn() in MATLAB with a control simulation in generating time-dependent 

diffusion profiles with a 1D random walk model. I place 10,000 molecules in the origin of a 1D space at 

t = 0, then pick a time step Δt = 1 ms and let the molecules walk either direction at each time step creating 

a movie with 1 ms frame resolution. The walking distance of each step is Gaussian distributed with the 

standard deviation or diffusion root mean square displacement RMSD = √2𝐷𝛥𝑡, where D is calculated 

with Equation 4 assuming T = 300 K, η = 8.9×10-4 Pa s (media is water), the molecule is assumed a ball 

with molecular weight 1271 g/mol and molecular density 0.8 g/mL mimicking an organic dye molecule. 

Thus, D = 2.88×10-10 m2 s-1, and the RMSD 𝜎 = √2𝐷∆𝑡 = 760 nm. Fig. 2 plots selected histograms of 

the locations of these molecules spread out over time at t = nΔt where n = 1, 2, 3, …, 105, with a total 

length of simulation 100 s. The histograms are then compared with the Gaussian probability density func-

tion (PDF) curves directly calculated from Equation 7. The agreement between the results of the stepwise 

simulation and the calculated PDF confirms that the random function and the random walk model works 

correctly to simulate a Brownian diffusion within the time of interest from milliseconds to minutes.  

 

Fig. 2. Histograms of simulated 1D diffusion of 104 molecules that have been placed at the center 

position x = 0 at t = 0 ms then each randomly walks along x creating a concentration gradient at t = nΔt. 

The diffusion constant D = 2.88×10-10 m2 s-1, and the simulation step Δt = 1 ms. The dashed curve is 

not fitting but superimposed a Gaussian distribution function calculated from Equation 7.  

 

Surface bounces the molecules back 

Then I simulate a cylindrical rod volume with various cross/end area, length 100 μm (semi-infinitely long) 

mimicking a flow cell with 100 μm cell height and filled with an aqueous solution of the molecules used 

in the control simulation with concentrations around 1 micromole per liter (μM). All concentrations are 

converted to numbers of molecules per m3 volume. The average solute distance over 3D is 118 nm for 1 
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μM solution and 1.2 μm for 1 nM solution but the average distance along the rod axis (1D) varies over 

the area of interest. The 1D diffusion movie of these molecules is recorded over time with step size Δt = 

1 ms. Complex solute-surface interactions are ignored which has been observed in real experiments.41 All 

inter-solute interactions are also ignored. 

The molecules randomly walk up and down the rod. Fig. 3A shows a 1D trajectory of one molecule 

over the condition that each time a molecule hits the ends of the rod volume, it gets mirror-bounced back 

into the bulk (each event is shown in the figure a red circle). The number of hitting events is summarized 

and compared to the predicted values (Equation 9). When a molecule hits the end wall, it has a higher 

chance to hit the end again later because the surface is near the maximum of the Gaussian-decay PDF of 

this just-bounced-back molecule. The counting events are summarized in the cumulative hitting events 

shown in Fig. 3B. These are all linear curves indicating a constant hitting rate proportional to the area of 

interest which is intuitive, i.e. the same number of molecules are observed in each frame of the movie, 

different than our worry that the hitting number will be curved over time. 

When changing the cross area of the rod, i.e. the volume, the number of molecules hitting the end 

wall is changed linearly with the area. This same linear relationship is found for fixing volume and chang-

ing solute concentration. We can see at a very low number, close to one molecule in the volume when the 

simulation must round up the number and do not have enough hitting events to average, the simulation 

introduces a large noise (Fig. 3C). It is surprising that even at the low statistical region, the simulations 

match the predicted values in the right order of magnitude. At just >2 molecules level, the simulation is 

remarkably consistent with the prediction (Equation 9).  

   

Fig. 3. (A) A randomly chosen trajectory of a molecule in a cylindrical volume (rod) where the 1D 

diffusion in the axel direction is simulated. The dashed line indicates an imaginary interface placed in 

the middle point of the bulk solution. The red circles indicate bouncing-back events happen either at 

the ceiling or the floor of the rod. Inset showing a case when the molecule hits the wall twice in three 

simulation steps. The length of the rod is L = 100 μm, the cross/end area of the rod varies a few orders 

of magnitude from A = 5 to 105 nm2, the molecular concentration in the rod volume is fixed at C = 1 

μM, the simulation step time Δt = 1 ms, and total simulation time 100 s. (B) The cumulated number of 

molecules counted at 1 ms resolution over time for a different area of the rod. Linear curves are ob-

served of all simulations. (C) The ratio of the average number of hitting events per second per simulated 

area to the ends of the rod walls counted at 1 ms resolution between the simulations and the predicted 

values from Equation 9 (inset showing the two curves with the same x-axis). The curve is divided into 
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3 zones by the two dashed lines, 1, 2-360, and 360-6000 molecules in the simulated rod volume. (D) 

The ratio of the average number of hitting events vs the number of bins of counting cycles between the 

simulations and the predicted values from Equation 9 using Δt’ (inset showing the curves with the 

same x-axis but with y-axis number of hit event per second per simulated area). Simulated with rod area 

104 nm2 (602 molecules in this volume), step time 1 ms, and total simulation time 100 s. The curve 

labeled ‘wall’ represents the average hitting to the two ends of the rod (fitted𝑦 = (2.0 ± 0.1) −
(1.0 ± 0.1)𝑥−(0.44±0.03)); curve ‘cr-d’ represents the molecules crossing the imaginary interface in one 

direction (averaged of the two directions, fitted 𝑦 = (4.3 ± 0.1) − (3.5 ± 0.2)𝑥−(0.28±0.01)); curve ‘cr-

nd’ represents the sum of the molecules crossing the imaginary interface from both directions (fitted 

𝑦 = (4.0 ± 0.1) − (2.1 ± 0.1)𝑥−(0.38±0.02)).  

 

We already have the clue to answer the non-intuitive question of the measuring-time-depending 

hitting rate from Fig. 3A. Because the same molecule bouncing the same surface multiple times during a 

single measuring time is only counted once in our Gaussian PDF model, longer time-resolution will give 

a smaller hitting rate and vice versa, i.e. the drop of the number with increasing integration time is because 

the fine collisions of the same molecule are grouped in each measuring cycle. The hitting number vs time 

curves will all be linear with different slopes if we change the integration time. A set of curves with one 

measuring time and different areas are shown in Fig. 3B.  

Reducing the counting/measuring time resolution can be simulated by binning the same trajectory 

into longer step times and forcing the maximum number of hits per frame for each molecule to one. Fig. 

3D confirms that the number of hitting events per second indeed drops as the decrease of the counting 

frequency as predicted by Equation 9 (Fig. 3D inset).  

We also get an answer from Fig. 3D for the factor of two disagreements between the first term of 

the Ward-Tordai equation (Equation 5) and Equation 9: correction for the fractal nature of diffusion 

should be applied to our single-molecule method. The simulated value for collision number to the wall in 

a frame approaches two times the predicted values (Equation 9) at ~1000 times longer than the simulation 

step time for the bouncing surface (Fig. 3D). Since the 1 ms time resolution is arbitrarily chosen to rep-

resent the net effect of much finer diffusion steps (ultrafast dynamics), we can argue that if we had simu-

lated the diffusion at <1 μs resolution, Equation 9 would be corrected 2 times to describe the 1 ms simu-

lation to a closer format to the Langmuir-Schaefer equation: 

𝛤(𝑖𝑛 ∆𝑡)  = 2𝐴𝐶√
𝐷∆𝑡

𝜋
  (11) 

except for ∆t is used instead of t. If we had increased the time resolution to picosecond (ps), The RMSD 

in the solution would have been down to sub-water size e.g. water rotating ~1.8 ps.42  Ultrafast collision 

is not the interest of my simulations where the diffusion constant is described by the Langevin equation.1 

We can hypothesize for now that at ultrafast time resolution, the large number of collisions per second 

predicted by Equation 11 (if still holds) divided by ∆t is dominated by the recurrent collisions of the same 

molecules to the surface when they approach each other. Relatively long waiting time may need to see 

another molecule to come (averaged to a small value of collision predicted by Equation 11). If the Gauss-

ian diffusion argument holds on all time scale, i.e. a fractal equation that holds self-similarity over all time 

scales, the actual hitting number and rate for all time steps above nanosecond should converge to two 

times the values predicted by Equation 9 and 10. These two equations are still used as the reference 

equations in some of the rest simulations which represents the limit of information for the simulations 

near its step resolution.  
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 The average rate of solute colliding the wall measured in ∆t is then corrected from Equations 9-

11 to be 

〈𝑟〉(𝑚𝑒𝑎𝑢𝑠𝑟𝑒𝑑 𝑖𝑛 ∆𝑡)  = 2𝐴𝐶√
𝐷

𝜋∆𝑡
  (12) 

It is surprising at first and then reasonable to me that the mirror effect is not observed for the 

hitting frequency to the solid walls but rather observed for the imaginary interface placed in the bulk 

solution (Fig. 3D). As a comparison to the two-fold correction for the solid walls (Equation 11), the 

frequency of molecules crossing an imaginary interface place in the middle of the simulation space ap-

proaches four times the predicted values from one side to another and also four times from both sides 

(Fig. 3D). When the simulations don’t contain the fractal information, the number of molecules crossing 

from one side to another side of the imaginary interface each time frame is precisely predicted by Equa-

tion 9 for the one-step simulations (not binned data). The crossing rate of the molecules from both sides 

is twice as expected for the same data. However, when binned (containing the fractal information), both 

approaching four times the value of Equation 9. This doubling at the imaginary interface than the solid 

interface can be explained by the mirror effect. The PDF at the imaginary interface is doubled because 

the probability function after the molecule has passed the interface mirrors the original probability func-

tion. It is obvious that when removing the directional restriction, the molecule crosses the interface two 

times probable than from one side to the other because it is equally probable for another molecule on the 

other side to pass the interface at the shorter time interval. However, when the measuring time is longer, 

it is interesting to find that the one-side crossing approaches to the both-side crossing frequency because 

the rate-limiting step becomes the number of the molecules near the interface which is the same for both 

cases, i.e., the molecule will go up and down the imaginary interface many times no matter which the 

final direction of crossing it takes at the end of a measuring time frame. Adapt the same fractal argument 

for the hitting rate to the wall, the one-step simulation on the imaginary interface in the bulk solution 

lower estimated the rate and should be corrected by a fact of four. This correction is an important conclu-

sion for analyzing molecular interactions in the bulk solutions. 

To summarize the above analysis, the linear curves in Fig. 3B have a special restriction, each 

molecule if hitting the surface is only counted once in the counting cycle/frame with the integration time 

of 1 ms. The slopes of these curves are predicted by Equation 10 with Δt = 1 ms. Changing the counting 

frequency will change the slope which either unfolds or folds the fine collision frequencies of the same 

molecule during each integration time but the linear relationship maintains, i.e. intuitively each frame has 

the same number of collisions. The dependence of the slope with the counting time is a nonlinear curve 

predicted by Equation 10, i.e., non-intuitively the number gets only the square root of two increased when 

double the integration time. The effect of fractal diffusion and the mirror effect at an imaginary interface 

is only observable for a simulation that has enough hidden information among each step to simulate the 

fractal nature of the diffusion, i.e. in binned diffusion simulations. The simulations ignore such effect 

(non-binned data) only reflect the hitting rate predicted by Equation 10 for both cases (Fig. 3D the first 

points of the curves). 

To correct the slope of the collision number predicted by the simulations without the fractal infor-

mation, a factor-of-two correction to Equation 10 is needed (Equation 11) for molecules to a solid wall; 

and a factor-of-four correction is needed for the collisions in the bulk solution. 

Equation 11 is consistent with the experimental measurements we have reported before.34 When 

5 nM (C = 3×1018 m-3) YOYO-1 dye molecule in water with D = 2.9×10-10 m2/s is adsorbed to a 1-μm-

long DNA molecule with an area ~2000 nm2 immobilized on a surface, the frequency measured at 50 ms 

time resolution is 0.4 s-1. Equation 11 predicts a rate of 0.5 s-1, indicating 50 ms is a proper time resolution 

to calculate the actual binding rate. It also indicates that we can use the Langmuir-Schaefer equation to 

precisely measure the diffusion constant of solute molecules in the solution. 
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Equation 11 is still very different from Equation 5 because our model predicts curves with a 

linearly increased number of collisions over time for a non-adsorptive bouncing surface with fixed Δt, 

i.e., as a constant in the equation representing the measuring time resolution while the Langmuir-Schaefer 

equation uses the actual time. We will search for an answer to this question in the next simulations (mind 

experiments). 

 

The surface no matter if empty or occupied absorbs the molecules upon collisions 

Assume a case that the diffusing probe absorbs on the surface when they hit (for high-affinity binding 

such as electrostatic binding, antibody-antigen interactions, and surfactants adsorbing to air-water inter-

face in the original Ward-Tordai experiments), the rebounding events discussed above for a bouncing 

surface vanishes, and the concentration of the solutes near the surface drops creating an evolving concen-

tration gradient.29 It is interesting to simulate the adsorption kinetics of the molecules under this condition. 

Such adsorptions have been described by the Langmuir adsorption model which begins with a diffusion-

limited region and projects to a surface-area-limited region. To begin with, we assume that the surface 

will adsorb the molecule whenever it hits the surface, i.e., during the short-time limit when reducing of 

active surface area due to adsorption is negligible. I artificially extend the time to a longer period during 

this mind experiment to simulate the effects of the adsorption to the sub-surface (bulk). Several rods with 

the same length and different cross areas are simulated to check the effect of the artificial discrete distance 

among the molecules along the rod axis during the simulations. 

 Fig. 4 shows the results of the simulations of adsorption of solute to the floor of a rod when the 

ceiling is non-adsorptive. The surface-area limitation is ignored in this simulation, i.e., the surface can 

take an infinite amount of molecules. This is just a mind experiment for now. A more realistic surface-

limited experiment will be simulated later. The accumulated number of molecules adsorbed goes up faster 

in the beginning and slow down later (Fig. 4A). The adsorption rate, 〈𝑟(𝑡)〉 =
𝛤(𝑡+∆𝑡)−𝛤(𝑡)

∆𝑡
, where Γ is the 

accumulated number of molecules adsorbed in the area, decays over time (Fig. 4B). When normalized to 

the predicted value from Equation 9, no significant area dependence is observed among the simulation 

areas (Fig. 4B). The smaller the rod area, the fewer molecules, and the larger the noise level. The decay 

of the adsorption rate over time is consistent with the evolving degree of concentration gradient near the 

surface (Fig. 4C), confirming an important assumption of Langmuir-Schaefer adsorption isotherm. At 

time 0 when there is no concentration gradient, the adsorption rates are the same as the predicted value. 

The gradient has the consistent exponential-like shape as Ward and Todai has hypothesized.25 The rate 

quickly drops to ~10% of the predicted value at 100 ms, and ~1% at 5 s. At 5 s, the concentration gradient 

has projected to the whole rod volume, when the concentration at the ceiling has dropped below the initial 

concentration of 1 μM (represented by the histogram bar height 6 and bar width 1 μm).  

All the curves of the cumulated number of molecules in Fig. 4A and 4E can be fitted with an 

equation similar to Equation 9 and Equation 11 and are independent on the measuring time resolution 

Δt: 

𝛤(𝑡) = 𝛼𝐴𝐶√
𝛽𝐷𝑡

𝜋
  (13) 

where t is the actual time from the beginning of the adsorption instead of the counting time resolution Δt, 

α and β are fitting constants with α within 1.7-2.0 and β within 0.9-1.0. When the slope (derivative) of 

Equation 13 is normalized with the initial rate at t = Δt = 0.001 s, a trendline of r(t) = 0.03t-0.45 is observed 

(Fig. 4E), meaning, for the simulated mind experiment, the rate will drop to 3% of its initial rate at 1 s 

because of the concentration gradient near the surface evolved (when the surface-area limitation is ig-

nored).  



 

 

11 

 

Fig. 4. (A) Accumulated adsorption curves of molecules 1D diffusing in a rod volume, bouncing on the 

ceiling, and adsorbed on the floor at each hitting event. The molecules in the rod are depleted over time 

with no replenishment. Only the 1D diffusion is simulated. The length of the rod is fixed at 100 μm. 

The concentration of the molecule is [C] = 1 μM with D = 2.88×10-10 m2/s. The step time is ∆t = 1 ms. 

The cross-area of the rod, the initial total number of molecules, and the initial rate (first frame) are 

labeled. The shadows indicate the standard deviation of 10 simulations. The black curves are fittings 

using Equation 13. Insets show the average of 1000 simulations of the first 0.1 s. (B) The slope of the 

curves in (A) normalized to the predicted initial rates with two snapshots shown. (C) The average his-

tograms of the molecule locations along the rod axis of 100 simulations with rod area 104 nm2 at a few 

selected snapshot time. (D) A correlation was obtained using Equation 16 as an approximation to a 

virtual gap model (inset) for the gradients in (C). (E) Adsorption curve on the floor of a rod with length 

1 mm and cross-area 1000 nm2, and various solute concentrations as labeled. The thickness of the blue 

curves represents the standard deviations of 20 simulations. The initial curves are all consistent with 

the predicted values of Equation 9, but the whole curve is better fitted with Equation 13 (red curves) 

than Equation 9. The decay of the slope, when normalized to its initial slope, follows a power-law 

decay trendline 0.03t-0.45, where time t is in unit s. 

 

Equation 13 is identical to the Langmuir-Schaefer equation, i.e., the first term of the Ward-Tordai 

equation (Equation 5) when taking α = 2 and β =1 within the simulation error. Interestingly, the fractal 

nature of the diffusion is less a problem in this case than the bouncing surface. One adsorption in each 

simulated step may have been already satisfied in this case, or another argument is that the rate-limiting 

step is transporting the molecule to a place near the surface.  

What is the effect of measuring frequency during this short-time-limit stage? According to Equa-

tion 13 which is independent of the measuring frequency, I conclude that the counting frequency does not 

affect the binding curves of the adsorption which are determined independently on how one measure, but 

the effective initial rate constants measured discretely is power-low dependent on the counting frequency, 
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i.e. dependent of the concentration gradient near the surface which is a function of time because the con-

centration gradient evolving over time makes the rate non-linear vs time. This conclusion is consistent 

with the time-dependent fractal reaction rate constant in diluted solutions.39 In the above simulation, Δt = 

1 ms is adapted as the reference frequency. We are going to find the relationship between the slopes of 

the accumulated number of molecules at time t (i.e. rate) and its initial (first frame) measured rate with 

integration time Δt.  

The true rate at time t (transient slope of) is the first derivative of Equation 13 (let α = 2 and β 

=1): 

𝑟(𝑡) = 𝐴𝐶√
𝐷

𝜋𝑡
   (14) 

Equation 14 suggests that the linear increase of the number of collisions for a bouncing surface no longer 

holds but rather a power-law decay is observed for the adsorptive surface. When using the initial rate 

counted at the first measuring cycle Δt as the reference, and approximating the gradual concentration 

gradient as a sudden turning on curve starting at z0 from the surface (Fig. 4D inset), Equation 14 can be 

rewritten as 

𝑟(𝑡) = 𝐴𝐶√
𝐷

𝜋𝑡
= ∫

𝐶𝐴

∆𝑡

∞

𝑧=𝑧0
d𝑧 ∫

1

√4𝜋𝐷∆𝑡
𝑒−

𝑥2

4𝐷∆𝑡d𝑥
∞

𝑥=𝑧
= 𝑓(𝑧0, 𝑡) 𝐴𝐶√

𝐷

𝜋∆𝑡
   (t>=∆t)   (15) 

With Δt = 1 ms, D = 2.88×10-10 m2 s-1, C = 1 μM, and A = 104 nm2, we can see that within the “short-

time limit”, 𝑓(𝑧0, 𝑡) = √
∆𝑡

𝑡
, which equals 1.0, 0.3, 0.1, and 0.014 for t = 1 ms, 10 ms, 100 ms and 5 s 

slope respectively (Fig. 4B, 4C). The effective gap z0 solved numerically correspond to values 0 nm, 

610 nm, 1.0 μm, 2.3 μm respectively.  

The value of z0 can also be solved analytically, such that  

𝑓(𝑧0, 𝑡) = √
∆𝑡

𝑡
= 1 − erfc (

𝑧0

√2𝐷𝑡
) = 1 −

2

√𝜋
∫ 𝑒−𝜏2

𝑑𝜏

𝑧0

√2𝐷𝑡

0
 (t>=∆t)  (16) 

where τ is a dummy variable (Fig. 4D). Thus, the fraction is related to the error function (erfc) of the 

Gaussian PDF that spreads out over time. Equation 16 is consistent with the numerical solutions of 

Equation 15. 

  Now it is confusing what Δt should be chosen to calculate the “initial adsorption rate”. During 

the first measuring cycle, time 0-Δt, do we consider an evolving sub-surface-bulk concentration gradient 

or do we consider a uniform concentration across the bulk as time 0?  

We can do a mind experiment with molecules aligned perfectly in space shown in Fig. 5. To 

maintain the same molecular distribution within the time Δt, the average location of the molecule should 

be the same as the distance between two molecules, i.e. the net effect is they just switch positions during 

this time: 

𝑑0 =
1

√𝐶
3 =

∫ 𝑧𝑒
−𝑧2

4𝐷∆𝑡𝑑𝑧
∞
0

∫ 𝑒
−𝑧2

4𝐷∆𝑡
∞
0 𝑑𝑧

= √
4𝐷∆𝑡

𝜋
   (17) 

where d0 and z are shown in Fig. 5. Thus, the characteristic integration time ∆tc to calculate the average 

adsorption rate with no sub-surface concentration gradient is: 
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∆𝑡𝑐 =
𝜋

4𝐷𝐶2/3   (18) 

  

 

Fig. 5. Scheme of finding characteristic Δt to calculate the adsorption frequency when the sub-surface 

concentration is the same as the bulk concentration, i.e. the short-time limit right after a flesh surface 

is exposed to the solution.  

  

 Thus, the average adsorption rate can be calculated by Equation 12: 

〈𝑟〉 = 2𝐴𝐶√
𝐷

𝜋∆𝑡𝑐
= 4𝜋−1𝐴𝐶4/3𝐷     (19) 

This equation has the correct unit s-1 for the dimensional analysis and is consistent with another calculation 

assuming the molecular exchanging time ∆tc is the average adsorption time for the characteristic surface 

area d0
2. That is 

〈𝑟〉 =
𝐴

𝑑0
2

1

∆𝑡𝑐
= 4𝜋−1𝐴𝐶4/3𝐷     (20) 

In short, ∆tc is the characteristic diffusion-limit time for the adsorption. Shorter than this time, the 

high average hitting rate and the low total number of adsorptions predicted by Equation 13 and 12 are 

due to the isolated but repetitive collision of the same molecules on the surface. Longer than this time, the 

same molecule might have diffused away beyond the first nearby layer and diffuse back to the surface 

which should have been counted as different molecules if the sub-surface concentration has been main-

tained, i.e., Equation 13 has lower estimated the collision frequency longer than this time. Any sub-

surface concentration gradient if established after this time will induce the drop of collision rate (transient) 

over time shown by Equation 14. If the concentration gradient is refilled faster than this time, the rate of 

adsorption will maintain over time with the value predicted by Equation 19. Thus, at the very beginning 

of the adsorption, ∆tc is the time the molecules have just collided with the surface and their first nearest 

neighbor in the subsurface zone is about to collide the surface. 

 

The surface only when empty absorbs the molecules upon collisions  

 Now we are just missing the back-diffusing term of Equation 5. Note that the above mind experi-

ment is for adsorption with no activation energy barrier consistent with the original Ward and Tordai 

model,25 and no surface rejection due to pre-occupation which is different than they have pictured. The 

back-diffusion term, as the name suggests, rises when the surface started to be covered by the molecule 
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and gains the ability to reject molecules (which then diffuse back to the bulk) such that the active sur-

face area is non-linearly decreased.29 When there is an energy barrier, the surface will also reject a fixed 

potion of the molecules which will make the concentration gradient less intensive and the drop of the 

speed less steep over time. When the adsorption approaches the surface-area-limited region (e.g., of a 

Langmuir adsorption), the sub-surface concentration gradient recovers due to the decrease of the adsorp-

tion rate. Thus, when the rejection happens, it changes the concentration gradient dynamics in the sub-

surface making the Ward-Tordai equation very complicated, which predicts that the overall effect makes 

the adsorption slower than the value the Langmuir-Schaefer equation (Equation 13) predicts. 

 In the original Ward-Tordai paper,25 the back-diffusion term is experimentally determined by 

measuring the adsorption rate and back-calculate the sub-surface concentration. From the above discus-

sion, we can see that our Monte Carlo simulation can predict the whole adsorption with the back-diffusion 

curve if we add a surface reaction model, e.g. the Langmuir adsorption model. With a moderate size of 

simulation (1000 molecules, time step 1 ms, total time 100 s), we can simulate the adsorption curve con-

taining the back-diffusion term in ~5 seconds with a regular desktop computer, making it possible to fit 

experimental data with a method we have recently adapted. For example, we have fitted kinetic data using 

our home-made code jcfit (Github) to optimizing simulations for a given set of data.40,43 

 For the back-diffusion term, I am curious about simulating a routing experiment I have done be-

fore, self-assembly of alkanethiol molecules on gold or ZnO surface,44 particularly in how long it takes to 

reach a whole surface coverage with no convection and stirring. Thus I simulate the adsorption kinetics 

of octadecanethiol in ethanol (concentration from 10 μM to 1 mM) on a flat surface assuming the adsorp-

tion probability in binary using the Metropolis Monte Carlo Method.45 Specifically, molecules adsorb on 

an empty area and bounce on pre-occupied area upon hitting, i.e., pads = 1 – θ for each hitting event, where 

θ is the surface coverage normalized to 1 at full coverage and surface seats are set to 4 molecules per 

square nanometer.44 No molecules desorbed from the surface are allowed during the simulation. These 

simulations are Langmuir adsorption processes with zero activation energy barriers as Ward and Tordai 

have assumed. In the future, if needed, an activation energy barrier Ea can be introduced to reduce the 

adsorption probability exp(-Ea/(RT)) and a desorption rate proportional to the surface coverage can be 

introduced for data fitting and mechanistic study of surface adsorption models. 

 

Fig. 6. (A) Simulated adsorption curve of octadecanethiol/ethanol solution on an adsorptive surface. 

Curves are averaged from 100 simulations. Diffusion along the rod axis (1D) is simulated with rod 

length 1 mm, cross-area 100 nm2 (assuming 400 molecules adsorbed at full coverage θ = 1), diffusion 

constant D = 4.13×10-10 m2 s-1, time step resolution Δt = 1 ms and various solution concentrations as 

color-coded and ordered. (B) Zoom in of (A) the first 1 s data. The simulated curves are color-coded 

with the shadows being the standard deviations of the 100 simulations. (C) Comparing Γ for [C] = 0.04 

mM simulated at 0.2 μs time resolution and 1 ms time resolution. Shadow is the standard deviation of 
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100 simulations. (D) Overlay of a simulated example curve (Γ0, blue, [C] = 0.04 mM) with different 

models explained in the text. The curve “Γ1-Γ0” is the subtraction of the Langmuir-Schaefer equation 

(Γ1) with the simulated data (Γ0) which represents the back-diffusion term of this adsorption curve for 

the Ward-Tordai equation. 

 

 The curves containing the simulated back-diffusion term for Langmuir isotherm is shown in Fig. 

6A and 6B to represent the “experimental data”. The similarity among the curves simulated with different 

solute concentrations (Fig. 6A) suggests that they share the same diffusion-controlled mechanism. The 

value of ∆tc is in μs for the concentrations simulated, e.g., 6 μs for the 10 μM solution, and 2 μs for the 

40 μM solution. Comparing with the simulations done with faster time resolution than ∆tc (Fig. 6C), the 

effect of the longer-than-∆tc simulation time cycle Δt = 1 ms is as expected concentrated in the first 1 ms 

which shifts the curve but has little effect on the overall shape and magnitude of the curve. Thus, we 

assume the curves simulated at 1 ms time resolution represent the Langmuir adsorptions for ideal systems 

with no stirring. We are going to analyze these curves with a few different models. 

First, the Langmuir-Schaefer equation is copied here for ease of reading (Fig. 6D):  

𝛤1(𝑡) = 2𝐴𝐶√
𝐷𝑡

𝜋
  (21) 

This non-surface-area-limited adsorption model is wildly used in the literature for the short-time approx-

imation when the ideal sub-surface concentration gradient is established (consistent with the simulations 

in Fig. 6).  

 When we consider the surface-area limitation, the Langmuir single-molecule adsorption reaction 

model can be adopted (which is the model we simulated but assuming hidden from the analysis). Assume 

the first-order reaction between the empty surface (S) in unit number of open seats for molecules and the 

number of adsorbed molecules S*: 

𝑆  
𝑘
→ 𝑆∗  (22) 

Thus, 

𝑑[𝑆]𝑡

𝑑𝑡
= −𝑘[𝑆]𝑡  (23) 

where [S]t is the number of empty seats available for new molecules to adsorb and k is the time-depend-

ent rate constant for the Ward-Tordai equation.  

Second, if we assume an effective rate constant k2 to represent the average rate constant of the 

whole adsorption process (Fig. 6D),  

𝛤2(𝑡) = [𝑆∗]𝑡 = [𝑆]0(1 − 𝑒−𝑘2𝑡) =
𝐴

𝑎
(1 − 𝑒−𝑘2𝑡)  (24) 

where [S*]t is the number of molecules adsorbed at time t, and [S]0 = A/a = 400 is the total number of 

empty seats on the surface at time 0. Thus, k2 can be fitted from the “experimental data” to represent the 

average of the Ward-Tordai equation in the Langmuir adsorption model.28  

Third, now let us assume an extreme condition to be the upper limit of the rate constant, that the 

surface concentration gradient is negligible and compare such condition with the simulations, i.e. an 

ideal condition suitable to approximate the early stage of systems with high bulk concentration, and/or 
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good stirring/flow, or a small area on the surface surrounded by a bouncing surface (the last being a typ-

ical biosensing system). The rate constant is predicted to correlate with the characteristic integration 

time ∆tc by Equation 19 to be (Fig. 6D): 

𝑘3 = 4𝜋−1𝑎𝐶4/3𝐷  (25) 

𝛤3(𝑡) =
𝐴

𝑎
(1 − 𝑒−𝑘3𝑡)  (26) 

Fourth, the time-dependent back-diffusion term of the Ward-Tordai equation (Equation 5) can be 

solved by subtracting the data with the Langmuir-Schaefer equation (Fig. 6D, the Γ1- Γ0 curve). Let’s just 

approximate the rate of the whole Ward-Torddai equation with an average correction value <wd>C. Then 

Equation 5 generates (Fig. 6D), 

𝑘4 = 〈𝑤𝑑〉𝐶𝑎𝐶√
𝐷

𝜋𝑡
  (27) 

𝛤4(𝑡) =
𝐴

𝑎
(1 − 𝑒−2𝑘4𝑡)  (28) 

where A is the total area (m2), a is the area each molecule will occupy after adsorption (m2), C is the 

number concentration (# m-3), D is the diffusion constant (m2 s-1), and t is time (s). 

 We can now compare the four different models (Fig. 6D). The Langmuir-Schaefer equation (Γ1) 

is the best model for the simulated Langmuir adsorption curve up to ~80% of the saturation coverage. But 

it over-saturates the surface indicated by the fast turning up of the back-diffusion curve (Γ1- Γ0) after. The 

fitted curve (Γ2) represents the overall shape of the adsorption curve the best among the four models but 

lower-estimate the initial slope the most causing trouble for models rely on this part of data. The higher 

the concentration, the better this model works (fitting R2 ~1 for 1 mM curve and ~0.9 for 10 μM curve). 

The ideal-stirring curve (Γ3) represents the theoretical upper limit of the adsorption rate which predicts 

saturation in the millisecond region (Fig. 6D inset). Because the measuring time resolution (∆t = 1 ms) is 

longer than the characteristic diffusion time (∆tc), the initial slope of the first cycle of Γ1 lower-estimates 

the maximum initial rate that is represented by the initial slope of Γ3. The averaged Ward-Tordai equation 

(Γ4) catches the initial slope of Γ3 and the far end after the saturation but performs poorly in between. The 

value <wd>C is fitted to be between 1 and 2 for the several concentrations simulated. Comparing the 

effective rate constant k2 with the maximum (initial) rate constant k3, ~3 orders of magnitude difference 

is observed between these to models.  

 

Fig. 7. Comparison of k2 (effective rate constant from Γ2) and k3 (theoretical maximum from Γ3) for the 

simulations in Fig. 6. 



 

 

17 

The simulation results in Fig. 6 are consistent with the experimental results in the literature. In the 

simulation, at millimolar solute concentrations, the surface reaches the full coverage within a second. At 

the micromolar level, it takes over 100 s to saturate the surface.46 With convection, flow, or mild stirring 

in real experiments, the adsorption rate is faster than the values of the simulations. Typical thiol on gold 

experiments is carried out at a longer time though. It is a slower process than adsorption to convert phys-

ical adsorption to chemical adsorption, maximize the surface coverage via rearrangement of the thiols on 

gold, and minimize the number of defects.47 

A real experiment of adsorptions with no energy barrier will generate a curve that lies between the 

ideal-stirring curve Γ3 and the purely diffusion-controlled simulated curve Γ0 (Fig. 6D space between the 

red and the blue curves). The curve Γ3 represents the theoretically fastest adsorption of the given condi-

tion. The simulated curve represents the slowest reaction with no convection and no stirring. When there 

is an adsorption energy barrier, the adsorption curves my end up on the right side of the simulated curve, 

i.e. slower than Γ0.  

The uncertainty in the fluidic condition during the real experiments makes the Ward-Tordai equa-

tion not suitable to measure the diffusion constants of the solutes which often introduces 5-15 orders of 

magnitude of difference25,29 than the values predicted by the Einstein-Stoke equation or the values meas-

ured by other more direct techniques such as single-particle tracking. It also has limited the applications 

of using the Ward-Tordai equation to predict adsorption rate from the bottom-up with the first principle 

of diffusion. However, with the power of modern simulations, it may become a necessary and powerful 

equation to predict diffusion problems in chemistry, biochemistry, chemical engineering, and many other 

fields such as the border problem of defending infectious disease during a pandemic. 

 

SUMMARY 

In summary, the ensemble solution of adsorption kinetics namely the Langmuir-Schaefer equation and 

the Ward-Tordai equation (Equation 5) have been reproduced using single-molecule diffusion probabil-

ity density function with clarification for the effects of measuring time resolution and corrections for the 

fractal nature of diffusion (Equation 13). The most unique conclusion drawn from the single-molecule 

approach is that there is a characteristic integration time ∆tc for the equations which has never been a 

consideration for the ensemble approaches, a missing piece of the Ward-Tordai equation. That is, the 

characteristic time distinguishes the over-estimated multiple collisions from the same molecule shorter 

than this time and the lower-estimation of the collisions longer than this time. The correlation between 

the ensemble solution and the single-molecule solution also suggests careful corrections and treatment 

should be applied to the results of any single-molecule Monte Carlo simulation targeting solving diffusion 

problems.  

We can draw some interesting specific conclusions from the combination of the results from the 

theoretical analysis and the Monte Carlo simulations. When we measure the collision events of probe 

molecules in the bulk solution to a small target area on a flat surface, the frequency of seeing such events 

is depending on the measuring time resolution and how the surface reacts with the probes.  

(1) If the surface just simply bounces the probe back to the bulk solution, the number of events 

observed per measuring cycle is dependent on the length of the time step described by Equation 11 which 

is corrected from the analytical solution Equation 9 after simulations. The events are stochastic, but the 

average number of events is the same for each cycle with a large enough observation area, i.e. the accu-

mulated events Γ(t) is a linear curve whose slope varies with the length of the time step. The simulation 

results suggest that this changing of the rate on time step (Δt) is not because more molecules are visiting 

the surface at a shorter period but rather when boost up the observation power, the finer structure of 
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diffusion is revealed to the observer. That is, when a molecule approaches the surface, it may collide with 

the surface many times before leaving the surface far enough and escaping into the bulk. Reducing time 

resolution merges these fine collisions and the collision frequency drop with a power-law decay function 

described in Equation 11. This equation predicts an adsorption rate of a dye to a DNA molecule that is 

consistent with our previous experimental measurement. 

(2) If the whole surface is adsorptive and the probes stick at their first collisions to the surface, 

Equation 11 has to be replaced by the Langmuir-Schaefer equation (Equation 13). Equation 13 is liter-

ary the same as Equation 11 by just replacing the length of the step time (Δt) with a real projection time 

(t) which is independent of the observation step time resolution. This makes sense because the analytical 

solution (Equation 9) already considered all molecules in the bulk. Equation 13 suggests that for such 

an adsorptive surface, the probes bind to the surface faster at the beginning and slow down over time 

following the power-law decay function. The results of the simulations confirm the literature assumption 

that this decay of binding rate is because, over time, a concentration gradient evolves near the surface 

which depletes the number of available solute molecules near the surface. For large solute concentration, 

the surface will saturate before significant gradient forms thus the adsorption follows the first-order reac-

tion model better. For small probe concentration, a significant gradient evolves, and the adsorption will 

be diffusion-controlled and follows the power-law model. 

 (3) It is possible to use the corrected single-molecule equation for molecules crossing an imagi-

nary interface to predict the collision frequency of two solute molecules in the bulk solution with a further 

correction on the relative diffusion constant. The major obstacle for the ensemble approach, the missing 

characteristic diffusion time, has been revealed by the single-molecule approach in this report. In the 

future, this could provide more insight into the steric factor in the collision theory and extend the theory 

to predict reaction kinetics in diluted solutions. 

(4) For single-molecule simulations to correctly reflect the fractal nature of diffusion during col-

lision estimation, the unit step should be a few orders of magnitude faster than the targeting time resolu-

tion. This is bad news and a significant extra cost to future simulations on diffusion. A lower-cost ap-

proach might be to correct the low-time-resolution simulation results with a correction factor between 1 

and 4. 

From the simulated self-assembled monolayer example, we have compared the Langmuir-

Schaefer equation and Ward-Tordai equation under idealized conditions and have a peek of the limitation 

of these equations in real experiments that are much more complicated than under the ideal conditions. 

With this critical knowledge, we may start to applicate these simple equations and to use them carefully 

in various fields such as calculating the collision frequency of molecules in a diluted gas or liquid solution, 

membrane penetration, self-assembly, and biosensing. The single-molecule approach also makes integra-

tion of the diffusion equation for molecules in confined space colliding structured and curved surface 

mathematically straightforward, and thus easier to understand than the ensemble equations of diffusion. 

It may also find applications in finer simulations such as molecular dynamics simulations to skip non-

interested mass transportation steps among the solvent. 
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Supporting information for 

Monte Carlo Simulation of Stochastic Adsorption of Diluted Solute 

Molecules at an Interface 

Jixin Chen* 

Department of Chemistry and Biochemistry, Nanoscale and Quantum Phenomena Institute, Ohio University, Ath-

ens, OH 45701. 

 

Sample MATLAB Code: 1D control simulation 

%% Monte Carlo simulation of 1D random walk 
% Jixin Chen @ Ohio University started 10/31/2019 way to Youngstown 
% University seminar talk 
% Jixin Chen 2020-05-25 
% Permission is granted to copy, distribute and/or modify this document under the 

terms of the GNU Free Documentation License, Version 1.3 or any later version 

published by the Free Software Foundation 

  

  

  
clear; 

  
%% calculate diffusion constant 
T = 300;  % temperature unit K. 
R = 8.314; % gas constant unit J/K/mol. 
Nav = 6.02e23; % Avogadro constant. 
kB = 1.38e-23; % Boltzmann constant. 
yita = 8.9e-4; % water viscosity unit Pa*s. 
rou = 0.8; % solute density unit g/mL. 
Mw = 1271; % molecular weight g/mol. 

  
%----convert to SI unit---- 
rou = rou*1000; % density unit kg/m^3. 
Mw = Mw/1000; % molecular weight kg/mol. 
%--- 

  
D = kB*T/(6*pi*yita*(3*Mw/4/pi/Nav/rou)^(1/3)); % unit m^2/s. 

  
%% 1D diffusion 
% -------  L 
%    o 
%    o 
%    o 
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% -------- 0 

  
conc = 1e-6;  % concentration unit mole/L. 
L = 100000; % space between two surfaces unit nm. 
area = 1000*2000; % surface area of the surface unit nm^2. 
dt = 1; % simulated time step unit ms. 
lt = 100; % total simulated time unit s. 

  
%----convert to SI unit ----- 
conc = conc*1000*Nav; % conc unit m^-3. 
distance = conc^(-1/3); % unit m 
distime = distance^2/2/D; 
L = L*1e-9; % unit m. 
area = area*1e-18; % unit m^2. 
dt = dt*1e-3; %unit s. 
%---- 

  
% numm = round(conc*L*area); % number of molecule in the volume. 
numm = 10000; 
numt = round(lt/dt); % total time step index. 
meandis = L/numm; % average space between two molecules in z. 
sigma = sqrt(2*D*dt); 
% meandisv = conc^(-1/3); % average space between two molecules in volume. 
meantime = meandis^2/2/D; % average time to travel the average space. 
% check meantime and dt. dt should be much smaller (>10 times) than meantime. 
display(['meantime/dt = ', num2str(meantime/dt)]); 
display(['simu length = ', num2str(lt/dt)]); 
display(['num molecules = ', num2str(numm)]); 

  
%------- initialize -----  
mcst =  randn(numm, numt); %Monte Carlo space and time. first column not used. 
%mcst = mcst*1.57*sigma; % ??????????? why 1.57 ???????????? golden number 1.618, 

Great pyrimid side height ratio 1.57 
% mcst = mcst2*2*sigma^2; % ??????????? why 1.57 ???????????? golden number 1.618, 

Great pyrimid side height ratio 1.57 
% mcst = sqrt(abs(mcst)).*mcst2./abs(mcst2); 
mcst = mcst*sigma; %  

  
traj = zeros(numm, numt); % trajectories of all molecules. 
% traj(:,1) = L*rand(numm, 1); % time 0 all molecules randomly located 
traj(:,1) = zeros(numm, 1); % middel space for all initial locations. 

  
%------- random walk at the step time resolution ------ 
rng('shuffle'); 

  
for i = 2:numt 
    traj(:, i) = traj(:, i-1) + mcst(:, i); % random walk 
%     indl = find(traj(:, i)< 0);   % hit lower wall 
%     indu = find(traj(:, i)> L);   % hit upper wall 
%     hitl(indl, i) = 1;  traj(indl, i) = -traj(indl, i); % reflect and record 

hit. 
%     hitu(indu, i) = 1;  traj(indu, i) = 2*L - traj(indu, i); % reflect and record 

hit. 
end 

  

  

  
figure; hist(traj(:,2), 100); title('step 1'); 
hold on;  
t = dt; 
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x = -L*1E9:L*1E9; 
x = x*1E-9; 
pdf = numm/100*3*exp(-(x).^2/4/D/t); 
plot(x, pdf); 

  

  
%figure; hist(traj(:,3), 100); title('step 2'); 
figure; hist(traj(:,11), 100); title('step 10');  
hold on; 
t = dt*10; 
x = -L*1E9:L*1E9;; 
x = x*1E-9; 
pdf = numm/100*3*exp(-(x).^2/4/D/t); 
plot(x, pdf); 

  

  
%figure; hist(traj(:,3), 100); title('step 2'); 
figure; hist(traj(:,101), 100); title('step 100');  
hold on; 
t = dt*100; 
x = -L*1E9:L*1E9;; 
x = x*1E-9; 
pdf = numm/100*3*exp(-(x).^2/4/D/t); 
plot(x, pdf); 

  
figure; hist(traj(:,1001), 100); title('step 1000');  
hold on; 
t = dt*1000; 
x = -L*1E9:L*1E9;; 
x = x*1E-9; 
pdf = numm/100*3*exp(-(x).^2/4/D/t); 
plot(x, pdf); 

  

  
figure; hist(traj(:,10001), 100); title('step 10,000');  
hold on; 
t = dt*10000; 
x = -L*1E9:L*1E9; 
x = x*1E-8; 
pdf = numm/100*3*exp(-(x).^2/4/D/t); 
plot(x, pdf); 

  

  
figure; hist(traj(:,100000), 100); title('step 99999');  
hold on; 
t = dt*99999; 
x = -L*1E9:L*1E9; 
x = x*1E-7; 
pdf = numm/100*3*exp(-(x).^2/4/D/t); 
plot(x, pdf); 

 


