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Predicting Elemental Boiling Points from First Principles†

Jan-Michael Mewes∗a,b and Odile R. Smitsb

The normal boiling point (NBP) is a fundamental property of liquids and marks the intersection
of the Gibbs energies of the liquid and the gas phase at ambient pressure. This work provides
the first comprehensive demonstration of the calculation of boiling points of atomic liquids through
first-principles molecular-dynamics simulations. To this end, thermodynamic integration (TDI) and
perturbation theory (TPT) are combined with a density-functional theory (DFT) Hamiltonian, which
provides absolute Gibbs energies, internal energies, and entropies of atomic liquids with an accuracy of
a few meV/atom. Linear extrapolation to the intersection with the Gibbs energy of a non-interacting
gas phase eventually pins-down the NBPs. While these direct results can already be quite accurate,
they are susceptible to a systematic over- or underbinding of the employed density functional. We
show how the resulting errors can be strongly reduced by increasing the robustness of the method
through a simple linear correction based on a high-level theoretical or experimental cohesive energy
termed λ -scaling. By carefully tuning the technical parameters, the walltime per element could be
reduced from weeks to about a day (10−20k core-hours), which enabled extensive testing for B, Al,
Na, K, Ca, Sr, Ba, Mn, Cu, Xe and Hg. This comprehensive benchmark demonstrates the excellent
performance and robustness of the approach with a mean absolute deviation (MAD) of less than
2% from experimental NBPs and very similar accuracy for liquid entropies (MAD 2.3 J/(mol*K),
2% relative). In some cases, the uncertainty in the predictions are several times smaller than the
variation between literature values, allowing us to clear out ambiguities in the NBPs of B and Ba.

1 Introduction

The computational prediction and study of phase transitions is an
active field of research.1 The lion’s share of this research focuses
on transitions between condensed phases like melting or solid-
solid transitions,2–7 as these are most relevant for real-world ap-
plications as, e.g., two polymorphs of the same substance can
have significantly different properties. Perhaps because of this
general focus, the prediction of NBPs from first-principle simu-
lations is a sparsely populated field of research. The only other
published study known to the author that demonstrates a calcula-
tion of NBPs largely based on a first-principles methodology is by
Nakai and coworkers.8 For this, they introduce the so-called har-
monic solvation model (HSM) for calculating liquid Gibbs ener-
gies with a polarizable-continuum model (PCM). The HSM differs
from the standard approach for thermochemical contributions in
the treatment of translational and rotational degrees of freedom.
In the HSM, they are replaced with additional vibrational modes
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resulting from freezing the PCM cavity in the frequency calcula-
tions. Comparing liquid Gibbs energies obtained with the HSM
based on high-level CCSD(T) energies and an MP2 Hessian to
Gibbs energies of the gas phase obtained with the standard ideal-
gas model, they obtain very reasonable normal boiling points
(NBPs) of 109.7◦C and 66.9◦C for water and ethanol, respectively.
However, although the molecules themselves are described with a
first-principles methodology, the description of intermolecular in-
teractions in this approach is entirely based on a PCM with highly
parametrized non-electrostatic contributions (SMD).9 Most other
approaches for the prediction of NBPs are entirely empirical data-
driven methods that rely on machine-learning and quantitative
structure-property relationships (QSPR).10–12 As such, they can
often be related to the group-contribution method of Joback
and Reid.13 Although some of these protocols make use of first-
principles calculations to refine the predictions,11 there have
been no attempts based solely on first-principles methods.

In general, the calculation of phase-transition temperatures
through computer simulations can be carried out in two ways: (i)
So-called direct approaches attempt to simulate the phase tran-
sition either in time (e.g. void method or cluster melting),14,15

or in space (e.g. interface pinning).7 Such direct approaches
are complicated by super-heating and super-cooling. As a re-
sult, all the methods mentioned above are attempts to avoid,
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mitigate, or minimize these phenomena. (ii) So-called indirect
approaches circumvent these problems through calculating Gibbs
energies (also Gibbs free energies and thus free-energy methods)
of the respective phases separately, and subsequently, locate the
point of intersection, i.e., where ∆G = 0. This not only elimi-
nates the problems with super-heating and cooling, but allows
to exploit these phenomena to achieve faster equilibration, e.g.,
in solid simulations well above the melting point,16 or here in
liquid simulations above the boiling point. Gibbs-energy based
approaches may be further divided into two groups: On the one
hand, there are approaches based on relative Gibbs energies (iia)
(e.g. the pseudo-supercritical path method)17, and on the other,
there are approaches which attempt the calculation of absolute
Gibbs energies (iib). For a more detailed overview and discussion
of these approaches, the interested reader is referred to refs. 18
and 6. Specifically concerning boiling points, direct approaches
(i) as well as those focusing on Gibbs-energy differences (iia) are
problematic due to the drastic differences between the condensed
and gaseous phases in terms of volume. Hence, we approach the
problem by calculating absolute Gibbs energies.

One approach for the calculation of absolute Gibbs energies
of liquids was recently presented by Kresse and coworkers,19

and employed to study the melting of silicon and magnesia
(MgO).19,20 We have further developed this approach to include
spin-orbit relativistic effects to explore the physicochemical prop-
erties and aggregation state of the super-heavy element Cn.16

Since Cn has been inferred to be highly volatile,21 it was nec-
essary to include the NBP. For this purpose, the herein presented
concept was developed. This work describes the adaptation of
and a correction to this approach to efficiently calculate NBPs,
as well as the comprehensive testing for a representative set of
elements, including insulators, semiconductors, and metals.

An important aspect of the approach and this work is a correc-
tion of the calculated transition temperatures based on the ratio
between the cohesive (also atomization) energy calculated at the
same level as the Gibbs energy (here DFT), and a high-level ref-
erence or experimental value, i.e., λ = Eref

coh/EDFT
coh . Due to this

definition, linearly scaling the DFT Hamiltonian with λ matches
the overall interaction strength of DFT to that of the high-level
reference. Since this so-called λ -scaling systematically reduces
any strong over- or underbinding of the chosen density-functional
approximation (DFA), it increases the accuracy and in particular
the robustness of the approach concerning the choice of the func-
tional. While the article introducing this correction makes use of a
high-level theoretical CCSD(T) reference,16 this work mostly em-
ploys experimental references since such high-level calculations
are not readily available for all elements considered here. Al-
though this introduces a certain degree of empiricism, we argue
that very similar results would be obtained by using high-level
theoretical values, as is demonstrated for Xe.

Before we move to the main article, it bears pointing out that
to our surprise, we found the literature to be peppered with con-
flicting values for the NBPs of common elements, e.g., K (1.5%
variation), B (8.7% variation) and Ba (17% variation). This and
related uncertainties have been studied in detail by Zhang and
coworkers,22 who employed neural networks to rectify conflicts

between several major reference books.23–27 Exploiting, e.g., the
relation between the enthalpy of evaporation and the NBP, they
eventually suggested the most probable and consistent values. We
will follow their suggestions in this work, which are consistent
with our calculations in all but one example. In addition to the
sources considered by Zhang and coworkers, we also include val-
ues from the prominent Hollemann-Wiberg.28

2 Approach

The normal boiling point (NBP) is defined as the intersection of
the Gibbs energies

G(T, p) =U(T )+ pV −T S(T ) (1)

of the liquid and gas phase at their respective equilibrium vol-
ume at normal pressure (1013 mBar). To locate this point, the
gas phase is modelled analytically using the ideal-gas law (eq. 11
in the SI)†, while Gl is calculated through thermodynamic inte-
gration (TDI) at a given simulation temperature Tsim, at its equi-
librium volume (calculation described in the SI)†, in the classical
Born-Oppenheimer approximation. Since we use the liquid equi-
librium volume, we assume pV = 0, and thus H l =U l to simplify
the problem. This is possible since the pV term for liquids at am-
bient pressure is entirely negligible (� 1 meV/atom, e.g. 0.06
meV/atom for K with the largest atomic volume). For the gas-
phase, the pV term is substantial (e.g. 86.2 meV/atom for K at
1000 K and 1013 mBar) and thus included in Gg. The reference
for the TDI is the analytically known non-interacting gas at the
liquid volume (with the internal energy U0 and Gibbs energy G0

from eq. 11 in the SI).† Accordingly, integration along the interac-
tion strength λ , which relates the interacting (DFT) liquid (with
U1 and G1) with the non-interacting reference

G1 = G0 +∆G0−1 = G0 +
∫ 1

0
dλ 〈U1(R)−U0(R)〉λ , (2)

provides the Gibbs-energy difference between the ideal reference
and the DFT liquid ∆G0−1. TDI is followed by several steps of ther-
modynamic perturbation theory (TPT) as detailed in the SI† to
achieve high numerical precision in terms of plane-wave cut-offs
and k-point convergence, as well as to include spin-orbit coupling
(SOC). Adding these contributions to G1 provides the final Gl . All
calculations for the liquid are conducted for 64-atom configura-
tions (Xe: 61) since previous studies have shown this number to
provide converged Gibbs energies compared to larger cells with
> 200 atoms.16,19,20

The central challenge of this approach is to accurately evalu-
ate the integral in eq. (2), which typically provides a large part
of Gl . This is accomplished by numerical integration using an n
point Gauss-Lobatto rule. For this purpose, the integral has to be
transformed to adapt the limits from [0,1] to [−1,1], which yields
(details in the SI)†

∆G0−1 =
1

2(1−κ)

∫ 1

−1
f (λ (x))λ (x)κ dx . (3)

To avoid a singularity at λ = 0, the parameter κ = [0...1[ is intro-
duced, which also allows to guide the placement of the quadra-
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Fig. 1 Schematic demonstration of the approach to calculate NBPs as
the intersection of the analytic Gibbs energy of the (ideal) gas with that
of the liquid at the DFT level (light blue, provides direct NBP) and
corrected via λ -scaling (dark blue, provides corrected NBP). The plot
shows the effect of λ = 1.1, corresponding to a significant underbinding
of the DFT Hamiltonian.

ture points. The closer κ is to one, the more the points are moved
towards the non-interacting limit (small λ), while κ = 0 would
retain the equidistant spacing of the Gauss-Lobatto rule. A de-
tailed explanation and visualization of this rather technical aspect
is provided in the SI.† The important part to recognize is that κ

and n govern the balance between accuracy and computational
effort. The higher n, the more simulations have to be conducted,
and the higher κ, the smaller are the λ values and thus inter-
atomic forces in these simulations. Depending to some extend on
the system, such simulations with small forces become increas-
ingly unstable and tedious at λ < 0.01. As this strongly increases
the demands in human and computer time, it is a central task of
this work to find values for κ and n that provide a good balance
between accuracy of the integration and computational cost. Hav-
ing obtained Gl at Tsim, the temperature-dependence due to the
liquid entropy is approximated linearly, i.e., Sl = (U l −Gl)/Tsim,
where U l is the average of kinetic and potential energy from a
canonical (NVT) MD simulation (λ = 1). This enables extrapola-
tion to the intersection with the Gibbs energy of the gas phase Gg

as illustrated in Fig. 1, providing the NBP.
To address any systematic over- or underbinding of the em-

ployed DFA, the results are corrected using λ -scaling. To rational-
ize this correction, it is instructive to consider how it was initially
conceived: As an adaptation of upper limit of the integral over
the interaction strength λ in eq. (2). Since λ is intended as a
linear correction for the DFT Hamiltonian, it is defined as the
ratio between the cohesive (atomization) energy of (here) DFT
divided by the high-level reference (Eref

coh/EDFT
coh ). Thus, by replac-

ing the upper limit of the integral with λ , it is ensured that the
integration based on the DFT Hamiltonian spans the same range
of interaction strength as provided by the high-level reference. It
is important to recognize that while this correction largely elimi-
nates any systematic differences between DFT and the high-level

reference such as over- or underbinding (potential dept), it does
not correct for deviations in the shape of the inter-atomic poten-
tials (narrowness, asymptotic behavior, etc.).

However, instead of changing the integration limits for every
single case, it is more convenient to use an a posteriori correc-
tion of the Gl calculated at the DFT level illustrated in Fig. 1.
Already during the first application of the λ -scaling,16 it was rec-
ognized and eventually proved that for any phase transition (be-
tween condensed phases) in the classical Born-Oppenheimer pic-
ture, λ -scaling is formally equivalent to simply multiplying the
(transition) temperature with λ .16 This is because scaling both
potential and (simulation) temperature by the same factor can-
cels out, such that on average the same configurations are gener-
ated (S remains the same, U scales with λ , cf. eqs. 3-5). However,
when considering transitions involving the gas phase, the poten-
tial (entering only via the tiny virial two-body correction) hardly
matters, such that the gas-phase essentially remains unaltered in
Fig. 1, and in turn the simple transition-temperature becomes in-
valid (the results are only a few percent off, and thus the formally
wrong scaling for the BP went undetected in ref. 16). Here we
use the following relations for the liquid phase (proof in the SI)†

λU(T,φ) =U(λT,λφ) (4)

S(T,φ) = S(λT,λφ) and thus (5)

λG(T,φ) = G(λT,λφ) , (6)

to scale the Gibbs energy of the liquid calculated at the DFT level
(light blue line in Fig. 1) to obtain a corrected Gl (dark blue line
in Fig. 1). For this, Gl calculated at the simulation temperature T
with the (unscaled) DFT potential (φ) is multiplied with λ , which
provides a corrected Gibbs energy (approximating the high-level
Hamiltionian λφ) at the effective temperature (λT ). The λ -scaled
NBP is thus obtained as the intersection between the corrected Gl

and the (unaltered) Gibbs energy of the gas phase via linear ex-
trapolation. Along the same lines of thought, λ -scaling can not
only be seen as a correction in the potential, but also as a cor-
rection of the temperature. Assuming, e.g., that the employed
DFT potential is twice as deep as the reference potential and
thus λ = 0.5, the configurations generated by a DFT-MD simu-
lation with λ = 1 correspond to those obtained with the reference
Hamiltonian at 0.5∗Tsim.

For the metallic liquids considered here, an additional compli-
cation arises through the electronic entropy Sel, which is signifi-
cant at elevated temperature of the NBP (up to 10% of the total S,
cf. Tab. 6 in SI)†, but is not included in the classical S. To address
this consistently, we include Sel in the internal energy through
Fermi-smearing of the orbital populations,29 which corresponds
to neglecting the non-classical temperature dependence of G. Ex-
ploratory calculations have shown that this only leads to small
changes of a few K in the calculated NBPs and is thus acceptable.
However, when comparing the calculated liquid entropies to ex-
perimental references, including Sel in S distinctly improves the
agreement (cf. Fig. 3).
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3 Results and Discussion

3.1 Detailed Considerations for Xe, K and B
We begin the discussion with a detailed look at Xe, K, and B
to establish the capabilities and limitations of the approach for
a small but diverse group of elements. In contrast to all other
systems considered here, Xe atoms are weakly interacting, and
their bulk forms an insulator, like most noble-gas solids.30 As a
result of their weakly interacting nature, noble-gas liquids are of-
ten considered as prototypical Lennard-Jones fluids. Although
this suggests that an atom-pairwise potential may be suitable, it
has recently been shown that the melting point of Xe deviates
from the experiment by as much as 20 K if three-body effects
are omitted.31 We employ the PBE and revPBE density-functional
approximations (DFAs),32–34 both of which are combined with
Grimme’s atom-pairwise D3 correction with the default Becke-
Johnson damping (in the following just D3).35,36 Hence, three-
body effects are only taken into account in the DFT part of the
calculation. Nevertheless, PBE-D3 accurately recovers the experi-
mental cohesive energy of −0.164 eV of solid fcc Xe. Accordingly,
the scaling factor λ = Eexp

coh/Ecalc
coh is unity. In contrast, revPBE-D3

overbinds slightly with −0.191 eV, resulting in a λ of 0.859.
We calculated Gibbs energies of liquid Xe at the experimental

Table 1 Breakdown of the contributions to the Gibbs energy for the liquids
of Xe, K, and B from TDI and TPT at the simulation temperature as
well as the influence of λ -scaling. Following the element, the employed
DFA and corresponding λ , simulation temperature Tsim and density ρ

are given. The column ∆G provides the contribution of each step, while
"total G" is the running sum. Θ is the electronic degeneracy of the
atoms in the gas phase. The last row provides the Gibbs energy of the
gas phase at the simulation temperature. A table with the final values
for all studied elements is provided in the SI.† All values are given in
eV/atom.

step, cut-off, k-grid ∆G total G U T S
Xenon, PBE-D3 (λ = 1.0003), 165 K, ρ = 2.73 g/ccm
non-interacting −0.1657 0.0213 0.1870
TDI, 150, Γ −0.0775 −0.2432 −0.1470 0.0962
TPT, 300, Γ 0.0065 −0.2367 −0.1405 0.0962
TPT, 300, 23 −0.0001 −0.2368 −0.1406 0.0962
λ -scaled 0.0000 −0.2368 −0.1406 0.0962
gas phase, Θ = 1 −0.2334 0.0213 0.2547
Potassium, PBEsol (λ = 1.002), 1000 K, ρ = 0.696 g/ccm
non-interacting −1.1004 0.1293 1.2297
TDI, 250, Γ −0.6329 −1.7332 −0.6392 1.1128
TPT, 500, Γ −0.0003 −1.7335 −0.6397 1.1128
TPT, 500, 23 0.0024 −1.7311 −0.6371 1.1128
λ -scaled −0.0010 −1.7321 −0.6381 1.1150
gas phase, Θ = 2 −1.7076 0.1293 1.8369
Boron, PBE-D3 (λ = 0.916), 4000 K, ρ = 2.04 g/ccm
non-interacting −3.6408 0.5170 4.1578
TDI, 350, 23 −4.8897 −8.5305 −4.8311 3.7015
TPT, 600, 23 −0.0072 −8.5378 −4.8383 3.7015
TPT, 600, 33 0.0009 −8.5368 −4.8373 3.7015
λ -scaled 0.4063 −8.1305 −4.3310 3.3906
gas phase, Θ = 6 −7.7326 0.5170 8.2496

NBP of 165 K with both DFAs. With PBE-D3, we moreover explore
the parameters for the integration, as well as increasing the simu-
lation temperature Tsim to 200 K. The results of these calculations
are compiled in Tab. 2, while a breakdown of the liquid Gibbs
energy is provided in Tab. 1. Inspection shows that in particular
the calculations with PBE-D3 are in excellent agreement with the
experimental NBP of Xe of 165 K. The results are moreover virtu-
ally identical for both simulation temperatures, and there is excel-
lent agreement between the entropy-based linear extrapolation at
each Tsim with a direct interpolation between the Gibbs energies
calculated at 165 K and 200 K. The overbinding of revPBE-D3 ev-
ident from λ < 1 causes the liquid to be too stable and, in turn,
the calculated NBP to be too high by 30 K. However, this system-
atic deviation is strongly reduced through λ -scaling. To elimi-
nate the empiricism introduced by this scaling, the experimental
cohesive energy in the calculation of λ can be replaced with a
high-level theoretical value of −0.166 eV, which has been derived
from coupled-cluster calculations and includes zero-point vibra-
tional energies (ZPVE).37 This results in a slight change of the λ s
to 1.017 (PBE-D3) and 0.874 (revPBE-D3), and, accordingly, also
the calculated NBPs are very similar ranging from 169−177 K.

This brings us to another aspect, namely the influence of ZPVE,
which is relatively large for Xe due to its small cohesive en-
ergy. Using the ZPVE-uncorrected high-level value from ref. 37
of 0.172 eV (or back-correcting the experimental value) distinctly
increases the λ s to 1.053 (PBE-D3) and 0.905 (revPBE-D3), and
significantly worsens the agreement with the experiment as ev-
ident from the NBPs of 176-181 K. This suggests that implicitly
including ZPVE via the cohesive energy corrects for the absence
of ZPE in our otherwise entirely classical approach. Thus, we will
use ZPVE-uncorrected λ s in the following. In any case, the rela-
tive size of the ZPVE is distinctly smaller in all further examples
(cf. Tab. III in ref. 38).

Potassium is a metallic liquid with a NBP of 1047 K23–25

as suggested by Zhang and coworkers,22 while other sources
give values of 1026 K,28 1032 K,26,27 and 1040 K.39 Although
gaseous K atoms exhibit a strong pairwise interaction in the
form of a covalent bond of 0.55 eV, the resulting virial correc-
tion (eq. (13) in SI with σ = 3.496 Å and ε = 0.55 eV)† merely
amounts to 1.2 meV/atom at 1000 K, and thus hardly affects
the NBP (∆T ≈ 1 K). Another result of this strong interaction is
that potassium vapor is known to consist of about 5% dimers at
the NBP.39,40 However, exploring the impact of dimerization us-
ing the Quantum-Cluster Equilibrium (QCE) approach as imple-
mented in the Peacemaker program41,42 revealed that this has
negligible influence on the Gibbs energy at 1000 K (< 1 meV).
The reason is that the decrease in entropy just cancels the stabi-
lizing effects on internal energy and volume (pV ). For reference,
the electronic double-degeneracy (Θ= 2) of K atoms stabilizes the
gas by about 60 meV, decreasing the BP by about 75 K.

Solid K crystallizes in a body-centred cubic (bcc) lattice, for
which PBEsol provides excellent agreement with the experimen-
tal cohesive energy (λ = 1.002). We will thus use PBEsol in
most calculations, and conduct additional tests with PBE and the
dispersion-corrected PBE-D3. To test the consistency of the ex-
trapolation scheme for this metallic system, we conducted Gibbs-

4 | 1–14Journal Name, [year], [vol.],



Table 2 Calculated and experimental normal boiling points (NBPs) of
Xe, K and B. Experimental data taken from Holleman-Wiberg as well
as from Zhang and coworkers with their suggestions set in bold.22,28

Calculated data is given for various DFAs, Tsim, integration parameters
(κ and n), pressures, as well as with and without λ -scaling. "A//B"
indicates that TPT was used to calculate the Gibbs energy with method
A for configurations obtained with method B. The reference cohesive
energy and lattice used in the calculations used to determine λ is given
in eV/atom after the name of the respective element.43 For Xe and K,
we also provide NBPs obtained by interpolation between the calculations
at 165 K and 200 K (Xe), and 923 K, 1023 K, and 1123 K (K).

NBP /K
DFA, Tsim, n, κ λ direct λ -scaled

Xenon, Eexp
coh =−0.164 (fcc) lit. 165.2 K

PBE-D3, 165, 7, 0.75 1.000 166.9 166.9
PBE-D3, 200, 7, 0.75 1.000 166.5 166.5
PBE-D3, interpolated, 1.000 166.7 166.6

revPBE-D3, 165, 8, 0.60 0.859 195.2 174.3
Potassium, Eexp

coh =−0.934 (bcc) lit. 1026, 1032, 1047 K
PBEsol, 1023, 7, 0.60 1.002 1028 1030
PBEsol, 1023, 7, 0.70 1.002 1027 1029
PBEsol, 1023, 7, 0.75 1.002 1028 1030

PBEsol, 923, 7, 0.75 1.002 1027 1029
PBEsol, 1123, 7, 0.75 1.002 1029 1031

PBEsol, interpolated 1.002 1030 1030
PBEsol, 1023, vol− 1.002 1027 1030
PBEsol, 1023, vol+ 1.002 1028 1030
PBE, 1000, 7, 0.60 1.073 968.5 1020

PBE-D3, 1000, 7, 0.60 0.945 1064 1022
PBEsol, 1000, 7, 0.60 1.002 1029 1030

PBEsol//PBE-D3, 1000 1.002 1026 1028
Boron, Eexp

coh =−5.920 (α-B) lit. 3931, 4203, 4273 K
PBE-D3, 4000, 6, 0.60 0.916 4643 4317
PBE-D3, 4000, 8, 0.60 0.916 4645 4320

PBE-D3, 4000, 10, 0.60 0.916 4649 4323
PBE//PBE-D3, 4000 0.928 4505 4233

SCAN//PBE-D3, 4000 0.932 4433 4183
SCAN-rVV10//PBE-D3, 4000 0.921 4433 4197

energy calculations for liquid K at temperatures of 923 K (650◦C),
1000 K, 1023 K (750◦C) and 1123 K (850◦C). For the calcula-
tions at 1023 K, we tested three different values for κ (0.75,
0.70 and 0.60). Finally, to establish the sensitivity concerning
the employed volume, we conducted additional calculations at
1023 K with the cell-dimensions varied by ±2%, corresponding
to ∆V ≈ 6% and 〈p〉= 0.8/−0.5 kBar.

The results for K are compiled in Tab. 2, while a detailed break-
down of the contributions to the Gibbs energy for the PBEsol cal-
culation at 1000 K is provided in Tab. 1. Inspection shows that
first and foremost, all results obtained with PBEsol are consis-
tent and virtually independent of the tested parameters. Inter-
polation between the Gibbs energies calculated with PBEsol at
923 K, 1023 K, and 1123 K provides virtually the same NBP as
the entropy-based extrapolation. Since the calculations at differ-
ent volumes yield such consistent NBPs it is questionable if the
differences are significant considering the statistical uncertainties
of 1-2 K. Also, the parameters for the numerical integration do
not exert any significant influence in the calculated NBP, showing

that κ = 0.6 is sufficiently accurate. Compared to PBEsol, PBE-
D3 slightly overbinds solid K as evident from λ = 0.945, whereas
plain PBE slightly underbinds (λ = 1.073). The direct (unscaled)
results for the NBP are as one would expect: The overbinding
PBE-D3 stabilizes the liquid over the gas phase, moving the calcu-
lated NBP to higher temperatures (1064 K), while the underbind-
ing PBE provides a lower NBP of 969 K. Similar to Xe, λ -scaling
strongly reduces the deviation. Finally, to demonstrate TPT be-
tween DFAs, we recalculate 10 configurations from the PBE-D3
simulation with PBEsol. The resulting correction of Gl of 33.3 meV
moves the NBP to 1028 K, and thus very close to the consistent
PBEsol result. Altogether, our predictions favor the lower litera-
ture values for the NBP of K of 1026−1032 K, in agreement with
the CRC Handbook and the Tables of Physical and Chemical Con-
stants (better known as “Kaye and Laby”),26,27 whereas the value
of 1047 K suggested by Zhang and coworkers (without any dis-
cussion of data to support it) appears too high at first glance.
However, the deviation of the two values is only about 1.5%, and
thus just below the statistical accuracy of our method.

Bulk boron is a covalently bound semiconductor. The lit-
erature values of its NBP vary widely from 3931 K25,28 over
4203 K23,24 to 4273 K.26,27 The gas phase consists of isolated
boron atoms with Θ = 6. To determine the scaling factor λ ,
we employ α-rhombohedral boron (12 atoms/unit cell) instead
of the thermodynamically most stable β -rhombohedral phase
(105-108 atoms/unit-cell)44 to avoid dealing with partial occu-
pations. Since the energy difference between the two phases is
very small,44 this should not lead to any significant differences.
For α-boron, PBE, PBE-D3 and SCAN provide good agreement
with the experimental cohesive energy as evident from the re-
spective λ s of 0.928, 0.919 and 0.932. We calculate the Gibbs
energy at 4000 K with PBE-D3 and subsequently use TPT to in-
clude also SCAN, SCAN-rVV10 and plain PBE. To elucidate the
influence of the number of quadrature points on the accuracy of
the NBP, we conducted the numerical integration for B with 6,
8, and 10 points. Since increasing the number of points includes
calculations for increasingly small λ values of 0.0047 (6 points),
0.0010 (8 points) and 0.0003 (10 points), this improves the sam-
pling of the at 4000 K particularly important repulsive part of the
configuration space (cf. Fig. 4 in SI)†. However, there is only
small decrease of the value of the integral by ≈ 3 meV/atom from
6 to 8 points, and again by the same amount from 8 to 10 points.
Although these deviations are an order of magnitude larger than
the statistical error, they translate to a total ∆T of merely 6 K (6
to 10 points), or 0.1% of the NBP. The NBPs calculated with other
DFAs range from 4183 K (SCAN) over 4233 K (PBE) to 4323 K
(PBE-D3). They are all in good agreement with the experimental
value of 4203 K suggested by Zhang and coworkers (3% deviation
for PBE-D3, < 1% for PBE, SCAN, and SCAN-rVV10),22 as well as
with the value of 4273 K from refs. 26 and 27. In contrast, the
value of 3931 K reported in refs. 25 and 28 is too low by 6−10%.
This is more than twice the mean absolute deviation (MAD) over
all studied elements, and the value thus presumably wrong.

To summarize, the two most relevant results from this detailed
look at Xe, K and B are (i) the approach is robust concerning sim-
ulation temperature, volume, and also concerning the choice of
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the density functional, and (ii) TDI conducted with 6-8 quadra-
ture points and κ = 0.60 is sufficiently accurate for the determi-
nation of NBPs. This last point is of particular practical relevance
since these settings lead to much more stable and efficient sim-
ulations compared to the previously used settings. This allowed
us to test the approach for many more elements, which we will
discuss in the following.

3.2 Additional Elements

We conducted additional calculations for sodium (Na), aluminum
(Al), calcium (Ca), strontium (Sr), barium (Ba), manganese
(Mn), copper (Cu), and mercury (Hg). Their gas phases con-
sist of isolated atoms with Θ = 1 (Ca, Sr, Ba, Hg), 2 (Na, Cu) or
6 (Al, Mn). Cu and Ba moreover exhibit low-lying electronically
excited states which are significantly populated near their NBPs.
This causes a stabilization of the gas phase by 23 meV/atom for
Cu and 32 meV/atom for Ba at the NBP (energy differences rela-
tive to ref. 39), which in turn significantly affects the calculated
NBP. We take this into account pragmatically, i.e., by using frac-
tional degeneracies of 2.19 and 1.18 for Cu and Ba, which quan-
titatively restores the agreement with the reference values at and
around the NBP. A notable interaction between the atoms in the
gas phase exists only in case of Na (ε = 0.75 eV, σ = 2.76 Å),45 Al
(ε = 1.66 eV, σ = 2.41 Å),46 and Cu (ε = 2.03 eV, σ = 1.98 Å).47

However, similar to K, neither of these experience a significant
contribution from the two-body term at the NBP (Na −0.79 meV,
Al −0.49 meV, Cu −0.37 meV). The gas phases of Na and possibly
also Al and Cu may contain some dimers, but as already discussed
their influence on the Gibbs energy is negligible at the NBP.

For Na, Al, Ca, Sr, Cu, and Hg, the variation between the experi-
mental references is small, and the agreement with the calculated
NBPs very good, as evident from Fig. 2 and Tab. 3. The mean
absolute deviation (MAD) over all elements with respect to the
literature values suggested by Zhang and coworkers is just 1.62%
and the mean deviation (MD)−0.80% (PBE for the alkaline-earth,
transition metals, B and Al, PBEsol for K and Na, PBE-D3 for and
Xe). The results further demonstrate how λ -scaling improves the
predicted NBP, in particular, if there exists significant over- or
underbinding at the DFT level, i.e., when λ deviates from unity
(cf. B, Ca, Sr, Mn, Hg). As a result, the final λ -scaled NBPs cal-
culated with various DFAs are consistent despite substantial dif-
ferences in the DFA description of the respective bulk solids (cf.
PBE/PBE-D3/PBEsol for the alkaline-earth metals). For Na, we
included a Gibbs energy calculated at a simulation temperature
of just 400 K, i.e., just above the melting point as a hardship case
for the entropy-based extrapolation. Despite the large ∆T , the re-
sulting NBP is very reasonable with 1022 K, and constitutes an
ideal starting point for a more accurate calculation.

Mn and Ba stand out from the other results. For Mn, the vari-
ation in the experimental NBP is not too large with a range of
2235− 2373 K (6%),22 whereas the variation between the calcu-
lated NBPs is unusually large. We first employed RPBE and sub-
sequently also SCAN because they provide a much better agree-
ment for the cohesive energy of α-Mn (distorted bcc with 51
atoms/cell) than PBE, as evident from the respective λ s of 0.916
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Fig. 2 Plot of the range of calculated values (orange and red, all λ -
scaled) against the range of literature values (light and dark blue) as
shown in Tabs. 2 and 3. The MAD over all elements with respect to the
literature values suggested by Zhang and coworkers is just 1.62% and the
MD −0.80% (based on the PBE for the alkaline-earth, transition metals,
B and Al, PBEsol for K and Na, PBE-D3 for and Xe).

(RPBE), 0.980 (SCAN), and 0.751 (PBE). This strong overbind-
ing is particularly surprising since PBE tends to underbinding for
all other elements considered here and in general.38 However,
despite their good agreement for the cohesive energy, the NBPs
calculated with RPBE and, in particular, with SCAN fall signif-
icantly short of the range of experimental values with relative
deviations of 4% and 8% (with respect to the lower value of
2235 K). Surprisingly, the calculation with PBE (conducted at an
increased temperature of 3200 K to bring the effective tempera-
ture closer to the NBP) provides an NBP of 2300 K and thus in
between the experimental values. Although further calculations
would be required to draw any final conclusions, these results
suggest the good agreement of RPBE and SCAN for the cohesive
energy is the result of a fortuitous error compensation between
the energy of the bulk and the energy of the isolated atom. De-
spite its stark overbinding of the solid, PBE appears to provide
a more consistent description of the solid and liquid, such that
our approach predicts a more reasonable NBP. We speculate that
these issues are the result of the challenging electronic structure
of this d-block element with several partially occupied shells. This
may impact the calculation of the isolated atom as well as the
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Table 3 Calculated and experimental NBPs for the second set of elements.
Experimental data taken from Holleman-Wiberg as well as from Zhang
and coworkers with their suggestions set in bold.22,28 Calculated data is
given for various DFAs, Tsims, as well as with and without λ -scaling. All
calculations are conducted in the scalar-relativistic approximation except
for Ba and Hg, for which (also) spin-orbit (so) relativistic results (via
TPT) are presented.

NBP /K
DFA, Tsim, n, κ λ direct λ -scaled

Sodium, Eexp
coh =−1.113 (bcc) lit. 1153−1163 K

PBEsol, 1000, 7, 0.60 0.958 1184 1147
PBEsol, 400, 7, 0.70 0.958 1043 1022

Aluminum, Eexp
coh =−3.390 (fcc) lit. 2743−2793 K

PBE, 2800, 7, 0.60 0.994 2783 2769
Calcium, Eexp

coh =−1.840 (fcc) lit. 1757−1760 K
PBE, 1800, 7, 0.60 0.961 1854 1799

PBE-D3, 1800, 6, 0.60 0.855 2050 1815
PBEsol, 1800, 8, 0.60 0.871 2037 1830

Strontium, Eexp
coh =−1.720 (fcc) lit. 1653−1657 K

PBE, 1570, 7, 0.50 1.071 1586 1671
PBE-D3, 1800, 7, 0.60 0.951 1775 1708
PBEsol, 1800, 7, 0.60 0.952 1781 1716

Barium, Eexp
coh =−1.720 (bcc) lit. 1810,28 1910−2173 K

PBE, 2000, 7, 0.60 1.013 1966 1987
soPBE, 2000, 7, 0.60 1.010 1970 1984

PBE-D3, 2000, 7, 0.60 0.915 2144 2007
Mangan, Eexp

coh =−2.920 (α-Mn) lit. 2235−2373 K
PBE, 3200, 7, 0.60 0.751 2924 2300

RPBE, 2400, 8, 0.60 0.916 2309 2144
SCAN, 2400, 8, 0.60 0.980 2082 2050

Copper, Eexp
coh =−3.490 (fcc) lit. 2833−2868 K

PBE, 2700, 7, 0.60 1.002 2836 2840
PBE, 3000, 7, 0.60 1.002 2851 2856

Mercury, Eexp
coh =−0.670 (rho) lit. 629.7−630.2 K

PBEsol, 700, 8, 0.60 1.227 521.7 609.3
soPBEsol, 700, 8, 0.60 1.076 591.8 626.3

bulk material and is evident already from the surprisingly strong
overbinding of PBE. While it would certainly be interesting to see
how an inclusion of non-local exchange and electron-correlation
via TPT would change the picture, such a focused investigation of
a single element is beyond the scope of this general work.

For Ba, the NBPs provided in the literature show a large vari-
ation of almost 17%. While the CRC Handbook, as well as the
Tables for Physical and Chemical Constants, provide values of
2118−2173 K,26,27 other sources provide a distinctly lower value
of 1910−1950 K,23–25 or even 1810 K in Holleman-Wiberg.28

Zhang and coworkers suggested the value of 1910 K based on a
prediction of their neural network of 1600 K. However, they have
not considered ref. 28 in their study,22 which provides a value
much closer to their estimate. Based on the accurate prediction
of the NBPs of Ca and Sr with a very systematic over-estimation
of 3% with PBE, we conclude that this approach is as accurate for
Ba, for which it affords an NBP of 1984 K (the influence of spin-
orbit coupling is < 5 K). Correcting for the systematic deviation
observed for Ca and Sr yields a value of ≈ 1920 K, which is in
excellent agreement with refs. 23,24 and 25, but more than 6%

and 8% away from 1810 K and >2100 K, respectively.

For the heavy metal Hg an accurate account of relativistic ef-
fects is essential for accurate properties. Here, the incremental
nature of the approach not only enables the inclusion of compu-
tationally very demanding spin-orbit coupling (SOC), but also an
in-depth analysis of their influence on the physicochemical prop-
erties, which we will demonstrate in the following. The gas phase
of Hg consists of weakly interacting atoms with Θ = 1. Spin-orbit
relativistic (so)PBEsol provides a cohesive energy of −0.622 eV
(rhombohedral phase), corresponding to a weak underbinding
compared to the experiment, as evident from the λ of 1.076 (for a
detailed discussion of the experimentally lowest structure, see ref.
48). In the scalar-relativistic (sr) approximation, while the struc-
ture largely remains the same, the calculated cohesive energy is
distinctly smaller with −0.546 eV, resulting in a λ of 1.227. The
so-relativistic calculation provides a NBP of 626.3 K in excellent
agreement with the experimental value of 630.2 K. Conducting
all calculations in the sr approximation and including SOC only
via λ -scaling leads to a NBP of 609.3 K (521.7 K without scal-
ing), and thus a slightly larger deviation from the experiment.
This shows that here, SOC effects may be included via λ -scaling
without loosing much accuracy. Note that SOC also has a signif-
icant impact on the volume, leading to a significant increase of
the density from 11.6 g/ccm (sr) to 12.3 g/ccm (so). However, as
already observed for K, the influence onto the calculated NBP is
negligible with 0.1 K.

3.3 Liquid Entropies

In addition to calculating and comparing NBPs, the calculated liq-
uid entropies may be compared directly to experimental ones.39

For this, we obtain experimental entropies by linear interpolation
between the four closest values provided in ref. 39 at the cor-
rected effective temperature (Tcor = λTsim), and plot them against
the calculated entropies in Fig. 3. Concerning the calculated val-
ues, we include the purely classical entropy S used for the linear
extrapolation, as well as the sum of classical and electronic en-
tropy S+Sel. Inspection of Fig. 3 reveals a picture very consistent
with that of the NBPs. In cases where the calculated NBP agrees
well with the experimental data, also the entropies are in good
agreement, which is perhaps most evident from the example of
Mn. It is the element with the largest deviation of the calculated
NBP between DFAs, which is reflected in the entropies. Simi-
lar to the NBP, SCAN shows a substantial deviation, while PBE
agrees reasonably well. The other example with a notable devi-
ation is Ba, and illustrates the disadvantage of a comparison to
“experimental” entropies. The problem is that the entropy is not
directly accessible experimentally, but modeled to reproduce var-
ious experimental data under certain assumptions, which may be
flawed. The only source for the liquid entropy of Ba uses an NBP
of 2119 K,39 which is – as previously discussed – most certainly
too high. This presumably explains why the deviation of the cal-
culated entropies is more significant for Ba than for Ca and Sr.
For all other elements for which experimental data is available
(all except Xe), the agreement between calculated and experi-
mental entropies is excellent. Statistical analysis of the shown
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Fig. 3 Calculated liquid entropies excluding (yellow) and including (or-
ange) the electronic entropy compared to experimental values for the
corrected temperature (λTsim, given on the x-axis, blue). All values given
in J/(mol*K). Experimental values are obtained by linear interpolation
between the four closest values from ref. 39.

data (one calculation per element, using PBE-D3 for Ca, Sr and
Ba, PBEsol for K, and PBE for Mn) confirms that including the
electronic entropy systematically improves the agreement with
the experimental data for both temperatures. For the experimen-
tal value at the effective temperature, including Sel reduces the
MD from −5.7 J/(K*mol) (−4.7%) to 1.1 J/(K*mol) (0.7%) and
the MAD from 5.8 J/(K*mol) (4.9%) to 2.3 J/(K*mol) (2.0%).
In conclusion, this comparison shows that the approach can also
provide very accurate liquid entropies with a MD below 1%, and
moreover, that their accuracy strongly correlates with that of the
predicted NBPs.

4 Summary and Conclusion
We have presented and evaluated an approach for the prediction
of normal boiling points (NBPs) and entropies of atomic liquids
from first principles. The approach efficiently combines thermo-
dynamic integration (TDI) from a non-interacting reference with
thermodynamic perturbation theory (TPT) based on plane-wave
DFT to provide numerically converged liquid Gibbs energies at
reasonable computational cost. The incremental scheme not only
allows the consideration of computationally demanding effects,
like explicit spin-orbit coupling as demonstrated for Hg, but can

moreover reveal the impact of each contributions on the NBP as
well as other physicochemical properties. Such an analysis re-
vealed that the electronic degeneracy and low-lying excited states
of the atoms in the gas phase significantly affect the calculated
NBPs, whereas conbtributions from two-body interactions — di-
rect as well as indirect via dimer formation — are negligible for
the studied elements.

Calculating the NBPs of a representative set of elements in-
cluding insulators (Xe), semiconductors (B), alkaline (Na, K),
alkaline-earth (Ca, Sr, Ba), transition (Cu, Mn, Hg) and main-
group metals (Al), we demonstrated the approach to be robust
with respect the choice of the density-functional approximation
(DFA), and very accurate with an MAD < 2.0%. The only signifi-
cant deviation between tested DFAs was observed for Mn, which
we traced back to the challenging electronic structure of the atom.
For B and Ba, the variation between the literature values of the
NBP is several times lager (9% and 17%) than the overall MAD
of the calculated values. Most notably is Ba, where the devia-
tion of the calculated NBPs is moreover very systematic for the
lighter congeners. Accounting for this, our estimate of 1920 K is
in excellent agreement with the literature value of 1910 K,22–25

questioning the accuracy of other values of 1810 K and well above
2000 K reported elsewhere.26–28

The robustness of the calculated NBPs regarding the choice of
the DFA is a result of λ -scaling. The fact that this works so well
for the NBP of the studied elements can be rationalized by consid-
ering that for their liquid (and solid) to gas transitions, all inter-
atomic forces have to be overcome. As a result, details of the
potential shape (width, asymptotic behavior etc.) do not exert a
large influence, whereas the total interaction strength reflected in
the potential depth is crucial. Since λ scaling is based on the re-
lation of the cohesive energies, it very efficiently corrects for the
potential depth, such that various DFAs provide reasonably accu-
rate NBPs. Interestingly, as we have learned form other ongoing
projects, an entirely different pictures emerges for the melting
point, which does strongly depend on the shape and particularly
the width of the potential.16 This will be explored in detail in
forthcoming projects.

Besides the NBPs, also calculated liquid entropies were shown
to be in excellent agreement with reference values,39 while their
accuracy correlated with that of the NBPs. The mean devia-
tion (MD) from the references over all examples is just 2.0%
or 1.1 J/(mol*K). Since the calculation of the NBPs requires the
Gibbs energy of the gas phase, whose calculation becomes tedious
if several low-lying electronic states and/or molecular species are
present, this direct comparison of entropies expands the scope of
systems for which the approach can be tested significantly.

One limitation of the presented approach in its current form
is that it is only applicable to structurally simple systems that
constitute a deep global minimum on the potential-energy sur-
face, which essentially excludes molecular liquids. The under-
lying problem is that a presence of complex structure conflicts
with the reversibility-criterion of the TDI, where covalent bonds
are readily broken and reformed at low interacting strength. We
are currently testing an approach which overcomes this limita-
tion through a selective integration of the inter-molecular forces,
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whereas intra-molecular forces are unaltered. This changes the
reference to a gas of non-interacting molecules, whose intra-
molecular (vibrational, conformational) contributions can be sep-
arated out and calculated independently. To separate inter- and
intramolecular forces, n additional gradient calculations are re-
quired at each simulation step, one for each of the n molecules
or (more general) fragments in the simulation. Since each of the
fragments much smaller than complete system, this is computa-
tionally cheap if atom-centered basis functions are used instead
of plane-waves.

However, even in its current form, the approach is uniquely
useful, e.g., for predicting the aggregate states of short-lived
super-heavy elements, to study the influence of periodic trends
and relativistic effects on the boiling point, but also to study the
performance of density-functional theory for the description of
atomic liquids as well as their phase transitions.

5 Computational Details

All DFT calculations have been carried out with VASP 5.4.4.49–52

The core region is modeled using the projector-augmented wave
(PAW) approach of Joubert and Kresse using the softest potential
available in the VASP library.53,54 Calculations with the SCAN
functional take into account non-spherical contributions from
the PAW potentials (LASPH = TRUE) through TPT. The volume
calculations were conducted in the Γ-point approximation, or,
if there was a significant non-linear influence, with a 23k-point
grid (B, Al and Cu). Thermodynamic integration was conducted
with the lower energy cut-off shown in Tab. 4 in the Γ-point
approximation, except for B and Hg, where a 23 grid was em-
ployed. Thermostating was done with a Nosé-Hoover thermostat
with SMASS = 2-4, SCF convergence (ECONV) reduced to 10−4,
and PREC = normal. The timestep was chosen for each case
based on atomic mass and simulation temperature, and further
reduced if necessary to ensure accurate thermostating. For the
integration point closest to the non-interacting limit, the timestep
is reduced significantly to stabilize the simulation numerically.
In few cases with particularly small λ values, it was required
to switch to a Langevin thermostat with a very large friction
coefficient (LANGEVIN_GAMMA = 8+). In general, each integration
point was sampled with at least about 10000 steps, of which
the first 2000 are considered equilibration. The length of each
simulation was chosen such that the statistical error of the NBP
is below 0.2%. For thermodynamic perturbation theory, several
single-point calculations are conducted for 10-20 statistically
independent snapshots taken from the trajectory with λ = 1;
one with the same settings as the simulation, one with the
increased cut-off, precision and convergence critera (PREC =
accurate, ECONV = 10−6), and finally one with all settings from
above as well as a finer k-point grid as specified in Tab. 4. The
contributions from these steps are shown for Xe, K and B in Tab. 1.
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6 Supporting Information
In addition to the information presented on the following pages,
the spreadsheets (in open-document format) used to conduct all
calculations starting from the raw data (simulation averages) to
the final boiling points are available upon request from the corre-
sponding author.

Table 4 Settings used for the DFT-MD calculations in the thermody-
namic integration and perturbation theory in the form (TDI→TPT). The
reduced timestep used in the simulations near the non-interaction limit
is given in parenthesis.

element cut-off k-grid timestep [fs]
Xe (165 K, 200 K) 200→ 400 Γ→ 23 8 (4)

K (923, 1023, 1123 K) 200→ 400 Γ→ 33 8 (1)
K (1000 K) 250→ 500 Γ→ 23 4 (1)

Na (1000 K) 250→ 500 Γ→ 23 4 (1)
B (4000 K) 350→ 600 23→ 33 1 (0.25)
Al (2800 K) 400→ 600 Γ→ 23 2 (1)

Ca (1800 K, 2100 K) 200→ 400 Γ→ 23 4 (1)
Sr (1800 K) 200→ 400 Γ→ 23 4 (1, 0.5)
Ba (2000 K) 200→ 400 Γ→ 23 5 (0.5)

Cu (2700 K, 3000 K) 350→ 600 Γ→ 23 2 (1)
Mn (2400 K) 300→ 600 Γ→ 23 2 (1)
Mn (3200 K) 300→ 600 Γ→ 23 1.5 (0.3)

sr/so Hg (700 K) 250→ 500 23→ 33 12 (3)

6.1 Calculation of the Gibbs Energy of the Liquid
The Gibbs energy of the liquid is calculated through TDI from a
non-interacting reference (ideal gas). For this purpose the dif-
ference of the internal energies is integrated along the coupling
parameter λ

∆G0−1 =
∫ 1

0
dλ 〈U1(R)−U0(R)〉λ , (7)

which relates the liquid with U1 to the ideal gas with U0 at the
same T and V by scaling the forces, and added to the Gibbs en-
ergy of the ideal gas at the liquid equibrium volume (eqs. 11
and 12). Since the kinetic energy part of U1 and U0 is identi-
cal it cancels, and the potential part vanishes at zero interaction
stength (u0), the value of the integrand is the average internal
potential energy calculated at full interaction strength 〈Upot

1 (R)〉
for configurations R generated with reduced interaction strength
(at the respective λ). This integral is evaluated using numerical
quadrature in the form of a n-point Gauss-Lobatto rule, in princi-
ple requiring one NVT simulation for each λ . Although most of
these simulations are straightforward, the ones very close to the
ideal-gas limit (λ � 0.01 or < 1% of the DFT forces) are tedious,
whereas the simulation for the end point λ = 0 is not possible
with a PAW+DFT methodology. This is because close-encounters
between the (almost) non-interacting atoms lead to singularity in
the energy resulting in numerical instabilities in errors in the sim-
ulations, partly resulting from overlapping core-electrons. An ap-
proach to circumvent these issues was devised and implemented
by Kresse and coworkers and will be used here with slight modi-

fications.19

The approach is based on substituting λ in eq. (7) with λ (x) =
( x+1

2 )1/(1−κ), which yields

∆G =
1

2(1−κ)

∫ 1

−1
f (λ (x))λ (x)κ dx . (8)

This introduces an explicit dependency on λ in the integrand,
which not only dampens the impact of the technically challenging
calculations near the non-interacting limit (cf. effective weights in
Fig. 4), but also completely eliminates the point for λ = 0. This is
because the substitution introduces a parameter κ, which fulfils
another role: It guides the mapping of the quadrature points be-
tween the domains. While a value close to 0 retains the original
(equidistant) spacing of the Gauss-Lobatto quadrature, choosing
κ close to 1 increases the density of quadrature points in the λ do-
main in the region close to λ = 0, where the slope of f (λ ) is the
largest (cf. Fig. 4). While Kresse and coworkers suggest κ > 0.8,
we demonstrate here that at least for the calculation of NBPs,
much smaller values suffice. This dramatically reduces the com-
putational effort as it allows to avoid the technically challenging
simulations near the non-interacting limit almost entirely.

Since it is nevertheless prohibitively expensive to carry out the
TDI at a converged level of theory, it is instead combined with
thermodynamic perturbation theory (TPT)

∆G1−2 =−
1
β

ln〈e−β [U2(R)−U1(R)]〉1 , (9)

where the index after the angle bracket indicates that the differ-
ence ∆U1−2 is evaluated for configurations generated by H1. Thus,
by exploiting the linear shift of a refined Hamiltonian (e.g. in-
creased cut-off, k-points or even another functional), TPT can of-
ten provide a very good estimate for the respective Gibbs-energy
difference from as few as 5-20 single-point calculations. Instead
of the exact equation, we use the second-order cumulant expan-
sion

∆G1−2 ≈ 〈∆U〉1−
β

2
〈(∆U−〈∆U〉)2〉1 , (10)

which is sufficiently accurate since already the second-order term
is � 1 meV/atom in all cases, and can thus be neglected. Us-
ing TPT, all final results are converged to within ≈ 2 meV/atom,
which translates into a error in the NBP of about 2 K.

6.2 Calculation of the Gibbs Energy of the Gas Phase

The Gibbs energy of the gas phase is calculated for the non-
interacting (ideal) gas at its equilibrium volume and ambient
pressure. For a given atomic degeneracy Θ, volume V , temper-
ature T , particle number N and mass m this is

Gid = F id + pV =−kBT ln(Z(Θ,T,V,N))+ pV , with (11)

Z(T,V,N) =
(ΘV )N

Λ3NN!
and Λ = h

√
β

2πm
. (12)

For the gas phase, this equation is solved using the Stirling ap-
proximation, which is sufficiently accurate since we are consider-
ing an arbitrary number of particles. The same equation is also
used to calculate the Gibbs energy of the non-interacting refer-
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Fig. 4 Effective weight plotted against the λ s (logarithmic scale) at which
simulations have to be conducted for a 6-point Gauss-Lobatto rule for
several different choices of κ. The interaction-strength for the most “non-
interacting” simulation (min) is given in the legend in %. For reference,
the evolution of the value of the integrand taken from B at 4000 K with
PBE-D3 is shown in blue on the secondary axis. The effective weight
is (wiλ

κ )/(2(1−κ)) where wi is the weight from the respective Gauss-
Lobatto rule.

ence for the liquid (at the equilibrium volume of the liquid). Here,
however, the Stirling approximation is no longer suitable since
the number of particles is finite (61 or 64), and the pV term is
negligible. Moreover, since – in contrast to the real atoms in the
gas phase – the non-interacting reference for the liquid consists
of hypothetical point-masses, they are not degenerate.

To validate the accuracy of the non-interacting model, we eval-
uate the first virial (two-body) correction for each of the exam-
ples assuming a Lennard-Jones (12,6) potential with the param-
eters derived from first-principles calculations for the respective
dimers. This leads to the following integral

Gg
LJ = Gg

id−
2πN2

V β

∫ [
r2e
−4εβ

[
( σ

r )
12−( σ

r )
6
]
−1
]

dr (13)

which can be evaluated as described in ref. 43. This provides
generally very small corrections (≤ 1.0 meV/atom), which in turn
have a negligible impact on the calculated boiling points (≤ 1 K).

7 Determination of Equilibrium Volumes
To calculate the equilibrium volume, the 61 or 64-atom super-
cells are simulated with the default settings (cf. Tab. 4) at sev-
eral slightly different volumes until the statistical average of the
pressure is converged to within 0.3 kBar. For about 5-20 equidis-
tant snapshots from the trajectory, single-point calculations are
conducted with the converged settings to obtain a correction for
the influence of Pulay stress, a finer k-point grid, and increased
numerical precision (as well as spin-orbit coupling in case of Ba
and Hg). The corrected pressures at each point are fitted with
a second-order polynomial and interpolated to the x-intersection
(p = 0, note that using p=0.001 kBar consistent with ambient
pressure would provide virtually identical volumes). Final vol-

Table 5 Calculated equilibrium volumes (in Å3/atom), corresponding den-
sities ρ (in g/cm3), and residual pressures (in kBar) for all studied el-
ements. Volumes of Al, Cu, B, and Cn are calculated with 23k-point
grid in the simulations, all others employ the Γ-point approximation and
include the effect of more k-points perturbatively.

element/DFA/Tsim V/atom ρ residual p
Xe/PBE-D3/165 K 79.8 2.73 0.1
Xe/PBE-D3/200 K 85.8 2.54 0.1
Xe/revPBE-D3/165 K 79.8 2.73 −0.1
K/PBE-D3/1000 K 90.42 0.718 0.0
K/PBEsol/1000 K 93.22 0.696 0.3
K/PBE/1000 K 101.9 0.637 0.1
B/PBE-D3/4000 K 8.820 2.04 −0.2
Al/PBE/2800 K 23.62 1.90 0.1
Na/PBEsol/1000 K 46.24 0.825 0.2
Ca/PBE/1800 K 52.51 1.27 −0.5
Ca/PBED3/1800 K 47.63 1.40 0.2
Ca/PBEsol/1800 K 49.22 1.35 −0.2
Sr/PBE/1570 K 66.92 2.17 0.0
Sr/PBED3/1800 K 64.00 2.27 −0.2
Sr/PBEsol/1800 K 65.55 2.22 −0.7
Ba/PBE/2000 K 81.25 2.81 0.0
Ba/PBED3/2000 K 73.40 3.11 0.1
Mn/PBE/3200 K 12.75 7.16 0.5
Mn/RPBE/2400 K 12.49 7.30 −0.4
Mn/SCAN/2400 K 11.58 7.89 −1.2
Cu/PBE/2400 K 12.49 7.30 −0.4
Hg/soPBEsol/700 K 25.86 12.9 −0.1

umes are confirmed during the TDI, where the simulation with
λ = 1 and subsequent TPT provides the residual pressures given
in Tab. 5, along with the calculated atomic volumes and corre-
sponding densities.

7.1 Derivation of the Scaling-Relation of the Gibbs Energy
The following derivations built on those presented to ref. 16,
which demonstrates that for any atomic system in the classical
Born-Oppenheimer picture, a scaling of the interatomic poten-
tial φ with a factor λ , phase-transition temperatures scale with
the same factor. Although ref. 16 explicitly includes the boiling
points, we will show in the following that the simple transition-
temperature scaling is incorrect for the BP. Instead, the corrected
BP, or in other words the BP for a scaled interaction potential
λφ , has to be determined from the intersect of corrected (scaled)
Gibbs energy for the liquid with the (unaffected) Gibbs energy of
the gas. For this purpose, we go beyond the derivations presented
in ref. 16 and provide an analytical expression for the absolute
Gibbs energies of the solid and liquid phase as a function of a
linear scaling of the potential.

Let us begin with the description of the Gibbs energy for the
solid and liquid phase. In ref. 16 it is shown that

U(λT,λφ) = λU(T,φ) . (14)

However, no such relation was derived for the absolute entropy,
but only for the relative melting entropy ∆Ss−l . While this is suf-
ficient to derive the transition-temperature scaling for the MP, it
was insufficient to calculate the change in the absolute Gibbs en-
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ergy upon scaling the potential.

To derive an analytical relation also for S, let us consider a sim-
ple solid and liquid. At sufficient high temperatures, such that
classical mechanics is applicable, it follows from the equipartition
theorem that the total mean energy, the sum of kinetic and poten-
tial energy, is proportional to the temperature.55 Hence, the term
p2 in the kinetic part to the general expression for the entropy
scales linearly with T ,

S(T,φ) =
U
T
+ kB lnZ (15)

=
U
T
+ kB ln

(∫
e−φ(r)/kBT dr+

∫
e−p2/2mkBT d p

)
(16)

S(λT,λφ) =
λU
λT

+ kB ln
(∫

e−λφ(r)/kBλT dr+
∫

e−λ p2/2mkBλT d p
)
,

(17)

such that as evident from the last line, the λ s cancel out. This
is because the accessible configuration space remains exactly the
same when potential depth φ and available kinetic energy T are
multiplied by the same factor λ . This concludes that for both
the solid and the liquid phases the entropy is unaffected by the
scaling and thus

S(λT,λφ) = S(T,φ) . (18)

Accordingly, the respective Gibbs energy (assuming pV = 0) be-
comes

G(λT,λφ) =U(λT,λφ)−λT S(λT,λφ) (19)

= λU(T,φ)−λT S(T,φ) (20)

= λG(T,φ) , (21)

showing that the Gibbs energy of the condensed phases is linear
with respect to a simultaneous scaling of T and φ . This proves
eq. (3-5) in the manuscript, and provides the means to correct
the Gibbs energy. It should be pointed out that this holds for
any temperature sufficiently high to consider the system in the
classical picture, which thus certainly including the boiling and
melting points of most elements.

Let us now move to the ideal gas and rationalize why it behaves
different, or, in other words, why it does not scale like the solid
and liquid. Using Stirling’s approximation, lnN! = N lnN−N, the
Helmholtz energy of the ideal gas takes the form

F id =−kBT lnZ (22)

=−NkBT ln
[(

mkBT
2π h̄2

)3/2 V
N

]
− kTBN (23)

The partial derivatives

S =
∂F
∂T

∣∣∣∣
V,N

=−kBT
lnZ
∂T

∣∣∣∣
V,N

(24)

p =
∂F
∂V

∣∣∣∣
T,N

(25)

are used to obtain expressions for the entropy and pressure

S = NkB

(
5
2
+ ln

[(
mkBT
2π h̄2

)3/2 V
N

])
(26)

pV = NkBT (27)

since U = F +T S, we have

U = kBT 2 lnZ
∂T

∣∣∣∣
V,N

(28)

=
3
2

NkBT . (29)

and because G = F + pV

G =−NkBT ln
[(

mkBT
2π h̄2

)3/2 V
N

]
. (30)

Upon scaling of the temperature (and potential) with λ , a new
term shows up in the Gibbs energy of the ideal gas

G(λT ) =−NkBλT ln
[
(λT )5/2

(
mkB

2π h̄2

)3/2 kB

P

]
(31)

= NkBλT ln
[

T 5/2
(

mkB

2π h̄2

)3/2 kB

P

]
+NkλT ln[λ 5/2] (32)

= λF(T )+NkBλT ln[λ 5/2] . (33)

Since the ideal gas is – in constrast to the condensed phases – in-
dependent on the interaction potential, the above derived relation
merely show the temperature-dependence of the Gibbs energy of
the gas. Unsurprisingly, Gg(T ) is not linear in T, and as a con-
sequence, the simple scaling of the BP is not possible. However,
as evident from eqs. (21-23), the entire Gibbs energy curve for
the liquid phase can be corrected for linear changes in the poten-
tial, and the corrected BP extracted as the intersect between the
corrected Gibbs energy of the liquid Gl(T,λφ) and the unaltered
Gibbs energy of the gas phase Gg(T ).
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Table 6 Calculated Gibbs energies, internal energies (in eV/atom), as well
as classical and electronic entropies (in meV/[atom*K]) for the liquid
phase of all studied elements.

DFA, Tsim, Teff G U S Sel
Xenon

PBE-D3, 165, 165 −0.2368 −0.1406 0.5831 0.0
Sodium

PBEsol, 1000, 959 −1.8091 −0.8605 0.9486 0.0112
Potassium

PBE, 1000, 1073 −1.6822 −0.5685 1.1137 0.0200
PBE-D3, 1000, 945 −1.7617 −0.6803 1.0822 0.0182
PBEsol, 1000, 1002 −1.7311 −0.6371 1.0940 0.0188

Boron
PBE-D3, 4000, 3664 −8.5304 −4.8373 0.9233 0.0248
Aluminum

PBE, 2800, 2782 −5.5099 −2.5913 1.0488 0.0327
Calcium

PBE, 1800, 1729 −3.2486 −1.3322 1.0644 0.0658
PBE-D3, 1800, 1540 −3.4238 −1.5414 1.0327 0.0657
PBEsol, 1800, 1568 −3.4256 −1.5298 1.0458 0.0656
PBEsol, 2100, 1829 −3.7680 −1.4770 1.0909 0.0755

Strontium
PBE, 1570, 1680 −2.9156 −1.1088 1.1509 0.0621

PBE-D3, 1800, 1712 −3.3560 −1.2506 1.1697 0.0707
PBEsol, 1800, 1714 −3.3618 −1.2305 1.1841 0.0708

Barium
PBE, 2000, 2026 −3.9186 −1.2899 1.3144 0.1088

PBE-D3, 2000, 1830 −4.0781 −1.4942 1.2920 0.1020
Manganese

PBE, 3200, 2402 −6.3447 −2.9140 1.0721 0.1307
RPBE, 2400, 2198 −4.7648 −2.3975 0.9852 0.0987
SCAN, 2400, 2342 −4.4795 −2.1522 0.9697 0.0833

Copper
PBE, 2700, 2705 −5.5273 −2.5896 1.0881 0.0175
PBE, 3000, 3006 −5.8769 −2.5039 1.1243 0.0220

Mercury
soPBEsol, 700, 753 −1.0814 −0.3609 1.0279 0.0045
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