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     Abstract 

The purpose of this paper is to explore a model of the chemical bond which does not assume that the 

electrons of the chemical bonding electron pair can be unambiguously identified with either the left hand 

or right hand of the bonding atoms when their orbitals overlap to bond. In order to provide maximum 

flexibility in the selection of the electron’s orbitals, the orbitals have been represented as spatial arrays 

and the calculations performed numerically.  This model of the chemical bond assumes that the 

identifiability of the bonding electrons is a function of 1-(overlap/(1+overlap)) where the overlap of the 

two bonding electron’s orbitals is calculated in the usual manner.  The kinetic energy of the bonding 

electron pair and the energy required to meet the orthogonality requirements, mandated by the Pauli 

principle, are a function of overlap/(1+overlap).  The model assumes that the bonding orbitals are 

straight-forward atomic orbitals or hybrids of these atomic orbitals.  The results obtained by applying this 

simple approach to eleven di-atomics and seven common poly-atomics are quite good.  The calculated 

bond lengths are generally within 0.005Å of the measured values and bond energies to within a few 

percent.  Bond lengths for bonds to H are about 0.02 Å high.  Except for H2, bond lengths are determined, 

independent of bond energy, at that point where overlap/(1+overlap) equals 0.5.  

 

I.  INTRODUCTION 

 The purpose of the work described here is to test a model for the chemical bond that 

assumes that the two electrons of the bonding pair are not completely identifiable, with respect to 

their source atom, when their orbitals overlap.  Were the bonding electrons not identifiable in the 

overlap region it would be impossible to unambiguously identify every element of the orbital’s 

distribution with either the atom on the right hand or the atom on the left side of the bond.  Since 

the identification is ambiguous, nature would allow one to make the most energy favorable 

identification, which is to picture the electrons spread out over the whole bond when calculating 

the kinetic energy. 

 Distributions are representations of order (as differentiated from disorder or randomness).  

Narrow distributions represent high order, broader distributions less order. When two 

distributions overlap the order associated with the system decreases with their overlap because, 

in the overlap region, one can no longer identify each distribution element with a particular 

distribution.  Overlap introduces randomness.  Electron kinetic energy relates to order and 

electron distributions to representations of order. 

 In his early work1 applying LCAO-MO theory to H2, Coulson assumed that the two 

electrons of the bonding pair were identifiable.  In subsequent applications of LCAO-MO theory 

to this molecule and more complex molecules, the same assumption has been made2.  This 

assumption apparently has its origin in the view that a single electron can be uniquely assigned to 

one of two non-orthogonal overlapping spatial orbitals of different spin.   

                                                           
a Electronic mail: chembondsim@aol.com 
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 That the electrons of two overlapping orthogonal spatial orbitals of the same spin are not 

distinguishable is manifest in the so-called “exchange integral”3.  The exchange integral 

evaluates the electron-electron repulsion in the overlap region.  The total electron-electron 

repulsion is reduced by this quantity (Since an electron cannot repel itself.).  Likewise, it is 

reasonable to hypothesize that the electrons of the bonding pair, which have non-orthogonal 

spatial orbitals of different spin, are also not distinguishable in the overlap region. 

  

A.  Numerical Methods 

 

 The calculations described herein are done numerically with the orbitals represented in 

huge identical spatial arrays of the form phi[i][j][k] where i is the index for the radius from the 

molecular axis, j represents the distance along the molecular axis and k is an array identifier. 

(Only two spatial coordinates are needed since the electron structure is axially symmetric or can 

be treated as such.)  In a numerical calculation, integrals become summations.  For example, the 

electron-electron repulsion becomes: 

      electron-electron repulsion = constant 

∑  𝐼𝑀𝐴𝑋
𝑖=0 ∑  𝐽𝑀𝐴𝑋

𝑗=0 ∑  𝐼𝑀𝐴𝑋
𝑙=0 ∑ phi[i][j][left array] phi[l][m][right array]𝐽𝑀𝐴𝑋

𝑚=0 ovr[ndist][i][l] , 

            (1)  
where 
     ovr[ndist][i][l] is the reciprocal of distance between phi[i][j][left array] and                   
phi[l][m]{right array] and  
     ndist = absolute value(-j+m). 
The value of the constant depends on the dimensions associated with the array elements. 

 As a practical matter, for the repulsion calculation, adjacent phi[i][j] and phi[l][m] are 
consolidated to reduce the number of array elements.  The electron-electron repulsion calculation 

requires less resolution than the kinetic energy calculation described below. 

 Numerical methods are advantageous because they do not presume a particular functional 

form for the orbitals.  These numerical methods are particularly advantageous in making bonding 

orbitals which are orthogonal to the opposite core 1s electrons.  Numerical methods permit the 

use of iterative analytical methods to find the lowest energy orbitals which meet the 

orthogonalization requirements. 

 

B.  Kinetic Energy of Combined Orbital 

 

 Kinetic energy (KE) of an orbital is determined in the usual manner: 

   KE = ∫∫2 2 r dr dl,       (2) 

where  represents a generic orbital and 2 is the Laplacian.  The variable r represents the radial 

distance from the bond axis and l represents the distance along the bond axis.  Using numerical 

methods this becomes: 

    KE =constant ∑  𝐼𝑀𝐴𝑋
𝑖=0 ∑  𝐽𝑀𝐴𝑋

𝑗=1  

       ((rrdn[i] (phi[i − 1][j] − phi[i][j]) − rrup[i](phi[i][j] − phi[i + 1][j]))) phi[i][j]  +  

             constant ∑  𝐼𝑀𝐴𝑋
𝑖=0 ∑  𝐽𝑀𝐴𝑋

𝑗=1  

       ((phi[i][j + 1] − phi[i][j]) − (phi[i][j] − phi[i][j − 1])) (phi[i][j] rr[i]) ,   (3) 

where  

 rr[i] is the axial radius at i 
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 rrdn[i] is one-half unit down the axial radius from rr[i] 
 rrup[i] is one-half unit up the axial radius from rr[i]. 
(In the equation above i=0 leads to phi with a negative index (and therefore not determined).  

This is of no consequence because its factor, rrdn[i] = 0 when i=0.) 

The value of the constant depends on the dimensions associated with the array elements. 

 As a practical matter, to increase accuracy while not sacrificing processing speed, finer 

arrays have been created for areas close to the nucleus (where phi changes faster) and coarser 

arrays at a distance from the nucleus. 

  Another important quantity is the overlap of the bonding orbitals which is calculated in 

the usual manner:  

   overlap = ∫∫l r 2 r dr dl,       (4) 

where l  represents the bonding atomic orbital on the left and r the bonding atomic orbital on 

the right.  The orbitals l  and r are atomic orbitals which have been made orthogonal to the core 

electrons on the opposite atom.  Overlap has a range from 0.0 to 1.0.  The atomic orbitals which 

have been made orthogonal to the core electrons on the opposite atom have no net overlap with 

those core-electron orbitals: 

   ∫∫l 1sr 2 r dr dl =0.0 and      (5) 

   ∫∫r 1sl 2 r dr dl =0.0.      (6) 

 To calculate the kinetic energy when the identification of components of the orbitals as 

right versus left is ambiguous, one creates a hypothetical orbital, referred to as the combined 

orbital, l+r which distributes the electron equally on the atoms left and right of the bond while 

preserving the electron density map of the original left and right atomic orbitals combined and 

meeting the orthogonality requirements.   

 For each spatial array element one computes: 

    phi[i][j][combined] = square root 

         (phi[i][j][right_ortho] phi[i][j][right_ortho]+phi[i][j][left_ortho] phi[i][j][left_ortho]) . 

            (7) 

When phi[i][j][left_ortho] and phi[i][j][right_ortho] are negative, a negative sign is given to the 

combined orbital.  The array elements phi[i][j][left_ortho] and phi[i][j][right_ortho] are the array 

elements of atomic orbitals which have been altered to create orbitals which are orthogonal to the 

core electrons of the opposite atom (l and r). The analytic procedure used to convert the set of 

array elements, phi[i][j][left] and phi[i][j][right], the original atomic orbitals elements, 

designated as l and r, to the set phi[i][j][left_ortho] and phi[i][j][right_ortho] is described in 

Section IIIA below. 

 Note that the combined orbital is not the sum of the right and left orbitals as this would 

change the electron density map by adding electron density between the atoms. The author 

knows of no explicit functions which describe the set phi[i][j][left_ortho] and 

phi[i][j][right_ortho] or l+r. These calculations can only be performed numerically. 

 The kinetic energy change associated with overlap of the atomic orbitals is designated 

KEbond.  KEbond is calculated: 

   KEbond = (overlap/(1+overlap)) KEnet     (8) 

   where  KEnet=(KEl+r - KEl  - KEr)     (9) 
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The total kinetic energy change for the bond is 2.0 times KEbond.  (KEbond is for one electron.) 

This approach to the kinetic energy assumes that, to the extent of overlap/(1+overlap), the 

electrons are spread over the bonding orbitals of both of the bonding atoms. To the extent of 1-

(overlap/(1+overlap)), the kinetic energy is that of the atomic orbitals which have been made 

orthogonal to the opposite core electrons (the set phi[i][j][left_ortho] and phi[i][j][right_ortho]). 

 

C.  H2 

 

 Applying this approach to find the kinetic energy of the H2 bonding electrons, I find a 

bond energy, De, of 4.06 eV at a bond length of 0.753Å using an orbital scale factor (orbital 

reduction factor) of 1.15. (See column B of Table I for the results of this calculation at 0.754 Å.)  

The actual values are De equal to 4.75 at a bond length of 0.741 Å.   Some improvement can be 

made by polarizing the H 1s orbitals by adding a small amount of 2pz (0.008) with a 2pz scale 

factor of 3.50 to the H 1s orbital while retaining an orbital scale factor of 1.15.  This results in a 

bond energy, De, of 4.67 eV at a bond length of 0.754Å. (See column C of Table I for the results 

of this calculation at 0.754 Å.)  These are remarkably good results for such a simple approach, 

but since the H2 results could be fortuitous, the investigation needs to be extended to other 

molecules.   

 For purposes of comparison, Coulson’s early MO calculations have been reproduced 

here. These results are shown in Table II. Coulson’s MO approach gives poorer agreement with 

experiment, with De, of 3.49 eV. 

  Coulson gives a breakdown of similar calculations for H2 at 1.41 Bohr (0.746Å) in his 

later book4.  These are accurate to only about 0.1 eV.  Coulson gives 17.8 eV, 19.3 eV, 27.2 eV 

and 16.2 eV for the electronic repulsion, nuclear repulsion, energy of two H atoms, and “energy 

of each separate molecular orbital”, respectively.  My similar calculations for the same quantities 

at 1.41 Bohr give 17.824 eV, 19.299 eV, 27.220 eV and 16.095 eV. 

  

Table I. Components of H2 calculations at 0.754 Å (Energy in electron volts) 

A. Component B. Unpolarized 1s Orbital 
    orbital factor= 1.15 

C. Polarized 1s Orbital 

      = fsb 1s+fpb 2pz 

      fpb fpb=0.008 
  2pz orbital factor=3.50 
  1s orbital factor= 1.15 

Kinetic energy gain associated with sigma orbital 
overlap  (2 KEbond) 

         4.1416         4.1365 

Nuclear-nuclear repulsion energy       -19.0957      -19.0957 

Nuclear to opposite bonding orbital energy        34.3914       36.8282 

Electron-electron repulsion energy       -14.7743      -16.0927 

Energy for H atom compression/polarization 
     

        -0.6056        -1.1023 
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Total Energy 4.06                            4.67 

 

 

Table II. Reproduction of Coulson’s MO H2 calculation at 1.40 Bohr or 0.741 Å (Energy in 

electron volts) 

Component  Contribution to 
total energy 

Total kinetic energy of molecular orbitals   -30.8357 

Nuclear-nuclear repulsion energy  -19.4367 

Nuclear to molecular orbitals potential energy  98.8386 

Electron-electron repulsion energy  -17.8501 

Energy of two H atoms 
    orbital factor=1.197   
 

 -27.2259 

Total       3.490 

Note: Actual energy minimum is at 0.731 Å  

 

III. ATOMIC ORBITALS AND ORBITAL SCALE FACTORS 

 For the calculations described here, the atomic orbitals of Duncanson and Coulson5 have 

been used.  The quantities Duncanson and Coulson call  and c (These are equivalent to the 

effective nuclear charge [or orbital scale factor] for 2s and 2p electrons.), are increased by factors 

(called fact herein) ranging from 1.0 to 1.055.  Contracting an atomic orbital raises an atom’s 

energy but enables a stronger bond.  Table III gives the approximate energy impact of these 

small changes in the atomic parameters.  The energy impact of these changes is usually less than 

0.4 eV and is spread among several bonds in a polyatomic molecule.  The factors are usually not 

difficult to establish since the energy increases exponentially as the factor is increased.  (The 

orbital scale factor for C+ is taken as 1.10 and that for O- as 0.93.) 

Table II. Estimated Energy (eV) Associated with Orbital Scale Factor  

 
Atom 

 
1.01 

 
1.02 

Factors 
1.03 

 
1.04 

 
1.05 

 
1.055 

B — 0.01 0.05 0.09 0.15  
C 0.01 0.04 0.11 0.20 0.33 0.44 
N 0.03 0.11 0.22 0.41   
O 0 0.10 0.27 0.54   
F 0.04 0.20 0.50    
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III. ORTHOGONALITY 

 For calculations involving multi-electron atoms, orthogonality requirements must be 

considered.  Consistent with the Pauli principle, the orbitals of electrons of the same spin must be 

orthogonal.  When an atom presents a bonding orbital to the opposite atom two types of changes 

must be made to meet the orthogonality requirements: the bonding orbital must be made 

orthogonal to the “core” electrons on the opposite atom and the not-bonding electron orbitals 

must be changed/reconfigured to be orthogonal to the bonding orbital from the opposite atom. 

 

A.  Core Orthogonality 

 

 Herein, a bonding atomic orbital is made orthogonal to the opposite core by placing a 

node(s) in the orbital at the position of the nodes in the opposite bonding orbital.  Since these 

calculations are performed analytically, using arrays to represent the orbitals, the 

orthogonalization is relatively easy.  The goal is to find an orthogonal orbital with the same 

charge distribution (and potential energy) as the original atomic orbital.   An orthogonal orbital 

with exactly the same charge density as the original atomic orbital is impossible because this 

would require a discontinuity in the function at the node.  However, an iterative analytical 

procedure produces a satisfactory approximation of an orthogonal orbital, with approximately the 

same charge density as the original atomic orbital, but without a discontinuity.   

 An approximate, and normalized orbital is constructed from the atomic orbital which has 

a relatively gentle transition at the node.  The approximation procedure does not permit a 

displacement of charge density from one side of the nucleus to another or cause a net 

displacement of charge toward, or away from, the nucleus.  The bond energy is calculated for 

successively sharper node transitions.  [Alternatively, just the difference KEbond - (KE - KE) 

could be calculated].  Usually, as the transition becomes sharper, the bond energy will improve 

slowly, and the overlap change little.  At some point the bond energy will decrease.  The orbital 

that has the best energy is utilized.  Sometimes, usually when one or both of the bonding atoms 

are “soft” (H, light elements), the bond energy does not improve as the node transition becomes 

sharper.  In these cases the bond energy decreases slowly as the node transition sharpens.  At 

some point the bond energy will begin to deteriorate more quickly for a given change in the node 

transition.  The function just prior to the inflection point is chosen.  Although the selection of the 

orthogonal bonding orbital is sometimes not precise, the process does not appear to introduce an 

error of more than a few percent even in the worst cases. 

 There is a reason that the bond energy is relatively stable with changes in the bonding 

orbital.  As the node transition sharpens, KE increases.  The increase in KE is accompanied by 

a corresponding increase in KEl+r.  The difference between these two quantities remains 

relatively constant.   

 Making the bonding atomic orbital orthogonal to the opposite core has the salubrious 

effect of making the two overlapping bonding orbitals positive where the other is positive, and 

negative where the other is negative.  The combined orbital, l+r has no discontinuities. 
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B.  Valence Orthogonality 

 

 When an atom presents a bonding orbital to the opposite atom, the opposite atom must 

change/reconfigure so that its orbitals, with the exception of its bonding orbital, are orthogonal to 

the bonding orbital.  This is referred to here as valence electron orthogonalization.  Consider 

atoms in di-atomic molecules.  The atoms in di-atomic molecules typically have an s2pn 

configuration.  To orthogonalize, the atoms reconfigure to spzp
n-1spo where spo is an opposing 

hybrid orbital (taking z as the bond axis).  The 2s and 2pz orbitals of the atom hybridize to form an 

opposing orbital of the form fso 2s - fpo 2pz, (fso stands for fraction s opposing) and a bonding 

orbital of the form fsb 2s + fpb 2pz (fsb stands for fraction s bonding),where fsofso + fpofpo=1.  The 

coefficients fso and fpo are chosen to make the opposing orbital orthogonal to the opposite 

bonding orbital.  The opposing orbitals determine the bonding orbitals (fsb = fpo and fpb = fso).  

In the case of a di-atomic, fsor (the subscripts r and l indicate right and left) and fpor and fsol and 

fpol are chosen to satisfy the simultaneous equations: 

  fsbl fsor overlap s_s_n - fpbl fpor overlap pz_pz_n + 

  fsor fpbl overlap pz_s_n - fpor fsbl overlap s_pz_n  =  0.0  and    (10a) 

 

fsbr fsol overlap s_s_n - fpbr fpol overlap pz_pz_n + 

fsal fpbr overlap pz_s_n - fpal fsbr overlap s_pz_n  =  0.0 .     (10b)  

 

The overlap s_s_n is the overlap of the 2s atomic orbitals (not core orthogonalized) and etc. 

 

C.  Orthogonality Energy 

 The orthogonalizations described above in Section IIIA need only be taken to the extent 

that the bonding atomic orbitals are identifiable (when the orbitals are identifiable the bond is 

said to be “not bonding”).  The measure of identifiability (bond is “bonding”) is termed 

fraction_bonding and is calculated:  

 fraction_bonding = overlap/(1.0+overlap).      (11) 

The energy required to core orthogonalize a bonding orbital, KEcore_ortho, is: 

  KEcore_ortho = (1.0-fraction_bonding) (KE - KE)     (12) 

where KE is the kinetic energy of the core orthogonalized atomic orbital and KE is the kinetic 

energy of the original atomic orbital. 

 For two hybrid sigma bonding orbitals (comprised of the 2s and 2pz atomic orbitals) of 

the form r= fsbr 2s+fpbr 2pz and l= fsbl 2s+fpbl 2pz, the energy to core orthogonalize the hybrid 

orbitals, KEcore_ortho, is: 

 

 KEcore_ortho = (1-fraction_bonding)  
  (( fsbl fsbr fsbl fsbr (KEs_sal - KEsl) + fsbl fsbr fsbl fsbr (KEs_sar - KEsr) + 

  fsbl fpbr fsbl fpbr (KEs_pzal  - KEsl) + fsbl fpbr fsbl fpbr (KEpz_sar - KEpzr) + 

  fpbl fsbr fpbl fsbr (KEpz_sal - KEpzl) + fpbl fsbr fpbl fsbr (KEs_pzar - KEsr) + 
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  fpbl fpbr fpbl fpbr (KEpz_pzal - KEpzl) + fpbl fpbr fpbl fpbr (KEpz_pzar - KEpzr))  

            (13) 

 

where KEsl and KEpzl are the kinetic energies of the left 2s and 2pz initial atomic orbitals and, 

KEsr and KEpzr are those on the right.  KEs_sal is the kinetic energy of the s orbital on the left 

which has been orthogonalized with the right hand s (the subscript “a” indicates the 

orthogonalized orbital).  KEs_pzal is the kinetic energy of the s orbital on the left which has been 

orthogonalized with the right hand 2pz.   KEpz_sal is kinetic energy of the 2pz orbital on the left 

which has been orthogonalized with the right hand s.  KEpz_pzal is kinetic energy of the 2pz orbital 

on the left which has been orthogonalized with the right hand pz.  The suffix r indicates the 

corresponding orbitals on the right. 

 In the potential energy calculations, the reconfiguration required to meet the valence 

orthogonalization requirement need only to be taken to the extent of (1.0-fraction_bonding).   If a 

2s orbital is reconfigured to a fso 2s-fpo 2pz hybrid to become orthogonal, then, in the potential 

energy calculations, the electron is considered to be in an 2s orbital for fraction_bonding and in a 

fso 2s-fpo 2pz hybrid orbital for (1.0-fraction_bonding).  In this latter case, the bond energy is 

also adjusted for the energy required to promote the s to p.  If the energy to promote an s to p is 

given by stop, then the bond energy is decreased by stop fpo fpo (1.0-fraction_bonding).   

 A table of the energies required for the 2s to 2p promotion for the first row atoms has 

been developed for this work. The stop values are in the order BC<NOF, positive 

atomneutral atomnegative atom, high symmetrylow symmetry and unpairedpaired.  The 

stop values used in this work are presented in Table IV.  While stop values could be calculated 

for each bond, a table-driven approach has been utilized because it results in shorter computation 

times and does not appear to degrade accuracy.  The stop values have been applied consistently 

(For example, the C spo (paired) value is used in three calculations and the N spo (paired) value in 

four.). Since fraction_bonding is typically 0.5 and fpo fpo0.5, the energy charged to a bond for 

2s to 2p promotion is typically less than or equal to half the stop value. 

 

Table IV. Estimated Energy to Promote 2s to 2p (stop) Values 

Species 2p Orbital Type stop Energy/eV 

B spo (unpaired) 4.35 
B spo (paired) 6.55 

C+ spo (unpaired) 4.35 
C+ p 5.05 
C Td 6.55 
C spo (unpaired) 6.55 
C p (unbonded) 6.95 
C p 7.50 
C spo (paired,bonding) 7.90 
N spo (paired) 12.40 
O spo (paired) 16.60 
O- spo (paired) 16.60 
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D.  Core Orthogonality of a Second Sigma Pair 

 Most atoms in di-atomic molecules and some atoms in other molecules have more than 

one bond pair of electrons with sigma symmetry.  For example consider N2.  N has the 

configuration 1s22s22p3or 1s22s22p22pz.  There are two possibilities for sigma bonds: an sp 

hybrid to sp hybrid bond and an s to s bond.  To the extent that one pair (or both pairs) of the 

bonding electrons are not identifiable, (fraction_bonding), the second 2s electron remains in 

place.  To the extent that this s to s bond pair is not bonding (1-fraction_bondingsecond_set), the 

second 2s must also be made orthogonal to the opposite core electrons.  The energy to core 

orthogonalize a second sigma orbital KEcore_ortho_x, is, in general, for the left: 

 KEcore_ortho_xl = fraction_bonding (1.0-fraction_bondingsecond_set)  

  (fsbl fsbr fsbl fsbr (KEs_sal - KEsl) +  

  fsbl fpbr fsbl fpbr (KEs_pzal  - KEsl) +       

  fpbl fsbr fpbl fsbr (KEpz_sal - KEpzl) + 

  fpbl fpbr fpbl fpbr (KEpz_pzal - KEpzl)).      (14) 

 

The calculations for the right side are analogous to those on the left. 

 As (12) indicates the KEcore_ortho_x penalty is taken only to the extent of overall 

fraction_bonding.  If there are second sigma bonding orbitals on both sides of the bond and these 

bond, then the KEcore_ortho_x penalty is further reduced to the extent that the second set of sigma 

orbitals themselves bond, fraction_bondingsecond_set.   

 

IV. SIGMA HYBRID ORBITAL OVERLAP AND KINETIC ENERGY  

 For a single set of hybrid sigma bonding orbitals of the form r= fsbr 2s + fpbr 2pz  and l= 

fsbrl 2s + fpbl 2pz ,the quantities overlap and KEbond are:   

 overlap = fsbl fsbr overlap s-s + fpbl fpbr overlap pz-pz +   

   fpbl fsbr overlap pz-s + fsbl fpbr overlap s-pz and    (15) 

  

 KEbond = (1.0/(1.0+overlap)) (fsbl fsbr overlap s-s  KE net s-s+ 

   fpbl fpbr overlap pz-pz  KE net pz-pz + fpbl fsbr overlap pz-s   KE net pz-s+ 

   fsbl fpbr overlap s-pz   KE net s-pz).     (16) 

 

 Obviously, overlap cannot exceed 1.0, nor can fraction_bonding exceed 0.5.   Except for 

the bonds of some “soft” atoms (H typically) fraction_bonding generally reaches the limit of 0.5.  

The limitation on overlap makes it possible, in most cases, to determine bond lengths without a 

complete treatment of bond energy.  With a few exceptions, bond energy increases as the bond 

length decreases until fraction_bonding = 0.5 is reached. 

V.  DUAL AND PARALLEL BONDS 

 As mentioned above, most atoms in di-atomic molecules and some atoms in other 

molecules have more than single pair of electrons that have the appropriate symmetry for sigma 



10 
 

bonding.  Both of these pairs bond.  This results in what is described herein as dual bonding or 

parallel bonding.  Dual/parallel bonds are not double bonds in the traditional sense, i.e a sigma 

bond and a pi bond.  Dual/parallel bonds entail two sigma bonds.  Parallel bonding differs from 

dual bonding in that the second set of bonding orbitals does not reconfigure when the bond is not 

bonding.  Dual bonding is far more common than parallel bonding.  Parallel bonding is exhibited 

in F2, He2
+ and partially in other compounds.   

 

A.  Dual Bonding 

 

 The calculation of dual overlap, fraction_bonding and KEbond differs somewhat from that 

of the single sigma bond because simultaneous overlaps must be taken in account. 

 Consider two atoms each with a sigma bonding configuration of 2s22pz (e.g. N2).  The 

dual bond between these atoms could be considered as an sp-sp hybrid bond and an s-s bond 

with each weighted by 0.5.  Alternatively, the dual bond between these atoms could be 

considered as an sp-sp hybrid bond, an s-s bond, an sp-s bond and an s-sp bond with each 

weighted by 0.25.  In the latter case (s2pz on both sides), the relevant quantities are: 

 

fraction_bonding s-s  = overlap s_s/(1.0+overlap s_s)     (17a) 

 

fraction_bonding s-sp  = overlap s_sp/(1.0+overlap s_sp)    (17b) 

 

fraction_bonding sp-s  = overlap sp_s/(1.0+overlap sp_s)    (17c) 

 

fraction_bonding sp-sp  = overlap sp_sp/(1.0+overlap sp_sp)    (17d) 

 

fraction_bonding ave = 0.25 (fraction_bonding s-s + fraction_bonding s-sp +  

   fraction_bonding sp-s + fraction_bonding sp-sp)  (18) 

  

overlap ave =  fraction_bonding ave/(1.0-fraction_bonding ave)   (19) 

 

simultaneous_bond s-s/sp-sp =  fraction_bonding s-s fraction_bonding sp-sp  (20a) 

 

simultaneous_bond s-sp/sp-s = fraction_bonding s-sp  fraction_bonding sp-s  (20b) 

 

overlap s-s/sp-sp =  simultaneous_bond s-s/sp-sp /(1.0- simultaneous_bond s-s/sp-sp) (20a) 

 

overlap s-sp/sp-s =  simultaneous_bond s-sp/sp-s/(1.0- simultaneous_bond s-sp/sp-s) (20b) 

 

overlap = 2 overlap ave - overlap sp-s/s-sp - overlap s-sp/sp-s    (21) 

 

fraction_bonding = overlap/ (1.0+overlap) 

 

factor = fraction_bonding/fraction_bonding ave     (22) 

 

KEbond =  

 factor 0.25 ( KEbond s-s + KEbond s-sp + KEbond sp-s + KEbond sp-sp)   (23) 
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With the N2 bonding configurations, both sides 2s22pz, the dual bond overlap is actually 

somewhat less than the overlap of the sp-sp overlap alone.  This is because the s-s overlap is 

much less than the sp-sp overlap. 

 Consider two atoms each with a sigma bonding configuration of 2s22pz
2

 (e.g. O2).  In this 

case the relevant quantities are: 

 fraction_bonding sp-sp  = overlap sp_sp/(1.0+overlap sp_sp)    (24) 

 fraction_bonding ave = fraction_bonding sp-sp      (25) 

 overlap ave =  fraction_bonding ave/(1.0-fraction_bonding ave)   (26) 

 simultaneous_bond sp-sp/sp-sp = fraction_bonding sp-sp fraction_bonding sp-sp  (27) 

 overlap sp-sp/sp-sp =  simultaneous_bond sp-sp/sp-sp/(1.0- simultaneous_bond sp-sp/sp-sp) (28) 

 overlap = 2 overlap ave – 2 overlapsp-sp/sp-sp      (29) 

 fraction_bonding = overlap/ (1.0+overlap) 

 factor = fraction_bonding/fraction_bonding ave     (30) 

 KEbond = factor KEbond sp-sp        (31) 

With these bonding configurations, both atoms 2s22pz
2, the dual bond overlap is somewhat more 

than the overlap of the sp-sp overlap alone.  

 Consider two atoms, one with a sigma bonding configuration of 2s22pz and one with a 

sigma bonding configuration of 2s22pz
2

 (e.g. NO).   In this case the relevant quantities are: 

 fraction_bonding s-sp  = overlap s_sp/(1.0+overlap s_sp)    (32) 

 fraction_bonding sp-sp  = overlap sp_sp/(1.0+overlap sp_sp)    (33) 

 fraction_bonding ave = 0.5 (fraction_bonding s-sp + fraction_bonding sp-sp)  (34) 

 overlap ave =  fraction_bonding ave/(1.0-fraction_bonding ave)   (35) 

 simultaneous_bond s-sp/sp-sp = fraction_bonding s-sp fraction_bonding sp-sp  (36) 

 overlap s-sp/sp-sp  =  simultaneous_bond s-sp/sp-sp/(1.0- simultaneous_bond s-sp/sp-sp) (37) 

 overlap = 2 overlap ave – 2 overlap s-sp/sp-sp      (38) 

 fraction_bonding = overlap/ (1.0+overlap) 

 factor = fraction_bonding/fraction_bonding ave     (39) 

 KEbond = factor 0.5 (KEbond s-sp + KEbond sp-sp)      (40) 

B.  Parallel Bonding 
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 Parallel bonding is a type of dual bonding that occurs when, instead of reconfiguring to 

orthogonalize, a second sigma orbital remains in place and forms a node to make it orthogonal to 

the opposite side bonding orbital.  The best example of parallel bonding is F2.  F has a bonding 

configuration of 1s22s22pz
22pxy

3.  For parallel bonding, fraction_bonding is simply the sum of 

fraction_bonding for each of the two sigma bonds.  So for the F2 parallel bond: 

 

fraction_bonding = fraction_bonding sp-sp + fraction_bonding sp-sp   and  (41) 

 

KEbond =  KEbond sp-sp + KEbond sp-sp .       (42) 

 

Since fraction_bonding calculated in this manner is subject to the usual constraint 

(fraction_bonding  0.5) parallel bonding results in relatively long bond lengths and is usually 

associated with molecules which require p orthogonalization (e.g. F2)(See Section VI.C below).   

VI. PI BONDING, PI RESONANCE AND PI ORTHOGONALIZATION 

A.  Pi Bonding 

The kinetic energy reduction associated with pi bonding, analogous to that of sigma 

bonding, is: 

  

KEbond_ = fraction_bonding  (KEcombined_ – KE_l – KE_r)    (43) 

 where      

 fraction_bonding = overlap/(1.0+overlap).     (44) 

 

Pi overlaps are much smaller than sigma overlaps, usually in the range of 0.1 to 0.3.  Pi bonding 

only occurs to the extent that both pi bonding orbitals have the appropriate symmetry. 

 

B.  Pi Resonance 

When the bonding electron is free to move from the right bonding orbital to the left, or 

from the left to the right, fraction_bonding in (39) above is 0.5.  The kinetic energy reduction 

associated with full pi resonance, KEbond__res, is:  

KEbond__res = 0.5 (KEcombined_ – KE_l – KE_r)     (45) 

For these calculations, the energy associated with the formation of a positively charge 

species in a resonance is obtained from tables of ionization potentials6.  The energy associated 

with the formation of negatively charged species is obtained from tables of electron affinities7. 

 

C.  Pi Orthogonalization 

 When the porbitals on the atom on one side of the bond are more than half full (three or 

four electrons) and the porbitals on the other side are at least half full, then, one of each of the 

spin paired pi orbitals must be made orthogonal to the pi bonding orbitals from the opposite side.  

This orthogonalization is analogous to that described in Section IIIA above with respect to sigma 

bonding, with a node placed in the porbital to make it orthogonal to the opposite pi bonding 

orbital.  An analytical procedure, similar to the one used for core orthogonalization described 



13 
 

above, is used to find the optimal node position and node transition.  As in core 

orthogonalization, this procedure attempts to maintain the atomic orbital density distribution as 

closely as possible.  Analogous to sigma bonding, the pi orthogonalization penalty is taken only 

to the extent of (1.0-fraction_bonding). 

 

VII. SECONDARY BONDING 

 

 In poly-atomic molecules, bonding occurs not only to the closest atom, but also to all 

atoms in the molecule with which it significantly overlaps.  Secondary/tertiary bonding differs 

from primary bonding in three ways.  First, the bond axis of the primary is retained in the 

secondary, tertiary, etc..  Secondly, secondary bonding is reduced by the extent of primary 

bonding (and the tertiary by the extent of primary and secondary and etc.).  The reduction in 

secondary bonding, by primary bonding, is determined by the least primary bonding of the two 

secondary bonding orbitals.  Thirdly, total overlap, including contributions from secondary and 

subsequent bonds, is calculated along the principle axis which is usually the primary bond axis.   

 The secondary (tertiary, etc.) overlap between the primary bonding orbital on the left and 

the secondary bonding orbital on the right is as follows: 

 

 overlapsec_l = fsbl fsbr overlaps-s+cosθl cosθr fpbl fpbr overlappz-pz+ 

    cosθl fpbl fsbr overlappz-s+cosθr fsbl fpbr overlaps-pz ,  (46) 

 

where θl is the angle between the primary axis of the left atom and the secondary (tertiary, etc.) 

bond axis and where θr is the angle between the primary axis of the right atom and the secondary 

(tertiary, etc.) bond axis.  Notice that fsbl and fpbl refer to the hybridization of the primary orbital 

on the left and fsbr and fpbr refer to the hybridization of the secondary orbital on the right.  Note 

also that, in general, the secondary for the left is different from the secondary on the right.   The 

calculation of overlapsec_r is analogous to that on the left.  Sometimes there is a secondary on one 

side but none on the other (e.g. CH4). 

 The overlap component along the primary bond axis, overlapsec_l_z, is: 

 

  overlapsec_l_z = cos2θ overlapsec_l ,      (47) 

 

where θ is the angle between the primary bond axis and the secondary (tertiary, etc.) bond axis. 

The secondary fraction_bonding increment, fraction_bondingsec_l_inc, is: 

 

 fraction_bondingsec_l_inc = 0.5 (1–fraction_bondinglessor_primary_l)  
     (overlapsec_l_z/ (1+ overlapsec_l_z)    (48) 

 

where fraction_bondinglessor_primary_l is the lessor of the two fraction_bondingprimary associated with 

the secondary.  The factor of 0.5 arises because the secondary bond spans two primary bonds.  

The contribution of the secondary overlap to the total overlap, the secondary overlap increment, 

overlapsec_l_inc, is: 

 

 overlapsec_l_inc = fraction_bondingsec_l_inc/ (1-fraction_bondingsec_l_inc).  (49) 
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The calculations for the right side are analogous to those on the left.  The overlap subtotal, 

overlapsubtotal, is: 

 

 overlapsubtotal = overlapprimary+overlapsec_l_inc+overlapsec_r_inc,  and    (50) 

 

 fraction_bondingsubtotal = overlapsubtotal/ (1+ overlapsubtotal).    (51) 

 

Subsequent, secondary (or tertiary and etc.) are treated similarly. 

 Summing overlap contributions in this manner is very important because they make up a 

very significant portion of the total overlap (typically around 10-25%) and therefore have a very 

large impact on the bond length and, indirectly, via the overlaptotal=1.0 constraint, on the bond 

energy.  The direct secondary contributions to the bond energy (described below) can sometimes 

be ignored for an approximate result but the secondary contributions to overlap cannot be 

ignored.  

The core orthogonalization penalty associated with the overlap of the primary bonding 

orbital on the left and the core electrons of the secondary atom on the right is as follows: 

 

KEcore_ortho_sec_l = (fsbl fsbr fsbl fsbr (KEs_sal - KEsl) + 

   fsbl fpbr fsbl fpbr (KEs_pzal - KEsl) + 

   cos(θ) fpbl fsbr fpbl fsbr (KEpz_sal - KEpzl) +  

   cos(θ) fpbl fpbr fpbl fpbr (KEpz_pzal - KEpzl)).   (52) 

 

The calculations for the right side are analogous to those on the left.  The core_orth contributions 

are taken only to the extent of (1-fraction_bondingtotal).  Fraction_bondingtotal generally reaches 

0.5.  The KEcore_orth_sec contributions to the bond energy are generally quite small. 

Secondary potential energy terms are calculated in the same manner as those of the 

primary terms.  The secondary and subsequent contributions are much smaller than the primary 

due to the longer atomic distances, but they are nonetheless usually significant. 

Table V provides a complete breakdown of the many components that contribute to the 

total overlap in diamond. 

 

Table V. Components of the Calculation of Overlap in Diamond at 1.541 Å  

The configuration of C in diamond is 1s22s2pz2pxy
2. 

Component    Value Overlap 
Increment 

Sigma overlap of primary orbitals (overlap 1st) 
     overlap 1st = 0.25 overlap s-s + 0.25 overlap s-p+0.25 overlap p-s+ 0.25 overlap p-p 

        fsbr =  fsbl = fpbr =  fpbl = 0.5 

0.7960 0.7960 

Fraction_bonding of primary (fraction_bonding 1st) 
    fraction_bonding 1st = overlap 1st /(1+ overlap 1st) 
 

0.4432  
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Component    Value Overlap 
Increment 

Sigma overlap to secondary along primary axis (overlap 2nd) 
      3 secondary atoms are at (0,1/2,1/2) at 2.517 Å   
      The angle from bond axis is 35.265 degrees.      cos(35.265)=0.8165 
      overlap 2nd = 0.8165 0.8165 (0.25 overlap s-s+0.8165 0.25 overlap s-p+ 
         0.8165 0.25 overlap p-s+0.8165 0.8165·0.25 overlap p-p) 

0.0949  

Secondary fraction_bonding (fraction_bonding2nd) 
     fraction_bonding2nd = overlap 2nd /(1+overlap 2nd) 

0.0867  

 First secondary fraction_bonding increment (fraction_bonding2nd_inc) 
         fraction_bonding2nd_inc = 2  0.5 (1- fraction_bonding 1st) fraction_bonding2nd 

       Secondary fraction_bonding is reduced by previous, coincident, 1st order bonding. 
         0.5 because secondary spans 2 primary    
         2 because primary C is also a secondary 

0.0483  

First secondary overlap 
     first secondary overlap = fraction_bonding2nd_inc/(1- fraction_bonding 2nd_inc) 

0.0507  

Total secondary overlap for 3 atoms 
     Note that coincident bonding  increases as previous fraction_bonding 
     increases with successive bonds.   0.1479<3 0.0507 

0.1479 0.1479 

Sigma overlap to tertiary #1 (overlap 3rd #1) 
      6 tertiary atoms are at (1/4,3/4,-1/4) and (3/4,1/4,-1/4 ) at 2.9512 Å   
       cos(angle)=0.5222 
      overlap 3rd #1 = 0.5222 0.5222 (0.25 overlap s-s+0.5222 0.25 overlap s-p+ 
         0.5222 0.25 overlap p-s+0.5222 0.5222 0.25 overlap p-p) 

0.0108  

Total tertiary overlap #1 for 6 atoms 
 

0.0329 0.0329 

Sigma overlap to tertiary #2 (overlap 3rd #2) 
      3 tertiary atoms are at (1/4,3/4,3/4 ) at 3.8781 Å   
      cos(angle)=0.9270       

0.0089  

Total tertiary overlap #2 for 3 atoms 0.0134 0.0134 

Sigma overlap to tertiary #3 (overlap 3rd #3) 
      7 tertiary atoms are at opposite faces at 4.3592 Å  (4 above unit cell) 
      cos(angle)=0.4717       

0.0004  

Total tertiary overlap #3 for 7 atoms 0.0013 0.0013 

Sigma overlap to tertiary #4 (overlap 3rd #4) 
      3 tertiary atoms are at adjacent corner at 3.5593 Å   
      cos(angle)=0.5774       

0.0041  

Total tertiary overlap #4 for 3 atoms 0.0061 0.0061 

Sigma overlap to tertiary #5 (overlap 3rd #5) 
      3 tertiary atoms are at one off from adjacent corner at 5.5372 Å   
      cos(angle)=0.7360      

0.0009  

Total tertiary overlap #5 for 3 atoms 0.0014 0.0014 
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Component    Value Overlap 
Increment 

Sigma overlap to tertiary #6 (overlap 3rd #6) 
      3 tertiary atoms are at corners at (1,1,0),(1,0,1)and (0,1,1) at 5.0336 Å   
      cos(angle)=0.8167     

0.0004  

Total tertiary overlap #6 for 3 atoms 0.0006 0.0006 

Sigma overlap to tertiary #7 (overlap 3rd #7) 
      3 tertiary atoms are at opposite corners at 6.165 Å   
      cos(angle)=0.8167     

0.0000  

Total tertiary overlap #7 for 3 atoms  0.0001 

         Total Overlap        0.9997 

 

VII. RESULTS 

 

 Some results from the application of the methods described herein are presented in 

Tables VI, VII and VIII.  Table IX provides a description of the components of the C2 

calculation.  Table X is a detailed description of the components of the CH4 calculation.  

  Bond lengths are generally accurate to 0.005Å and bond energies to a few percent.  

Except for a few bonds to hydrogen, the bond length results are independent of the bond energy 

results.  Of these results, only for H2 is the bond length determined by a maximum in the bond 

length versus bond energy curve.  Otherwise the bond length is found at the point where overlap 

becomes 1.0 (and fraction_bonding becomes 0.5) as the bond length is decreased.  

 Aside from the character of the original atomic orbital, bond lengths are impacted only by 

core orthogonalization and the selected orbital scale factor.  Finding the optimum parameters for 

the core orthogonalization, using the analytical procedures described above, particularly for C 

through F, is not difficult.  Bond lengths are not sensitive to small changes from the optimal 

orthogonalization parameters although care must be taken in the core orthogonalization to assure 

accurate bond energies.  Orbital scale factors are generally easy to establish as the energy 

required to compress an atomic orbital rises rapidly with the factor.  The factors used are shown 

in the results tables for comparison purposes.  Consistent with the data in Table I, the factors are 

larger for lighter elements.  Orbital scale factors for poly-coordinate atoms are larger than those 

of di-atomics because the energy to compress the orbital is spread among several bonds. 

 Bond energies are sensitive to the magnitude of the stop value.   Care has been taken to 

use the same stop value in different compounds in which the atom shows a similar electronic 

structure. The stop values used for each bond are shown in the results tables for comparison 

purposes. 

 The results tables provide the bonding and not bonding configurations of the bonding 

atoms.  In these tables 2sp0 indicates an opposing orbital and 2sp is a hybrid orbital made by 

adding a small amount of 2p to a 2s orbital.  The z axis is taken as the bond axis.  Notice that in 

O2 and O2
-, the bonding configurations include two 2pz.  One of these is reconfigured as 2p (or 

more precisely, 2p since there is pi bonding here) in the not bonding configuration.  In CH3 and 

graphite, one of the C atom’s 2s orbitals is promoted to 2p when any of the central C atom’s 3 

bonds is not bonding [(1.0-0.5 0.5 0.5)=0.875] to meet the orthogonality requirement.  In 

graphite, this promotion allows pi bonding when the C atoms on both sides of the bond are not 
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bonding (0.875 0.875).  In graphite pi bonding is reduced by the extent of simultaneous pi 

bonding to other Cs.   

 Hybridization of the bonding orbitals on central atoms in poly-atomics is different from 

that in di-atomic molecules or terminal atoms.  The hybridization of bonding orbitals on atoms 

that are not in the terminal position is determined via the availability of s character.  In three-

coordinate CH3 (D3h symmetry) and graphite, the square of the central C bonding orbital s 

coefficient, fsb fsb, is 0.667.   The s character in the bonding orbital cannot be oversubscribed, so 

3 fraction_bonding fsb fsb  must be less than or equal to 1.0 and, since fraction_bonding=0.5, fsb 
fsb=0.667.  The s character in a bonding orbital is maximized because this leads to a lessor 

orbital overlap and a shorter bond.   Following the same logic, four-coordinate atoms or pseudo 

four-coordinate central atoms (those which have a combination of four lone pairs and bonds) 

have fsb fsb=0.5.  Diamond and methane have four-coordinate central atoms and have Td 

symmetry.  Water and ammonia are pseudo four-coordinate.  Two-coordinate atoms such as CO2 

have fsb fsb= 0.75.  In the two-coordinate case, the s character of the central atom’s orbital is 

limited because, when both sides are not bonding, 0.25 of the time, fsb fsb must equal 0.5.   

 Consistent with the traditional view, NH3 and H2O have one and two traditional sp3 

orbitals containing lone (non-bonding) pairs of electrons respectively.  The bond axes in these 

molecules are bent inward relative to the electronic axes to make the lone pair(s) orthogonal to 

the H 1s bonding orbital.  The calculated bond angles reflect the requisite bending. 

 Dipole moments, , have been calculated for NO, NH3 and H2O.  Dipole moments are 

very sensitive to the electronic structure of the molecule.  The calculated values are in good 

agreement with the observed values. 

 

Table VI. Results for Some Di-Atomics Which Exhibit No Resonance 

Molecule De
a

 or D0
b/eV Bond 

Length/Å 
Configurationsc,d,e,f 

(C to O 1s2 omitted) 
Bonds stop/ 

eV 

H2 observed  
4.75 

calculated 

4.67 

observed 
0.741 

calculated 

0.754 

H 1s(polarized w/pz) 
H fsb·fsb=0.992 

fact1s=1.15 
fact2pz=3.5 

 
σ 
 

 
n/a 

C2 observed  
6.3 

calculated 

6.51 

observed 
1.2425 

calculated 

1.243 

bonding C 2sp22p
2 

not bonding 2spo2sp2p
2 

fact2s,2p=1.035 

2 σ (dual) 
fsbfsb=0.957 

2  

 
6.55 

(unpaired) 

N2 9.91 
calculated 

9.80 

1.0977 
calculated 

1.100 

bonding 2s22pz2p
2 

not bonding  2spo2s2pz2p
2 

fact2s,2p=1.015 

2 σ  (dual) 

2  

 
12.40 

BN  
observed  

3.92 

0.08 
calculated 

4.00 

 
observed 
1.281 

calculated 

1.281 

bonding B 2s22pz 

not bonding B 2spo2s2pz 
bonding N 2s22pz2p⊥

2 

not bonding N  
2spo2s2pz2p⊥

2 

fact2s,2p(B,N)=1.04,1.015 

 
2 σ (dual) 

no  

 
B 6.55 

N 12.40 
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Molecule De
a

 or D0
b/eV Bond 

Length/Å 
Configurationsc,d,e,f 

(C to O 1s2 omitted) 
Bonds stop/ 

eV 
CN  

observed 
7.78 

0.03 
calculated 

7.67 

 
observed 
1.172 

calculated 

1.169 

bonding C 2sp22p
2 

bonding N 2s22pz2p
2 

not bonding C 2spo2sp2p
2 

not bonding N 

2spo2s2pz2p
2 

fact2s,2p(C,N)=1.035,1.01 

 
2 σ  (dual) 

C  fsbfsb=0.953 

2  
 

 
C 6.55 

(unpaired) 
N 12.40 

NO observed 
6.56 

calculated 

6.42 
 

(calc=0.133 D 

expt=0.159 D) 

 
observed 
1.1506 

calculated 

1.154 

bonding N 2s22pz2p
2 

bonding O 2s22pz
22p

3 

not bonding N 

2spo2s2pz2p
2 

not bonding O 

2spo2s2pz2p
22pa 

fact2s,2p(N,O)=1.02,1.02 

 
2 σ (dual) 

2  

 
N 12.40 
O 16.60 

a  Homonuclear di-atomics. De is the equilibrium dissociation energy which is slightly larger than the 

molecular ground-state-dissociation energy D0. Observed data are from Ira N. Levine, Quantum 

Chemistry 7th edition, pp 373, Pearson (2014) and/or John P. Lowe, Quantum Chemistry 2nd edition, pp 

224, Academic Press (1993). 
b Heteronuclear di-atomics.  Observed D0 data are from W.M. Hayes, Editor in Chief, CRC Handbook of 

Chemistry and Physics, Section 9, CRC Press (2014). 
c fact is the orbital scale factor. 
d 2sp is a hybrid orbital made by adding a small amount of 2p to the existing 2s orbital. 
e 2spo is a hybrid opposing orbital formed to meet the valence orthogonalization requirement. 
f 2pa is 2p made orthogonal to opposite 2p. 

 

Table VII.  Results for Some Di-Atomics Which Exhibit a Full Pi Resonance 

Molecule     De
a/eV Bond 

Length/Å 
Configurationsb,c,d,e 

(1s2 omitted) 
Bonds stop/ 

eV 

B2 observed 
3.1 

calculated 
3.21 

 

observed 
1.590 

calculated 
1.582 

bonding B 2sp22p 

bonding B+ 2sp2
 

bonding B- 2sp22p
2 

not bonding B+,B,B-  

2spo2sp2p
0,1,2 

fact2s,2p=1.035 

 
2 σ (dual) 

fsbfsb=0.953 

 resonance 

 
 

4.35 
(unpaired) 

C2
+ observed  

5.3 
calculated 

5.22 

observed 
1.301 

calculated 
1.301 

bonding C 2sp22p
2 

bonding C+ 2sp22p  

not bonding 2spo2sp2p
1.2 

fact2s,2p(C,C+)=1.08 

2 σ (dual) 
fsbfsb=0.915 

 resonance 

C 6.55 
(unpaired) 

C+ 4.35 
(unpaired) 

O2 observed 
5.21 

calculated 

5.25 
 

observed 
1.2074 

calculated 

1.208 

bonding O+,O,O-  

2s22pz
22p

1,2,3 
not bonding O+,O,O-  

2spo2s2pz2p
2,2,22pa

0,1,2 

fact2s,2p=1.0225 

2 σ  (dual) 
fsbfsb=0.40 

2 resonance plus   

plus   when both 
sides s⇒p 

 
16.60 
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Molecule     De
a/eV Bond 

Length/Å 
Configurationsb,c,d,e 

(1s2 omitted) 
Bonds stop/ 

eV 
O2

- observed  
4.14 

calculated 

4.11 

observed 
1.32 

calculated 

1.28 

bonding O,O- 

2s22pz
22p

2,22pa
0,1 

not bonding O,O- 

2spo2s2pz2p
2,22pa

1,2 

fact2s,2p(O,O-)=0.965 

2 σ  (dual) 
fsbfsb=0.46 

resonance plus 

2  

 
O 16.60 
O- 16.60 

F2 observed 
1.66 

calculated 

1.74 

observed 
1.412 

calculated 

1.418 
 

bonding F 

2s22pz
22p

22pa
 

not bonding F 

2sp02s2pz2spa2p
22pa 

fact2s,2p=1.01 

2 σ  (parallel) 
fraction_bond=0.25 

for each of two σ 

2 resonance plus 2 

 
n/a 

a   De is the equilibrium dissociation energy. Observed data are from Ira N. Levine, Quantum Chemistry 7th 

edition, pp 373, Pearson (2014) and/or John P. Lowe, Quantum Chemistry 2nd edition, pp 224, Academic 

Press (1993). 
b fact is the orbital scale factor. 
c 2sp is a hybrid orbital made by adding a small amount of 2p to the existing 2s orbital. 
d2spo is a hybrid opposing orbital formed to meet the valence orthogonalization requirement. 
e 2pa is 2p made orthogonal to opposite 2p. 
 

 

Table VIII. Some Poly-atomics 

Molecule Do
a,b/eV 
/D 

Bond 
Lengthc/Å 

c /° 

Configurationsd 

(1s2 omitted) 
Bonds stop/eV 

CH/CH3 

(methyl) 

observed  
4.22 

calculated 

4.25 

observed 
1.076 

calculated 

1.080 

all bonding C (0.125) 
2s22pz2p⊥

 

otherwise 2s2pz2p⊥2 

fact2s,2p(C)=1.05 
fact1s(H)=1.08 

 σ   
C  fsbfsb=0.6667 

 
H polarized 

H fsb·fsb=0.977 

 
6.95 

CO/CO2  
observed  

8.33 
calculated  

8.33 

 
observed 
1.160 

calculated 

1.160 

both bonding C,C+ 

2s22pz2p
1,0 

any not bonding C,C+ 

2s2pz2p
2,1 

bonding O,O- 

2s22pz
22p

1,22pa
1,1 

not bonding O,O- 

2s2pz2spo2p
2,32pa

1,1 

fact2s,2p(C,C+)=1.03,1.11 
fact2s,2p(O,O-)=1.01,0.93 

σ (dual when opposite 

bonding i.e. s⇏p) 
C  fsbfsb=0.75 

  resonance  
[O-C+O,OCO,OC+O-] 

  bond (reduced for 

coincident )   

when s⇒p (i.e. 
one/both not sigma 

bonding) 

 
C 7.50 

C+ 5.05 
 

O 16.60 
O- 16.60 

CH/CH4 

(methane) 

observed  
4.30 

calculated 

4.32 

observed 
1.087 

calculated 

1.104 

C 
2s2pz2p⊥2 

fact2s,2p(C)=1.05 
fact1s(H)=1.13 

 σ   
C  fsbfsb=0.5 
H polarized 

H fsbfsb=0.984 

 
6.55 
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Molecule Do
a,b/eV 
/D 

Bond 
Lengthc/Å 

c /° 

Configurationsd 

(1s2 omitted) 
Bonds stop/eV 

NH/NH3 

(ammonia) 

observed  
4.05 

expt 
=1.471 

 
calculated 

4.16 

calc =1.47 
 

observed 
1.012 
HNH= 

106.7 
calculated 

1.023 
HNH= 

106.8 

N 

2s2pz
 

2p⊥
2+0.52spo

0.5 

 

fact2s,2p(N)=1.01 
fact1s(H)=1.17 

 

σ  
N fsbfsb=0.565 

(fsbfsbis nominally 0.5 
axes bent to meet 

orthogonality) 
H polarized 

H fsbfsb=0.958 

 
12.40 

OH/OH2 

(water) 

observed  
4.79 

expt=1.854 
 

calculated 

4.79 

calc=1.83 
 

observed 
0.9575 
HOH= 

104.5 
calculated 

0.923 
HOH= 

104.5 

O 
2s1+0.252pz

 

2p⊥
3+0.252spo

0.5 

  

fact2s,2p(O)=1.01 
fact1s(H)=1.16 

σ  
O fsbfsb=0.66 

(fsbfsbis nominally 0.5 
axes bent to meet 

orthogonality) 
H polarized 

H fsbfsb=0.92 

 
16.60 

CC/ 
C3CCC3 

(diamond) 

 

 
observed 

3.70 
calculated 

3.71 

 
observed 
1.544 

calculated 

1.541 

2s2pz2p⊥
2 

fsbfsb=0.5 
2s is promoted to 2p 

(s⇒p) completely  
fact2s,2p(C)=1.055 

 
σ 

C fsb⨯fsb=0.5 
 

 
6.55 

CC/ 
C2CCC2 

(graphite) 

 

 
observed 

4.95 
calculated 

in-plane 
4.79 

 
observed 
1.421 

calculated 

1.421 
 

all bonding (0.125) 
2s22pz2p⊥

 

any not bonding(0.875) 

 2s2pz2p⊥2p 
 

fact2s,2p(C)=1.055 
 
 

σ   fsbfsb=0.667 
partial dual σ when 

s⇏p 
(all bonding) on both 

sides 

 when s⇒p on both 
sides. (0.875 0.875) 

 bonding is reduced 

by coincident  
bonding to other Cs 

 
7.50 

a   D0 is the molecular bond dissociation energy. 
b Bond energies are from (or calculated from data) in W.M. Hayes, Editor in Chief, CRC Handbook of 
Chemistry and Physics, Section 5, CRC Press (2014). 
c Structural data and dipole moment () data are from W.M. Hayes, Editor in Chief, CRC Handbook of 
Chemistry and Physics, Section 9, CRC Press (2014). 
d fact is the orbital scale factor. 
 

Table IX. Components of the C2 Calculation at 1.243 Å (Energy in electron volts)  

The configuration of C in C2 is 1s22s22pxy
2.   

Component     Value  Energy (eV) 
Increment 
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Sigma overlap of one pair of orbitals (overlap s_s) 
     (There are two pairs of 2s bonding orbitals) 

0.7071   

Fraction_bonding s_s 

     fraction_bonding s_s = (overlap s_s /(1+ overlap s_s) 

0.4142   

Simultaneous overlap of both pairs of orbitals (overlap s-s/s-s) 
    fraction_bonding s_s  fraction_bonding s_s /((1- fraction_bonding s_s  
fraction_bonding s_s) 

0.2071   

Total overlap of both pairs (overlap) 
     overlap = 2 overlap s_s - 2 overlap s-s/s-s 

1.0000   

Fraction_bonding of both pairs  
            fraction_bonding = (overlap/(1+ overlap) 

0.5000   

Kinetic energy of bond of one sigma orbital pair (2 KEbond s-s) 
       KEbond s-s = Fraction_bonding ( KEsl+sr- KEsl - KEsr) 

5.9265   

Sigma bonding kinetic energy of both pairs 
    ( overlap/(1+overlap))/ (overlap s_s /(1+ overlap s_s)) 2 KEbond s-s 

7.1539  7.1539 

Kinetic energy of 2 pi bonds   4 KEbond_ 4.2670  4.2670 

Energy to make sigma pair 2s orthogonal to opposite 1s2 

     2 (KE - KE) where  is 2s made orthogonal,  is 2s 

-6.4001   

Energy to make 1st pair orthogonal to opposite 1s2 when not bonding 
    2 (KE - KE)  (1- fraction_bonding) 

-3.2001  -3.2001 

Additional Energy to make 2nd  pair orthogonal to opposite 1s2 
    when bonding and 2nd  pair not bonding 

    2 (KE - KE)  fraction_bonding (1- fraction_bonding s_s) 

-1.8745  -1.8745 

Nuclear-nuclear repulsion energy -416.9974  -416.9974 

Nuclear to opposite two 2s sigma orbitals energy 
     When not bonding, (1-fraction_bonding), one 2s on each atom 
      becomes an opposing orbital.      

236.0087  236.0087 

Nuclear to opposite 1s orbitals energy 277.9988  277.9988 

Nuclear to opposite opposing orbitals energy 
     Opposing orbitals occur only when not bonding, (1-fraction_bonding). 
     The opposing orbital coefficients fpo and fso are chosen to make 
      the orbital orthogonal to the opposite bonding 2s orbital. 
      fsor overlap s_s_n - fpor overlap s_pz_n  =  0.0   
      The overlap s_s_n is the overlap of the (not core orthogonalized)  
      2s atomic orbitals.  

50.4958  50.4958 

Nuclear to opposite pxy orbitals energy 249.6900  249.6900 

Electron-electron repulsion energy -392.2061  -392.2061 

Energy to raise s to p 
   2 (1- (overlap/(1+overlap)))  fpo fpo  6.55+ 
   2 (1- (overlap/(1+overlap)))  fpb fpb  7.90+ 
   4   (overlap/(1+overlap))  fpb fpb  7.90 

-4.50  -4.50 
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Energy for C atom compression (scale factor 1.035) -0.33  -0.33 

   Total     6.51 

 

Table X. Components of the CH4 Calculation at 1.106 Å (Energy in electron volts) 

The configuration of C in H4C is 1s22s2pz2pxy
2.   CH4 has a tetrahedral structure. 

Component  Value Overlap 
change 

Energy 
(eV) 
change 

                                       Primary H – C Bond    

Sigma overlap of primary orbitals (overlap1st) 
     overlap 1st = 0.5 overlap s-s + 0.5 overlap s-p 

        fsbr = fpbr =  0.5 

0.8814 0.8814  

Fraction_bonding (fraction_bonding1st) 
    fraction_bonding1st = overlap1st /(1+ overlap1st) 

0.4685   

Kinetic energy of sigma orbital pair (2 KEbond) 
    KEbond = (1 /(1+ overlap1st)) (fsbr overlap s-s KEnet s-s+ fpbr overlap s-p KEnet s-pz )  

6.5892  6.5892 

Energy to make H 1s orthogonal to opposite C 1s2 

    (KE- KE) where  is H 1s made orthogonal,  is H 1s 

-9.2300   

Energy to make H 1s orthogonal to opposite 1s2 when not bonding 
     KEcore_ortho = (KE - KE)  (1- fraction_bonding1st) 

-4.6150  -4.6150 

Nuclear-nuclear repulsion energy -78.1189  -78.1189 

C nuclear to H 1s energy 82.4697  82.4697 

H nuclear to opposite two C 1s orbitals energy 26.0397  26.0397 

H nuclear to opposite 2s orbital energy 12.6635  12.6635 

H nuclear to opposite 2pz orbital energy 14.9262  14.9262 

H nuclear to opposite two 2pxy orbital energy 22.8374  22.8374 

H electron-C electron repulsions energy -76.8004  -76.8004 

Energy to compress/polarize H -0.558  -0.558 

Energy to raise C 2s to 2p -1.63  -1.63 

Energy to compress C orbitals (orbital scale factor = 1.05) -0.08  -0.08 

Total primary energy   3.723 

                                      Secondary H – H Bond      
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Secondary H 1s – H 1s overlap (secondary overlap s-s) 0.2605   

Secondary H – H sigma overlap along primary axis (overlap 2nd) 
      3 secondary atoms are at 1.8060 Å   
      angle from bond axis is 35.265 degrees      cos(35.265)=0.8165 
      overlap 2nd = 0.8165 0.8165 overlap s-s  

0.1737   

Secondary fraction_bonding (fraction_bonding 2nd) 
       fraction_bonding 2nd = overlap 2nd /(1+overlap 2nd) 

0.1480   

First secondary fraction_bonding increment (fraction_bonding2nd_inc) 
    fraction_bonding2nd_inc = 0.5 (1- fraction_bonding 1st) fraction_bonding2nd 

    Secondary fraction_bonding is  
         reduced by previous, coincident 1st order bonding. 
         0.5 because secondary spans 2 primary    

0.0393   

First secondary overlap increment 
  first secondary overlap =  
          fraction_bonding2nd_inc/(1- fraction_bonding 2nd_inc) 

0.0409 0.0409  

Second secondary fraction_bonding reduced  
      by previous fraction_bonding of both primary and 1st secondary. 
      fraction_bonding previous =  (overlap 1st+ 0.0409)/(1+overlap 1st+ 0.0409) 

0.4798   

Second secondary overlap increment 
     second secondary overlap =  
          fraction_bonding previous /(1- fraction_bonding previous) 

0.0400 0.0400  

Third secondary overlap increment 
 

0.0392 0.0392  

Kinetic energy of first H – H bond (KEbond_2nd) 
    KEbond_2nd= fraction_bonding 2nd ( KEsl+sr- KEsl - KEsr) 

0.3112   

First secondary kinetic energy increment (KEbond_2nd_inc) 
    KEbond_2nd_inc = (1- fraction_bonding 1st) KEbond_2nd 

    Secondary KEbond_2nd is reduced by previous, coincident 
    1st order bonding. 

0.1654  0.1654 

Second secondary kinetic energy increment (KEbond_2nd_inc) 
 

0.1586  0.1586 

Third secondary kinetic energy increment (KEbond_2nd_inc) 
       

0.1524  0.1524 

Single H nuclear-H nuclear repulsion energy -7.9730   

Total nuclear-nuclear repulsion energy 
       3 0.5 single nuclear-nuclear repulsion energy 
        0.5 because spans two primary bonds 

-11.9595  -11.9595 

Total H nuclear to opposite H 1s  (1.5 single nuclear to opposite) 24.8811  24.8811 

Total H 1s to H 1s electron - electron repulsion (1.5 single ) -12.7765  -12.7765 

Total secondary energy   0.6215 

      Totals  1.002 4.34 
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VIII. OTHER RESULTS 

 

 The author has obtained results for many other molecules and lithium and beryllium 

metal.  The additional results would require a discussion of sigma resonance, sigma/pi resonance, 

partial resonance, the impact of resonance on overlap, the calculation of fsb fsb for central atoms 

with bonds that are not identical (e.g. C in H3CCH3), additional discussion of secondary bonding, 

and other advanced topics which are beyond the scope of the present paper. The results presented 

herein are representative. 

 

IX. CONCLUSIONS 

 

 The results presented herein support a model for the chemical bond which recognizes that 

the two electrons of the bonding pair are not completely identifiable, with respect to their source 

atom, when their orbitals overlap.   

 The method for the calculation of the chemical bond, presented here, provides reasonably 

good results, appears to be general, and is not computationally intensive (A run of six bond 

lengths takes a few seconds on a desktop PC.).  Particularly notable is the discovery that, except 

for the H2 case, the ratio overlap/ (1+ overlap) is 0.500 at the observed bond length.  It is 

particularly hard to argue that this statistically sensible and computationally uncomplicated result 

is somehow fortuitous. It is also notable that the method described here is executed in terms 

understandable to the typical chemist (sigma bonds, pi bonds, hybrid orbitals, resonance, etc.). 
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