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Abstract

Motivation: Poor protein solubility hinders the production of many therapeutic and industrially useful
proteins. Experimental efforts to increase solubility are plagued by low success rates and often reduce
biological  activity.  Computational  prediction  of  protein  expressibility  and solubility  in  Escherichia  coli
using only sequence information could reduce the cost of experimental studies by enabling prioritisation
of highly soluble proteins.
Results: A new tool for sequence-based prediction of soluble protein expression in  Escherichia coli,
SoluProt, was created using the gradient boosting machine technique with the TargetTrack database as
a  training  set.  When  evaluated  against  a  balanced  independent  test  set  derived  from  the  NESG
database,  SoluProt’s  accuracy of  58.4% and  AUC of  0.60 exceeded those of  a  suite  of  alternative
solubility prediction tools. There is also evidence that it could significantly increase the success rate of
experimental protein studies. SoluProt is freely available as a standalone program and a user-friendly
webserver at https://loschmidt.chemi.muni.cz/soluprot/.

Availability and Implementation: https://loschmidt.chemi.muni.cz/soluprot/
Contact: jiri@chemi.muni.cz
Supplementary Information: Supplementary data are available at Bioinformatics online
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Introduction

Low protein solubility causes severe problems in protein science and industry; insufficient protein
solubility is probably the most common cause of failure of protein production pipelines. The importance
of  solubility is  underlined by the findings  of  the  large-scale  Protein  Structure  Initiative  (PSI)  project
(Berman  et  al.,  2017),  which  sought  to  produce  thousands  of  protein  sequences  from  different
organisms, crystallise them, and resolve their tertiary structure. Unfortunately, in most cases it proved
impossible to produce the target proteins in soluble form. The inherent low solubility of natural enzymes
also limits the success of emerging high-throughput pipelines that explore protein databases to identify
novel enzymes with diverse functions (Vanacek et al., 2018; Hon et al., 2020). Given the rapid growth of
protein sequence databases driven by the capabilities of next-generation sequencing technologies, there
is an urgent need to focus only on potentially soluble targets to avoid wasting resources on hard-to-
produce orthologs.  Solubility  is  thus  a key attribute  when choosing protein  targets for  experimental
characterisation  (Vanacek  et  al.,  2018).  Strictly  speaking,  solubility  is  a  thermodynamic  parameter
defined as the protein’s concentration in a saturated solution in equilibrium with a solid phase under
specific conditions. However, it  is challenging to quantitatively measure the solubility of large sets of
proteins  (Kramer  et  al.,  2012),  so  there  is  little  quantitative  experimental  data  on  protein  solubility.
Moreover, this definition of solubility is too narrow to encompass many of the practical problems that may
occur  during  protein  production  with  common  expression  systems.  Therefore,  inspired  by  existing
literature  (Magnan  et al.,  2009; Smialowski  et al.,  2012; Agostini  et al.,  2012;  Khurana  et al.,  2018;
Raimondi  et  al.,  2020),  available  data  (Berman  et  al.,  2017),  and  laboratory  practice,  we  use  an
extended definition of protein solubility in this work. Specifically, by solubility, we mean the probability of
soluble protein (over)expression in Escherichia coli cells. We thus consider a protein soluble only if it is
both (over)expressed and thermodynamically soluble in a given expression system.

Solubility depends on many extrinsic and intrinsic factors. Extrinsic factors are dictated by the
choice of expression system and the experimental conditions used in protein production. Expression
systems may be either  in vivo or  in vitro (Rosano and Ceccarelli, 2014; Carlson  et al., 2012).  In vivo
protein expression is induced inside living cells of a host organism, whereas in vitro expression relies on
the use of cell-free translational systems. Solubility can be increased by adjusting extrinsic solubility
factors,  especially  by  using  different  mutated  host  strains,  codon  optimization,  coexpression  of
chaperones and foldases, lowering cultivation temperatures, and adding suitable fusion partners (Costa
et al., 2014). However, tuning the expression system or experimental conditions is not always sufficient
to confer solubility, and is not feasible in high-throughput protein production pipelines. If extrinsic factors
cannot be varied, protein solubility will depend only on the intrinsic properties of the protein sequence.
Unfortunately,  the  relationship  between a protein’s  sequence and its  solubility is  poorly  understood,
mainly due to a lack of reproducible quantitative solubility measurements (Kramer et al., 2012). Recent
protein engineering studies suggest that charged amino acids on the protein surface are key intrinsic
determinants  of  solubility  (Carballo-Amador  et  al.,  2019;  Sankar  et  al.,  2018;  Chan  et  al.,  2013).
However, this knowledge cannot be directly used for solubility prediction due to a lack of structural data.
Despite the continuous growth of structural databases (Burley et al., 2019), the structures of proteins of
interest are generally unknown, and the limited availability of template structures prevents their accurate
computational prediction.

The simultaneous effects of extrinsic and intrinsic factors make solubility prediction challenging.
For example, the prediction of solubility from sequence data using machine learning is hindered by the
high level of noise in typical training data sets due to the influence of diverse extrinsic variables. Because
the molecular mechanisms governing protein solubility are poorly understood, recent solubility prediction
tools rely heavily on statistical analysis and machine learning, using previously reported experimental
data  to  train  and  validate  model  parameters.  One  of  the  most  widely  used  data  sources  is  the
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TargetTrack database (Berman et al., 2017), formerly known as PepcDB or TargetDB, which integrates
information from the Protein Structure Initiative projects. This database contains data from over 900,000
protein crystallization trials involving almost 300,000 unique protein sequences, which are referred to as
targets. The database does not contain solubility data per se, but target proteins can be considered
soluble if they were successfully purified in the experimental trials. A major limitation of this database is
the  low  quality  of  its  annotations.  For  example,  reasons  for  failure  are  generally  not  provided  for
unsuccessful crystallization attempts. Therefore, it is impossible to distinguish failures due to insolubility
from  failures  due  to  other  problems  later  in  the  experimental  pipeline.  Second,  the  experimental
protocols  used  for  protein  production  and  crystallization  are  described  in  free  text  with  no  internal
structure,  making  it  hard  to  automatically  extract  information  about  experimental  conditions  and
expression systems for a given target. Filtering is therefore needed to reduce noise before using the
TargetTrack data for model training. However, the application of stringent  filtering rules to the target
annotations can dramatically reduce the number of usable records. 

eSOL is another well-known and commonly used solubility database  (Niwa  et al., 2009, 2012)
that contains experimentally measured solubilities for over 4000 E. coli proteins produced in the PURE
(Shimizu  et  al.,  2001) cell-free  expression  system.  eSOL  is  an  impressive  collection  of  highly
homogenous data but has its own limitations. First, it  only contains data on proteins originating from
E.coli. Second, it has relatively little negative data; adding the three main cytosolic  E. coli chaperones
(TF, DnaKJE,  and GroEL/GroES) to the PURE expression system reduced the number of  insoluble
proteins from 788 to 24 (Niwa et al., 2012). eSOL is a valuable source of exact solubility data that were
generated using a robust pipeline and provide a good quantitative measure of thermodynamic solubility.
However, these data cannot be used to assess solubility according to our expanded definition, which
also encompasses expressibility.

The relationship between protein sequence and solubility has been studied for over 30 years,
leading to the development of several predictive models and software tools. There are 11 such models
or tools that use definitions of solubility like that described above and take protein sequences as their
sole input. These are the revised Wilkinson-Harrison model (rWH) (Wilkinson and Harrison, 1991; Davis
et al., 1999), SOLpro  (Magnan  et al., 2009), RPSP (Diaz  et al., 2010), PROSO II  (Smialowski  et al.,
2012), ccSOL omics  (Agostini  et al., 2012, 2014), ESPRESSO  (Hirose and Noguchi,  2013), CamSol
(Sormanni  et al., 2015), Protein-Sol  (Hebditch  et al.,  2017), DeepSol  (Khurana  et al., 2018), SKADE
(Raimondi  et al., 2020), and the Solubility-weighted index (SWI)  (Bhandari  et al., 2020). However, the
accuracy of these tools is limited, and there is clear room for improvement.  Additionally,  these tools
exhibit  poor  generality  when  used  to  make  predictions  based  on  previously  unseen  data.  A
comprehensive  review  of  advances  in  solubility  prediction,  including  predictors  that  use  protein
structures as inputs, was published recently  (Musil  et al.,  2019). Here, we present a novel machine
learning-based tool, SoluProt, for predicting solubility from protein sequence data. SoluProt benefits from
thorough  dataset  pre-processing  and  is  shown to  predict  solubility  more  accurately  than previously
reported methods. 

SoluProt training and test set

We used the TargetTrack database to build the SoluProt training set. Since this database does
not  directly  provide  solubility  information,  we  inferred  solubility  computationally,  using  an  approach
similar  to  those  adopted  previously  (Magnan  et  al.,  2009;  Smialowski  et  al.,  2012).  A protein  was
considered soluble if it was recorded as having reached a soluble experimental state or any subsequent
state requiring soluble expression (Table S1). If failed expression or purification was mentioned in the
experiment record's stop status, the protein was labelled insoluble. In contrast to a previous approach
(Smialowski  et  al.,  2012),  we  required  an  explicit  stop  status  relating  to  insolubility  to  reduce  the
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frequency of incorrect classification of insoluble sequences. To improve the quality of the training set, we
also performed several additional steps to clean the data.

Most  importantly,  we  performed  keyword  matching  combined  with  manual  checking  of
TargetTrack annotations to extract only proteins expressed in the most common host organism, E. coli.
This  was  necessary  because  a  protein  soluble  in  one  organism  might  be  insoluble  in  another.  By
focusing solely on the most common expression system, we reduced the noise in the training data. We
also used specific keywords to search the unstructured descriptions of experimental protocols provided
in the TargetTrack database (Table S2). Generic search phrases like “E. coli” or “Escherichia coli” were
used to identify potential  E. coli related protocols. These protocols were then manually checked and
confirmed (Table S3). A full list of 1494 TargetTrack protocols signifying expression in E. coli is available
at the SoluProt website.   

We next identified transmembrane proteins in the dataset based on direct annotations from the
TargetTrack  database  and  predictions  generated  using  TMHMM  (Krogh  et  al.,  2001) with  default
settings. The transmembrane proteins were then removed, along with sequences shorter than 20 amino
acids, and sequences with undefined residues. We also removed sequences that had been classified as
insoluble but for which a protein structure was available in the Protein Data Bank (PDB) (Berman et al.,
2000).  To  this  end,  we  compiled  an  E.  coli PDB  subset  containing  sequences  of  proteins  whose
structures had been solved by NMR or X-ray crystallography and which had been expressed in E. coli
according to the PDB annotations (64,416 sequences, downloaded 2018-04-17). Because both NMR
and X-ray crystallography require soluble proteins, any protein in this PDB subset can be considered
soluble in E. coli. This step reflects advances in molecular biology: methodological developments have
made it possible to produce and crystallize some proteins that were previously considered insoluble. 

Finally, we reduced the sequence redundancy in the training set by clustering to 25% identity
using MMseqs2 (Steinegger and Söding, 2017) and retaining only representative sequences from each
cluster. This was done separately for positive and negative samples to avoid simplifying the prediction
problem. We balanced the number of soluble and insoluble samples such that both classes were equally
represented. Additionally, we balanced the sequence length distribution so that length alone would not
play  a  dominant  role  in  the  predictions.  Sequence  length  correlates  with  protein  solubility  –  larger
proteins are usually less soluble. However, we wanted to suppress its influence in the model because we
anticipate that SoluProt would mainly be used to prioritize proteins of similar lengths, usually from a
single protein family. A typical expected use case is that of the EnzymeMiner web server  (Hon  et al.,
2020) for automated mining of soluble enzymes. A prediction model relying heavily on sequence length
would not perform well in this use case. 

The  SoluProt  test  set was  built  from a dataset  generated by the North  East  Structural  Consortium
(NESG), which represents 9,644 proteins expressed in E. coli using a unified production pipeline (Price
et al., 2011). The dataset contains two integer scores ranging from 0 to 5 for each target, indicating the
protein’s level of expression and the soluble fraction recovery. The reproducibility of the experimental
results in the dataset was validated by performing repeat measurements for selected targets. The NESG
dataset targets are actually included in the TargetTrack database because the NESG participated in the
PSI project. However, the expression and solubility levels from the NESG dataset were not included in
the TargetTrack database; instead, they were provided to us directly by the authors of the original study
(W. Nicholson Price II, personal communication). The high consistency and quality of the NESG dataset
make  it  suitable  for  benchmarking  purposes.  We  processed  the  NESG  dataset  using  the  same
procedure as the training set, although the computational solubility derivation and expression system
filtration steps were omitted because they were pointless  in  this  case.  Instead,  we transformed the
solubility levels into binary classes: all  proteins with a solubility level of 1 or above were considered
soluble and all others insoluble.
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Finally, we ensured that no pair consisting of a sequence from the test set and a sequence from
the training set had a global sequence identity above 25% as calculated using the USEARCH software
(Edgar, 2010). This made the test set more independent because it ensured that predictions were not
validated against data similar to those used during training. In total, 10,912 protein sequences remained
in the  SoluProt training set and 2,904 in the independent  SoluProt test set. Both datasets had equal
numbers of soluble and insoluble samples with balanced sequence length distributions (Figure S1). The
datasets are available at the SoluProt website.

Prediction model

The SoluProt  predictor  is  implemented in  Python using scikit-learn  (Pedregosa  et  al.,  2011),
Biopython  (Cock  et al.,  2009), and pandas  (McKinney,  2010) libraries.  We used a gradient boosting
machine (GBM)  (Friedman, 1999) to generate the predictive model. Prediction features were selected
from a set of 251 sequence characteristics that were divided into eight groups: i)  single amino acid
content  (20  features),  ii)  amino  acid  dimer  content  (210  features),  iii),  sequence  physicochemical
features (12 features, Table S4), iv) average flexibility as computed by DynaMine (Cilia et al., 2014) (1
feature), v) secondary structure content as predicted by FESS (Piovesan et al., 2017) (3 features), vi)
average disorder as predicted by ESPRITZ (Walsh et al., 2012) (1 feature), vii) content of amino acids in
transmembrane helices as predicted by TMHMM (3 features), and viii) maximum identity to the E. coli
PDB subset  as calculated using USEARCH (1 feature).  All  sequences having 100% identity to any
sequence from the E. coli PDB subset were excluded from the test set because we wanted to assess the
model’s predictive accuracy for sequences without a solved NMR or X-ray structure. We standardized all
features by subtracting the mean and scaling to unit variance. The means and variances were calculated
using the training set.

We removed correlated features in two steps. First, we fitted a GBM with default parameters
using the full training set and all features. Second, we calculated Pearson’s correlation coefficient for
each pair  of  features.  If  the  correlation between any two features exceeded 0.75,  we  removed the
feature with the lesser importance in the fitted GBM model. We also removed irrelevant features using
LASSO (Tibshirani, 1996). LASSO's alpha parameter was optimized to maximize the mean AUC of the
GBM  model  with  default  parameters  over  5-fold  cross-validation.  The  alpha  parameter  was  varied
between 0.08 to 0 with a step size of 6.25 10−4; its optimal value was 0.005. In total, 96 features were
selected for inclusion in the predictive model (Table S5). The DynaMine, FESS, and ESPRITZ features
were not included in the final feature set.

We next optimized the hyperparameters of the GBM model, using an iterative 7-stage strategy to
maximize the mean AUC over 5-fold cross-validation using the training set (Table S6). In each stage, one
or two parameters were optimized using grid search; other parameters were left  either at  their  final
values from the previous stages or at the default value if the parameter had not yet been optimized. The
best GBM model achieved mean AUC values of 0.84 ± 0.003 for the training part and 0.72 ± 0.02 for the
validation part. Overall,  the feature selection and hyperparameter optimization had little effect on the
mean AUC: without these measures, the mean AUC values for the training and validation sets were 0.83
± 0.002 and 0.71 ± 0.02, respectively. The main benefit of the feature selection and parameter tuning
steps was that they reduced the number of features and thus made the feature calculation step roughly
two times faster.

Finally, we used the best GBM hyperparameters to train the final SoluProt model using the full
training set. The resulting model had an AUC of 0.84 and an accuracy of 75% for the full training set. The
five most important features according to the GBM are: i) maximum identity to the E. coli  PDB subset
(14.1%), ii) isoelectric point (6.2%), iii) lysine content (3.9%), iv) predicted number of amino acids in
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transmembrane helices in the first 60 amino acids of the protein (3.4%), and v) glutamine content (3.3%)
(Table S5).

Performance evaluation and comparison

We used the SoluProt test set to evaluate and compare SoluProt to 11 previously published tools.
The  evaluation  relied  on  both  threshold-independent  (area  under  the  ROC  curve)  and  threshold-
dependent  metrics  (accuracy,  Matthew’s  correlation  coefficient,  and  confusion  matrices).  For  the
threshold-dependent  metrics,  we  applied  a  threshold  of  0.5  or  the  thresholds  recommended by the
authors of the corresponding method (Table 1). SoluProt achieved the highest accuracy (58.4%) and the
greatest AUC (0.60) of the tested tools when evaluated against the SoluProt test set (Table 1 and Figure
1), followed by PROSO II and SWI.

While the SoluProt test set is independent of the SoluProt training set, other tools' training sets
might overlap with our test set.  We therefore compared the SoluProt test set to the training sets of
DeepSol, SKADE, SWI, and SOLpro to quantify their overlaps (Table 2). DeepSol and SKADE have a
common  training  set,  which  showed  the  largest  overlap  (75.1%),  followed  by  the  SWI  training  set
(24.9%) and the SOLpro training set (16.5%). SWI benefits from the overlap; it was the third-best tool in
our comparison. DeepSol and SKADE ranked 7th and 12th by accuracy with respect to the SoluProt test
set despite having the greatest proportion of test sequences in their training set. This comparatively poor
performance  can  be  partly  explained  by  differences  in  solubility  annotations  between  the  DeepSol
training  set  and  the SoluProt  test  set  (Table  2):  356  (12.3% of  the  total)  sequences  annotated  as
insoluble in the DeepSol training set were annotated as soluble in the SoluProt test set. The total number
of disagreements (the sum of false positives and false negatives) ranged from 328 to 525, depending on
the binarization threshold applied to the SoluProt test set (Table S7). No training set was published for
PROSO II; only an initial set of soluble and insoluble sequences without pre-processing is available.
However,  the initial  set  exhibits 97.4% overlap with the SoluProt  test  set.  Therefore,  we expect  the
overlap of the PROSO II training set to also be very high, like the DeepSol training set. Unfortunately, the
training  sets  of  other  previously  developed  tools  have  not  been  published,  preventing  a  more
comprehensive comparison.

The absolute accuracy of the available solubility prediction tools is low (below 60%), so there is
clearly room for improvement. Nevertheless, SoluProt and other tools can be useful for protein sequence
prioritization  (Figure  2),  i.e.  for  selecting  a  small  number  of  sequences  for  in-depth  experimental
characterization from a large database of several hundreds or thousands of sequences. Specifically,
predicted solubility values can be used to select a limited number of high-scoring protein sequences. For
example, if we use SoluProt predictions to order the SoluProt test set and remove all sequences bar the
10% with the highest scores, we get 199 true positives, i.e. 37.2% more true positives than would be
expected with blind selection (145 true positives). This shows that despite their limited accuracy, current
solubility predictors are valuable for protein sequence prioritization and can increase the success rate of
experimental protein studies.
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Table 1. Performance of various solubility predictors using the balanced SoluProt test set of 2,904 
sequences.

Name AUC T ACC MCC TP TN FP FN

SoluProt 0.60 0.5 58.4% 0.17 829 868 584 623

PROSO II 0.60 0.6 57.6% 0.16 583 1089 363 869

SWI 0.59 0.5 56.0% 0.13 1124 502 950 328

CamSol 0.58 1.0 55.1% 0.10 662 938 514 790

ESPRESSO 0.57 0.5 54.6% 0.10 960 627 825 492

Protein-Sol 0.56 0.5 53.5% 0.07 875 678 774 577

DeepSol 0.55 0.5 52.9% 0.09 224 1313 139 1228

rWH 0.55 0.5 54.3% 0.09 635 941 511 817

SOLpro 0.54 0.5 52.5% 0.05 621 905 547 831

ccSOL omics 0.51 0.5 50.9% 0.02 840 638 814 612

SKADE 0.50 0.5 49.5% -0.01 166 1272 180 1286

RPSP 0.50 0.5 49.7% -0.01 467 976 476 985

AUC –  area  under  the  ROC curve,  T –  threshold  for  the  soluble  class,  ACC –  accuracy,  MCC –
Matthew’s correlation coefficient, TP – true positives, TN – true negatives, FP – false positives, FN –
false negatives.

Figure  1.  Receiver  operating  curves  (ROC)  calculated  for  the  balanced  SoluProt  test  set  of  2,904
sequences.  The  predictors  are  ordered  by  the  area  under  the  receiver  operating  curve  (AUC).
Table  2.  Overlaps  between the  SoluProt  test  set  and  available  training  sets.  Two  sequences  were
considered identical if their global sequence identity reported by USEARCH was 100%. Differences in
solubility annotations for identical sequences were quantified using confusion matrix terms (TP, TN, FP,
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and FN). The solubility annotations of the SoluProt test set are assumed to reflect the true solubilities of
the proteins.

Table  2.  Overlaps  between the  SoluProt  test  set  and  available  training  sets.  Two  sequences  were
considered identical if their  global sequence identity reported by USEARCH was  100%.  Differences in
solubility annotations for identical sequences were quantified using confusion matrix terms (TP, TN, FP,
and FN). The solubility annotations of the SoluProt test set are assumed to reflect the true solubilities of
the proteins.

Dataset Size Test set overlap TP TN FP FN

PROSO II initial 129,643 2,829 (97.4%) 894 1378 49 508

DeepSol/SKADEa 69,420 2,181 (75.1%) 682 1077 66 356

SWI 12,216 723 (24.9%) 476 188 43 16

SOLpro 17,408 480 (16.5%) 170 115 39 156

SoluProt 10,912 0 (0.0%) 0 0 0 0

TP – true positives, TN – true negatives, FP – false positives, FN – false negatives. a DeepSol and 
SKADE share the same training set.

Figure 2. Increases in the number of true positives resulting from sequence prioritization using the tested
solubility prediction tools. The SoluProt test set sequences were ordered by predicted solubility based on
each predictor’s output, and a variable percentage of the sequences with the worst predicted solubility
was then removed.  The increase in  the number  of  true  positives  was  then calculated relative  to  a
baseline random selection. For example, upon randomly removing 90% of the test set sequences (2,614
samples), we would expect half of the remaining 290 sequences to be true positives. 
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Conclusions

We have developed a novel software tool, SoluProt, for sequence-based prediction of soluble
protein expression in  E. coli.  The tool simultaneously predicts the solubility and expressibility of  the
proteins under consideration. SoluProt achieved a higher accuracy (58.4%) and AUC (0.60) than a suite
of alternative solubility prediction tools when evaluated using the balanced independent SoluProt test set
of 2,904 sequences. PROSO II, SWI, and CamSol were the next best tools, achieving accuracies of
57.6%, 56.0%, and 55.1%, respectively. SoluProt also performed well in protein prioritization. The main
strengths of SoluProt are that it was trained using a dataset generated by thorough pre-processing of the
noisy TargetTrack data, and was validated using a high-quality independent test set.

Surprisingly, the recently reported DeepSol (Khurana et al., 2018) and SKADE (Raimondi et al.,
2020) tools, which are based on deep learning methods, performed worse than the simpler and mostly
older methods PROSO II (Smialowski et al., 2012), SWI (Bhandari et al., 2020), and CamSol (Sormanni
et al., 2015) in our comparison. This may be partly due to the overlap of their training set with our test set
and disagreements between these sets with respect to the solubility of certain sequences. 

The SoluProt predictor is available via a user-friendly web server or as a standalone software
package at https://loschmidt.chemi.muni.cz/soluprot/. The SoluProt web server has already predicted the
solubility of over 4,200 unique protein sequences in the six months since its launch in February 2020. It
has also been integrated into the web server EnzymeMiner (Hon et al., 2020) for automated mining of
soluble enzymes from protein databases (https://loschmidt.chemi.muni.cz/enzymeminer/).
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