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Abstract  

Photochemical reactions are being increasingly used to construct complex molecular 

architectures with mild and straightforward reaction conditions. Computational techniques are 

increasingly important to understand the reactivities and chemoselectivities of photochemical 

isomerization reactions because they offer molecular bonding information along the excited-

state(s) of photodynamics. These photodynamics simulations are resource-intensive and are 

typically limited to 1–10 picoseconds and 1,000 trajectories due to high computational cost. Most 

organic photochemical reactions have excited-state lifetimes exceeding 1 picosecond, which 

places them outside possible computational studies. Westermeyr et al. demonstrated that a 

machine learning approach could significantly lengthen photodynamics simulation times for a 

model system, methylenimmonium cation (CH2NH2
+).  

We have developed a Python-based code, Python Rapid Artificial Intelligence Ab Initio Molecular 

Dynamics (PyRAI2MD), to accomplish the unprecedented 10 ns cis-trans photodynamics of trans-

hexafluoro-2-butene (CF3–CH=CH–CF3) in 3.5 days. The same simulation would take 

approximately 58 years with ground-truth multiconfigurational dynamics. We proposed an 

innovative scheme combining Wigner sampling, geometrical interpolations, and short-time 

quantum chemical trajectories to effectively sample the initial data, facilitating the adaptive 

sampling to generate an informative and data-efficient training set with 6,232 data points. Our 

neural networks achieved chemical accuracy (mean absolute error of 0.032 eV). Our 4,814 

trajectories reproduced the S1 half-life (60.5 fs), the photochemical product ratio (trans: cis = 2.3: 

1), and autonomously discovered a pathway towards a carbene. The neural networks have also 

shown the capability of generalizing the full potential energy surface with chemically incomplete 

data (trans → cis but not cis → trans pathways) that may offer future automated photochemical 

reaction discoveries. 

 

1. Introduction 

Academic and industrial chemists have turned to photochemistry as a sustainable technique to 

construct highly strained molecular architectures1, photoswitches2, and organic photovoltaics3, 

solar fuel materials4-5, which are characterized by mild conditions and high atom economy. 

Photochemical reactions typically consist of a series of molecular transformations that occur in 

excited molecules after light absorption. Unlike ground state processes–where a chemist can use 

spectroscopy and crystal structures to glean structural information, excited-state light-driven 

reactions involve short-lived femto- to picosecond (10–15 to 10–12 s) molecular excited states and 

reactive intermediates. This ultrafast process usually involves relaxation to the excited-state 
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minimum for fluorescence or radiationless transition to ground-state through a state crossing point 

or seam, which determines the chemoselectivity of a photochemical reaction.6-7  

 

The origin of chemoselectivity and stereoselectivity in organic photochemical reactions is 

challenging because of the short-lived molecular excited states. Quantum chemical calculations 

offer insight into the bonding changes that occur along a reaction coordinate and non-adiabatic 

molecular dynamics (NAMD) simulations to gain mechanistic insights and develop structure-

reactivity relationships in complex photochemical reactions. The nuclei-electron coupling and 

time-dependent terms in NAMD increase the complexity of Hamiltonian and thus computation 

time. Multiple methods developed in the last two decades simplified the time-dependent molecular 

wave functions, e.g., ab initio multiple spawning (AIMS)8-9 and fewest switches surface hopping 

(FSSH).10-12 However, computing high dimensional PESs with the requisite multiconfigurational 

methods is hugely resource-intensive. For example, most quantum chemical software packages 

encode an upper limit to active space of 16 electrons and 16 orbitals for complete active space 

self-consistent field (CASSCF) calculations. A typical NAMD experiment requires thousands of 

such calculations, resulting in a maximum simulation time on the order of 1 picosecond, at a 

computational cost of approximately 101–104 wall-clock hours. The realities of the low quantum 

yield of organic photochemical reactions and long excited-state lifetimes result in prohibitively 

expensive NAMD simulations. These compounding problems severely limit the application of 

NAMD simulations to only the most efficient organic photochemical reactions.  

 

An increasing number of studies reported that fitting machine learning (ML) potentials could 

substantially accelerate the NAMD simulation. Aleotti et al. have parameterized ad hoc force fields 

for a 10 ps dynamic simulation of azobenzene.13 Westermeyr et al. have trained multilayer 

feedforward neural networks (NNs) to enable 1 nanosecond simulations of methylenimmonium 

cation (CH2NH2
+) in 59 days.14 Recently they have extended the application of the NNs model in 

predicting excited-states electronic properties for other small molecules, such as SO2 and CSH2 

employing a deep continuous-filter convolutional-layer neural network, SchNet, combined with 

Sharc.15 Beyond the proof-of-concept models, applying ML-based NAMD on more complex 

molecules is challenging because of the exponential increase of conformational space arising 

from the degrees of freedom of flexible bonds and functional groups. Training ML models 

becomes increasingly difficult with the rapidly growing training dataset, including atom-wise 

molecular features.  

 

We will address the need for our combined ML and NAMD approach (ML-NAMD) that expands 

the scope of organic photochemical reactions. We will demonstrate the high accuracy in the 

trained NNs and low computational cost in the ML-NAMD simulations. Our trajectory statistics will 

highlight the ML-NAMD predicted photochemical product distribution in an excellent agreement 

with quantum chemical results. The ML-NAMD has shown the capability of extrapolating the full 

potential energy surface even with restricted data. Our initial ML-NAMD simulations focused on 

the first such photodynamics of hexafluoro-2-butene (1 in Scheme 1), which is mechanistically 

straightforward because it has a typical ππ* vertical excitation from HOMO to LUMO (the π and 

π-*orbital). Hexafluoro-2-butene is a nontoxic and not flammable industrial working fluid used as 

a refrigerant and as a foam-blowing agent.16  
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Scheme 1. The photochemical cis-trans isomerization of hexafluoro-2-butene (1) 

 
 

2. Theoretical background 

2.1 Quantum chemical method 

We used OpenMolcas 19.1117 to prepare CASSCF calculations of trans-1 and cis-1 with an 

active space of 2 π-electrons and  2 orbitals from the bonding and antibonding π-orbital of the 

C=C bond denoted CAS(2,2). We used the cc-pVDZ basis set for all atoms and averaged the 

ground-state and the first excited-state in equal weight. We optimized trans-1 and cis-1 to local 

minima, in which a vibrational analysis confirmed only positive frequencies. We located two 

minimum energy crossing points (MECPs) corresponding to the trans-to-cis (MECP-trans-1) and 

the reverse reaction (MECP-cis-1). The converged orbitals and optimized geometries are 

available in the Supporting Information.  

 

2.2 Reference data  

Our NAMD simulations at CASSCF(2,2)/cc-pVDZ provided references for state populations 

evolution and photochemical production distribution. We used the fewest switches surface 

hopping algorithm (FSSH) implemented in OpenMolcas 19.11.17 We sampled 750 initial non-

equilibrium geometries and associated velocities near the global minimum of  trans-1 with Wigner 

distribution at 300K. The NAMD trajectories propagated at 300K (Nosé-Hoover thermostat18) from 

the S1 Franck-Condon region for ~500 fs and 0.5 fs timesteps (2,000 a.u. with 20 a.u. timesteps). 

703 of 750 reference trajectories arrived in the ground-state within 500 fs, whereas the others 

stayed in the excited state. We characterized the 703 trajectories and removed 19 trajectories 

that involved structures with unphysically long bonds due to incorrectly converged CASSCF 

wavefunctions and averaged the state population of 684 trajectories. 

 

2.3 Initial training set generation 

Accurate NNs predictions require robust training data; thus, the training data must include a broad 

sampling of possible non-equilibrium geometries. Westermeyr et al. generated their training data 

set by leveraging a vibrational mode scan to generate a set of non-equilibrium structures for 

CH2NH2
+.14 This report describes the isomerization photodynamics of a significantly more 

complex structure, 1. The additional complexity demanded that we innovate training set 

generation because of the competing reality of the overwhelming computational cost of CASSCF 

calculations on an exponentially increasing number of structures in the training set. Figure 1 

illustrates the workflow to automatically generate compact yet relevant training data for ML-

accelerated excited-state dynamics.  
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Figure 1. Three initial training set generation approaches in PyRAI2MD. Wigner Sampling 

explores the conformational space near the equilibrium geometries. A subsequent torsional scan 

connects the sampled reactants and products. Geometry Interpolation collects the data along with 

reaction coordinates from reactant to product. Trajectories samples the data from quantum 

chemical trajectories. The 2D PES data can also supplement the data sampling. Detailed 

information about generation of the initial training set is available in the Supporting Information.  

 

The initial training set generation scheme combines Wigner Sampling, Geometrical Interpolation, 

and Trajectories. The Wigner Sampling approach generates training data by sampling reactant 

and product structures and including a torsional scan component to simulate the cis-trans 

isomerization. The Geometry Interpolation approach accesses the reaction coordinate diagram 

by the optimized reactant, product, and crossing point geometries. It systematically varies the 

reactant geometry to that of the minimum energy crossing point (MECP) and then to that of the 

product in equal increments of Z-matrix coordinate parameters. Further interpolation at the 

crossing point covers the branching plane where the non-adiabatic couplings (NACs) have large 

variations. We expanded the range of sampled structures in the training data by applying the 

Wigner sampled geometrical perturbations to the interpolated reaction coordinate diagram. The 

Trajectories approach involves generating 10–200 Wigner sampled initial conditions and 

propagating the continued NAMD trajectories in 50–100 fs with quantum chemical calculation. 

We screened the trajectories by examining the last geometries and selected 132 trajectories 

corresponding to trans-to-cis isomerization. The trajectories toward other reaction pathways were 

filtered out. We included every 10th snapshot of the first 50 fs of 132 reference trajectories. The 

2D PES data (Figure 1) were used as a test set for the ML model, which will be discussed in 

section 4.3. The total number of data points in our initial training set is 4,961.  

 

2.4 Adaptive sampling  

Adaptive sampling19 is one of the most efficient methods to expand the initial training set. Based 

on uncertainty quantification, the method samples structures in the unexplored regions of the 

potential energy surfaces. The adaptive sampling propagated 129 NAMD trajectories in 500 fs at 

300K with the same initial conditions of the quantum chemical reference trajectories. In each 

trajectory, two sets of NNs predict the energies, force, and NACs in each time step, and the 

standard deviation between the predictions quantifies the prediction uncertainty. The most 
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uncertain points found in the conformational space were selected for quantum chemical 

calculations with CASSCF(2,2)/cc-pVDZ. The adaptive sampling stopped after 32 iterations of 

sampling, recalculating and retraining. 81% (104) trajectories have converged, and we did not 

observe further improvement in the subsequent 50 iterations. Our final training data set has 6,232 

data points (i.e., 1,271 points were added through adaptive sampling). Detailed information about 

the adaptive sampling is available in the supporting information.  

 

2.5 Forces and non-adiabatic couplings 

Fully quantum chemical NAMD trajectory propagation requires millions of CASSCF calculations 

to determine the energies, forces, and NACs at each timestep. Westermeyr et al. 15 describes the 

particular challenge of predicting forces and NACs because they have independent vector 

components. The direction of forces and NACs are rotationally covariant (i.e., they depend on the 

molecule’s orientation). Figure 2 shows a rotation of geometry associated with the covariantly 

revolved force vectors. 

 

 
Figure 2. 3D representation of the rotational covariance of forces and NACs. The blue arrows 

represent the same force vectors. The geometry is rotated by 90° that leads to different x,y, and 

z components of force vectors in each orientation. 

  

However, typical ML representations (e.g., ML predictions are scalar) are rotationally invariant 

and have no information about the global orientation of the molecule. Thus, we implemented 

efficient and differentiable NNs that predict forces according to the first derivatives of the energy 

with respect to nuclear coordinates. We used the first-order derivatives of a non-physical, anti-

derivative of NACs, to predict NACs. The FSSH algorithm computes the non-adiabatic transition 

probability using NACs. NACs depend on two electronic state wavefunctions (i.e., state i and j in 

Eq. 1), where the phases of CASSCF wavefunctions do not necessarily cancel out. OpenMolcas 

computes wavefunctions with an arbitrary phase (i.e., sign). The phase change can give the 

opposite NACs values per Eq. 2. The sign of NACs frequently and randomly alternates along the 

isomerization reaction coordinate (Figure 3b), which is undesired when training ML models.   

 

𝐸𝑖 =
⟨Ѱ𝑖 |

𝜕𝐻
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Figure 3. NAC representation using π- and π*-orbitals as a function of interpolated geometries 

from trans-1 to MECP-trans-1 to cis-1. (a) The phases are randomly assigned, resulting in an 

unsmooth NACs function. The –1 indicates the undesired phase changes if we do not apply 

corrections. (b) The phases of electronic state wavefunctions are corrected, leading to a smooth 

NACs function. The NACs in the equilibrium geometry of trans-1 are the reference. Detailed 

information about the phase correction scheme is available in the Supporting Information. 

 

Figure 3a demonstrates the alternating signs of the NACs. We employed a phase correction 

scheme14, 20-21 based on geometrical interpolation to correct the sign by tracking and correcting 

the phase of the interacting states of each interpolated geometry (Figure 3b). The phase-

corrected NACs become the reference for subsequent trajectory points. The discontinuous nature 

of NACs near the surface crossings make NNs learning extremely difficult; instead of training with 

the full expression of NACs, we trained NNs with only the numerator, known as configuration 

interaction (CI) derivatives. The ML-NAMD evaluates NACs on-the-fly along a given trajectory 

based on the state energy differences and predicted CI derivative terms. 

 

2.6 Machine learning model 

We have implemented multilayer feedforward NNs as the primary ML model in our ML-NAMD 

approach. We used an inverse distance-based14-15 feature representation to predict energies, 

forces, and NACs. 1 has 12 atoms (N = 12), which lead to 66 unique entries in the inverse distance 

matrix. The ML model predicts two energy values (ground- and excited-state; k = 2) and uses 

their derivatives with respect to the input coordinates to compute the k*3N = 72 forces component. 

The 3N = 36 NAC components for each data point (conformer) were predicted using derivatives 

of N atom-specific, physically meaningless scalar potentials with respect to their input 

coordinates. We chose a leaky soft plus activation function for hidden layers. We have optimized 

the hyperparameters to predict energies, forces, and NACs with a grid-search over 864 NNs. The 

training was done using the Adam optimizer22 with a stepwise decrease of the initial learning rate 

from 10–3 to 10–5 on validation error plateaus (energies and forces: 2,700 epochs; NACs: 1,700 

epochs). To evaluate the prediction uncertainty in NAMD simulation, we used the standard 

deviation between the NNs. We picked two sets of the most accurate and efficient NNs (each set 
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has one NN for energies and forces together, and one for NACs) with distinct architectures (Table 

1). We implemented all NNs using the TensorFlow/Keras (v2.3) packages23 for Python.  

 

Table 1. Selected hyperparameters of NNs trained on 6,232 data points of 1. The supporting 

information provides additional details on hyperparameters and training statistics. 

 Energies, forces NACs 

Hyperparameters NN1 NN2 NN1 NN2 

Activation function Leaky soft plus Leaky soft plus 

Hidden layers 4 5 4 5 

Neurons/layer 400 300 300 300 

Batch size 64 64 64 64 

 
3. PyRAI2MD 

We have developed a Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics program 

(PyRAI2MD) to integrate our ML models and the NAMD algorithm. It is an open-source code to 

enable ML-NAMD simulations for unprecedented molecular complexity and timescales. Figure 4 

illustrates the computational architecture of PyRAI2MD, which requires ML and NAMD kernels.  

 
Figure 4. The computational architecture of PyRAI2MD. The bold boxes are the initial stage in 

NAMD and ML kernel. 

 

The workflow in the NAMD kernel starts with the Wigner sampled initial conditions. The following 

procedures, red arrows in Figure 4, iteratively compute the energies, forces, NACs, and surface 

hopping probability, propagating the NAMD trajectory. We generalized the input and output format 
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of computing energies, forces, and NACs in the NAMD kernel. This feature enables efficient 

communication with our chosen external quantum chemical program, OpenMolcas 19.11,17 and 

the internal ML kernel. The workflow in ML kernel reads a training set or an existing model. It 

provides a convenient interface to train models and make predictions marked by blue arrows in 

Figure 4. The green arrows in Figure 4 illustrate the adaptive sampling workflow incorporating the 

NAMD and ML kernels. It first loads two trained ML models to run multiple trajectories in the 

NAMD kernel. The trajectories explore the unsampled conformational space while the two models 

evaluate the prediction uncertainty, as described in section 2.3 and the Supporting Information. 

The sampled data were added into the initial set to train a new model. 

 

4. Results and Discussion 

4.1 Performance of ML potential 

We have trained four NNs using the training set of 6,232 data points with PyRAI2MD and 

summarized the results in Table 2. The predictions in the energies, forces, and NACs of trans-1 

take 0.00945 seconds on a single CPU, whereas the equivalent computations at 

CASSCF(2,2)/cc-pVDZ require 336 seconds on a single CPU. This represents an NNs 

acceleration of 37,307-fold relative to ground-truth CASSCF calculations. We have evaluated the 

mean absolute error (MAE) and coefficient of determination (R2) in predicted energies, forces, 

and NACs to measure the accuracy of NNs (Table 2). 

 

Table 2. The mean absolute errors and R2 in NNs predicted energies, forces, and NACs, trained 

with 6,232 data points. 

 Energies, eV Forces, eV Å–1 NACs, Å–1 

MAENN1 0.032 0.18 0.009 

MAENN2 0.032 0.17 0.008 

R2
NN1 0.9999 0.9249 0.5976 

R2
NN2 0.9999 0.9415 0.6092 

 

The MAE of predicted energies is 0.032 eV in both NNs, which meets the ‘chemical accuracy’ 

threshold (1 kcal mol–1 = 0.043 eV). The R2 values are 0.9999 in NN1 and NN2, suggesting an 

almost linear correlation between the NNs prediction and QC reference. The MAE and R2 in force 

calculation are 0.17–0.18 eV Å–1 and 0.9249–0.9415, respectively. These values are consistent 

with previous reports on SO2 and CH2NH2
+ photochemistry.14 The MAE and R2 in NACs are 

0.008–0.009 Å–1 and 0.5976–0.6092, respectively. The low R2 relative to energies and forces 

suggests possible overfitting of NACs (the training MAE of NN1 and NN2 are both 0.0004 Å–1 and 

the training R2 are 0.9664 and 0.9689 for NN1 and NN2, respectively) due to the indefinite term 

of the antiderivative of NACs and unavailable training data for it. We validated the NNs on the 

reaction coordinate diagram from trans-1 to cis-1. Figure 5a and 5b show the predicted S0, S1 

energies and the S0–S1 energy differences along with the reaction coordinate. The red and grey 

shades correspond to the prediction errors, where the error regions multiplied by 50 for clarity. 
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Figure 5. Quantum chemical vs. NNs predicted reaction coordinate diagram. The reaction 

coordinates were interpolated from optimized trans-1 to cis-1 via MECP-trans-1 with 

CASSCF(2,2)/cc-pVDZ. (a) The S0 (grey) and S1 (red) energies were computed with 

CASSCF(2,2)/cc-pVDZ. The black and dark red dashed lines plot the NNs predicted S0 and S1 

energies, respectively. The grey and red shades are upscaled 50-fold to highlight the small errors 

(ENNs – EQC) in S0 and S1 energies. The overestimations are below the curve, and the 

underestimations are above the curve.  (b) The red line and dark red dashed lines plot the 

quantum chemical, and NNs predicted S0–S1 energy differences.  

 

The overall MAE between NNs and QC energies are 5.7·10–3 eV and 5.3·10–3 eV for the S0 and 

S1 states. The maximum absolute errors of predicted S0 and S1 energies are 3.0·10–3 eV and 

2.2·10–3 eV at MECP-trans-1 and trans-1, respectively. Figure 5b shows that the largest absolute 

error of the S1–S0 energy difference is 0.043 eV near the trans-1 local minimum. The NNs 

overestimate the S0–S1 energy difference by 0.050 eV at MECP-trans-1, which is still sufficiently 

small to promote the surface hopping. 

 

4.2 10 nanoseconds ML-NAMD photodynamics simulation 

For 500 fs simulations with 0.5 fs time step, our NNs predicted 4,814 trajectories using Wigner 

sampled initial conditions at 300K with an average cost of 28 seconds, while the CASSCF(2,2)/cc-

pVDZ calculations required 40 hours. We compared the state population of the ML and QC 

trajectories in Figure 6.  
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Figure 6. Quantum chemical vs. NNs predicted trajectory population in 500 fs NAMD simulations. 

The quantum chemical trajectory populations at CASSCF(2,2)/cc-pVDZ are the average over 684 

trajectories. The NNs trajectory populations are the average over 4,814 trajectories predicted by 

NNs. 

 

The NNs and QC calculations predict virtually identical S1 half-life of 60.5 and 60.0 fs, respectively. 

The MAE between the QC and NNs predicted populations is 3.0 %. The maximum deviation 

(9.4 %) appeared in 80–200 fs; there is a shoulder in this range, suggesting a statistically 

inadequate number of QC trajectories. In 0–80 fs and 200–500 fs, the MAE is 1.3 % to 2.0 %. 

These suggest high accuracy of our NNs reproducing the surface hopping events. We then turned 

to NNs predicted photochemical product distribution starting from the Franck-Condon region of 

trans-1. Figure 7 shows a comparison of 430 QC and 3,470 ML-NAMD trajectories and their 

energetic dependence on the ∠H-C-C-H and ∠C-C-C-C dihedral angles.  

 

 
Figure 7. (a) The selected 430 reference trajectories with CASSCF(2,2)/cc-pVDZ in 500 fs 

simulations at 300K. (b) The 3,470 NNs predicted trajectories using Wigner sampled initial 

conditions at 300K in 500 fs simulations. The black dots represent the last surface hopping point 

in each trajectory. 
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Figure 7a illustrates the trace of the selected reference trajectories that bifurcated toward cis-1 

and reverted to trans-1. All trajectories started with a narrow spreading in the range of ∠C-C-C-

C = 150–180° and ∠H-C-C-H = 0–60° (upper right corner). 135 surface hopping events turned 

the trajectories along the direction of the ∠H-C-C-H axis toward cis-1. 356 trajectories took the 

same path returning to trans-1. The trans: cis ratio is 2.6: 1 with CASSCF(2,2)/cc-pVDZ. The NNs 

predicted trajectories in Figure 7b recreated the topology of the reference. The NNs predicted 

1,056 trajectories transformed to cis-1 and 2,414 trajectories back to trans-1, resulting in a 

corresponding ratio of 2.3: 1. In the reference trajectories, we observed a few discontinuities in 

the total energy. It is because the CASSCF calculation on discrete geometries cannot guarantee 

correctly converged active space in NAMD simulations. Our NNs are analytic functions of energy 

that avoid this problem, thereby producing smooth trajectory traces. 

 

We analyzed the crossing region and hopping points as identified by the QC and ML-NAMD 

trajectories. Figure 8 shows the spatial distribution of the last S1/S0 surface hopping point in each 

trajectory as well as examples of surface hopping geometries that define the S1/S0 crossing seam. 

 

 
Figure 8. Spatial distribution of the latest S1/S0 surface hopping points in (a) CASSCF(2,2)/cc-

pVDZ and (b) NNs predicted trajectories in 500 fs simulation. The left panel illustrates the position 

of the surface hopping points and the right panel shows the probability density of the surface 

hopping points. The probability density magnitude is defined as the number of surface hopping 

points in an interval of 10° divided by the total number of surface hopping points. The magnitude 

ranges from 0.00 to 0.12 and is colored from light pink to dark red. The red star marks MECP-

trans-1. (c) Four surface hopping points that define the S1/S0 crossing seam. 
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Figure 8a projects the latest S1/S0 surface hopping points from the CASSCF(2,2)/cc-pVDZ 

trajectories into the 2D conformational space of 1. The dense areas represent the S1/S0 crossing 

region as defined by the two reaction coordinates. In the right panel of Figure 8a, the surface 

hopping points accumulated at ∠C-C-C-C = 170° and ∠H-C-C-H = 60°, which has a larger ∠C-C-

C-C angel than MECP-trans-1. Beside the hopping points near the MECP-trans-1, Figure 8c 

shows two pyramidalized surface hopping geometries at A (∠C-C-C-C = 180° and ∠H-C-C-H = 

80°) and B (∠C-C-C-C = 180° and ∠H-C-C-H = 20°). We noted C-H stretching surface hoppings 

at D (∠C-C-C-C = 180° and ∠H-C-C-H = 180°); the C–H distance is 2.24Å. Figure 8b depicts the 

distribution of the S1/S0 surface hopping points by NNs prediction. The NNs not only replicated 

the probability density region of surface hopping points but also and provided the increased 

statistical significance of our crossing region analysis. The NNs located a twisting surface hopping 

geometry at C (∠C-C-C-C = 90° and ∠H-C-C-H = 80°). The probability density map (Figure 8b, 

right panel) suggests it is a relatively rare surface hopping event as few points were located at C. 

The NNs were able to detect the rare event because of the substantially increased number of 

trajectories (4,814) with minimal computational cost. 

 

Based on the performance and state-of-the-art trajectories statistics in 500 fs ML-NAMD 

simulations, we decided to test the limits of our newly established ML-NAMD model. We ran 18 

trajectories over an unprecedented 10 ns simulation time with a time step of 0.5 fs. We measured 

the average populations of the 10 ns ML-NAMD trajectories and showed the results in Figure 9.  

 
Figure 9. The state population in 10 ns ML-NAMD trajectories. The population analysis averaged 

4,832 trajectories in the first 500 fs and 18 trajectories up to 10 ns. The x-axis converts simulation 

time into a logarithm of 10. 

 

In the first 500 fs, we include the earlier cited 4,814 trajectories for the average population. From 

500 fs to 10 ns, we averaged the state populations of the 18 trajectories. The S1/S0 transition 

completes within 1 ps. The flat S0 population curve after 103 fs indicates all trajectories stayed in 

S0 up to 10 ns, without surface hopping up to the S1 state. The complete separation of S1 and S0 

populations suggests that the NNs predicted reliable non-adiabatic coupling in full 10 ns 

simulations. We anticipate that these PyRAI2MD-enabled simulations will pave the way to 

statistical analyses of currently inaccessible photodynamics simulations. The total 2·107 iterations 
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were accomplished in an average of 3 days 12 hours on a single CPU. A 10 ns simulation with 

the QC method would otherwise require approximately 58 years of simulation time. We have 

included the ML-NAMD trajectory movie in the supporting information. 

 

4.3 Photochemical reaction discovery with ML-NAMD 

In this section, we demonstrate an example of using ML-NAMD to discover unexpected or 

unknown photochemical reactions with the dramatically increased number of possible trajectories 

enabled by the ML acceleration. Our CASSCF(2,2)/cc-pVDZ trajectories have revealed that 

trans-1 can undergo an intramolecular hydrogen abstraction to form hexafluoro-2-butene 

carbene, 2 in addition to the major cis-trans isomerization reaction. This pathway is consistent 

with prior theoretical studies on ethylene intramolecular hydrogen migration reactions.24-26 Figure 

10a shows this reaction pathway, Figure 10b and 10c show 208 QC and 1,344 ML-NAMD 

trajectories toward 2. A close look at the structural features of this pathway is shown in Figure 

10d with 5 snapshots from trans-1-FC to 2, including the surface hopping point.   

   

 
Figure 10. (a) Formation of hexafluoro-2-butene carbene (2) via a possible conical intersection. 

(b) The selected 208 reference trajectories with CASSCF(2,2)/cc-pVDZ in 500 fs NAMD 

simulation. (c) The 1,344 NNs predicted trajectories using Wigner sampled initial conditions at 

300K in 500 fs NAMD simulation. The black dots represent the last surface hopping points in each 
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trajectory. (d) Snapshots of hexafluoro-2-butene carbene formation in CASSCF(2,2)/cc-pVDZ 

trajectories. The ∠H-C-C-H and ∠C-C-C-C angles are in blue and red, respectively. 

 

210 CASSCF(2,2)/cc-pVDZ trajectories formed 2 in a trans: carbene ratio of 1.7: 1. The 

trajectories in Figure 10b display that the transformation shared the path with trans-to-cis 

isomerization from the Franck-Condon region to the S1/S0 crossing region. The S1/S0 surface 

hoppings happened in the area of ∠C-C-C-C = 150–180° and ∠H-C-C-H = 0–60°. In figure 10d, 

the hydrogen migrated to the other carbon atom from 58 to 70 fs. The ∠H-C-C-H angle, 50° at 58 

fs, increased to 86° at 70 fs. The C=C double bond transformed to a C-C single bond, resulting in 

a nonplanar geometry (∠C-C-C-C = 164° and ∠H-C-C-H = 113° at 75 fs). To test whether the 

adaptive learning method can “rediscover” the alternative carbene pathway without prior 

knowledge or human bias, we trained NNs with an initial training set which only included the trans-

to-cis isomerization of 1 as described in section 2.3. The adaptive sampling strategy explored the 

conformational space and found 105 geometries (1.6% in the final training set) that correspond 

to the hydrogen migration reaction that was intentionally left out in the initial training set. Figure 

10b shows the 1,344 trajectories toward carbene by NN. The predicted trans: carbene ratio of 

1.8: 1 almost exactly matched the CASSCF(2,2)/cc-pVDZ results. The exceptional agreement 

indicates that the NNs have fully revealed the reactivity and chemoselectivity of trans-1 after 

efficiently sampling the conformational space. 

 

Finally, we compared the topologies of the S0 and S1 PESs predicted by the newly trained NNs 

with QC calculations to determine the predictive efficacy of the NNs on important surfaces. The 

scan constrains the two dihedral angles of 1, ∠C-C-C-C, and ∠H-C-C-H (Scheme 1), ranging from 

0 to 180° with a step size of 10°. The 2D PES presented separate areas of trans-to-cis and cis-

to-trans paths; the initial training set of the NNs had no information about the cis-to-trans reaction 

except for the sampled data enclosed the trans-1 and cis-1. 

 

 
Figure 11. (a) 2D potential energy surface of 1 in S1 and vertical S0 surface with CASSCF(2,2)/cc-

pVDZ. (b) NNs predicted potential energy surfaces on the same geometries. The trans-to-cis path 

varies the ∠H-C-C-H and ∠C-C-C-C from 180° to 0° via the crossing region (∠H-C-C-H < ∠C-C-

C-C near the right corner). The cis-to-trans path alters the ∠H-C-C-H and ∠C-C-C-C in the 

opposite direction, from 0° to 180° passing through a crossing region (∠H-C-C-H > ∠C-C-C-C 
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near the left corner). Detailed discussions on the 2D PES are available in the Supporting 

Information. 

 

Figure 11a demonstrates the optimized S1 and S0 surface (vertical emission from S1) of 1 with 

CASSCF(2,2)/cc-pVDZ. It shows two crossing regions corresponding to the trans-to-cis (∠H-C-

C-H < ∠C-C-C-C) and cis-to-trans (∠H-C-C-H > ∠C-C-C-C) isomerization. The diagonal (∠H-C-

C-H = ∠C-C-C-C) represents the avoided-crossing in the twisting model of 1. The 2D PES has a 

19 x 19 grid points, which the NNs have never seen in the training. Nonetheless, the NNs 

predicted S0 and S1 surfaces resemble the full 2D PES surprisingly well. The NNs overestimated 

the S0 and S1 surface with an MAE of 0.32 and 0.42 eV, respectively. The MAE of S1–S0 energy 

difference is 0.35 eV. These significant energetic discrepancies are because the data at the cis-

to-trans S1/S0
 crossing region (∠H-C-C-H = 90–180° and ∠C-C-C-C = 0–90°) were absent. At this 

region, the MAEs of S0 and S1 energies and their differences are 0.50, 0.82, and 0.43 eV, 

respectively. As a result, the NNs shifted the cis-to-trans crossing area above the trans-to-cis 

crossing area (Figure 11b), which decreases the barrier in between (Figure 11a). It suggests the 

NNs would bias the surface hopping structure in the cis-to-trans path toward that in the trans-to-

cis path. This can be easily improved by including the 2D PES data in the training set.  

 

5. Concluding Remarks 

We have developed an ML-NAMD approach using neural networks that overcome present limits 

in machine learning photodynamics simulations, namely, the simulation time, the size of the 

molecule, and the complexity of the photoreactions. The ML-NAMD provides a priori prediction 

for long-lived excited molecules that would leverage the current scope of discovering new 

photoswitches and photosensitizers. As the first demonstration of the ML-NAMD approach, we 

have accomplished the unprecedented 10 ns simulations of the photodynamics of trans-1 using 

our PyRAI2MD code. We constructed highly efficient NNs that accelerated the computations of 

energies, forces, and NACs 37,307-fold compared to quantum chemical calculations with 

CASSCF(2,2)/cc-pVDZ. We developed a composite generation scheme to effectively sample the 

initial training set, which combines the Wigner sampling, geometrical interpolations, and short-

time quantum chemical trajectories. We implemented an automatic workflow to expand the initial 

training set by adaptively sampling the unexplored conformational space using a query of 

committee model. We obtained a final training set with 6,232 data points, with which we trained a 

final set of NNs, with a prediction error in energy of 0.032 eV, achieving chemical accuracy. The 

forces and NACs errors were 0.17–0.18 eV Å–1 and 0.008–0.009 Å–1respectively. We validated 

our NNs on the reaction coordinate diagram of trans-to-cis isomerization of 1. The predicted S0 

and S1 energy and their difference are sufficient to describe surface hopping. The maximum 

absolute error of S0, S1 energies and their difference are 0.030, 0.022, and 0.050 eV. 

 

The 10 ns ML-NAMD simulations used a single CPU and only took 3.5 days for each of the 18 

trajectories, which would have approximately required 58 years for running quantum chemical 

calculations with CASSCF(2,2)/cc-pVDZ. We propagated 4,814 ML-NAMD trajectories with 

Wigner sampled initial conditions at 300K, starting from the S1 Franck-Condon region in 500 fs 

simulations. The predicted S1 half-life is 60.5 fs, and the trans: cis ratio is 2.3: 1. They agree with 

the results of 684 CASSCF(2,2)/cc-pVDZ trajectories, where the S1 half-life is 60 fs, and the trans: 
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cis ratio is 2.6: 1. The NNs also predicted occasional surface hopping events near the avoided-

crossing in the twisting model of 1. 

 

Our NNs have shown intelligence of self-navigating the learning process and speculating the 

unseen PES with restricted training data. It autonomously collected 105 data points relevant to 

hexafluoro-2-butene carbene during the adaptive sampling. The NNs reproduced a trans: carbene 

ratio of 1.8: 1 in an excellent agreement with the ratio of 1.7: 1 with CASSCF(2,2)/cc-pVDZ. 

Moreover, the NNs intentionally trained for trans-to-cis reaction resembled the full 2D PES of 1. 

They replicated the topography of the S1 and S0 surfaces without learning the reverse cis-to-trans 

reaction. Currently, we are actively testing additional molecular features, such as bond angles 

and dihedral angles, and working on approximate NACs prediction and NACs free surface 

hopping algorithms. 
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