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Abstract 

In lack of vaccination and therapeutic drugs, the ongoing COVID-19 pandemic affected 

millions of people, causing 1,018,957 deaths worldwide (World health organization; 1st 

October 2020). The conventional drug design pipeline for effective and safer drug development 

is a costly and time-intensive affair. It takes around ten years in general from identifying a 

clinical candidate to get the approvals for actual applications. An effective way to cut short 

drug design pipeline in such emergency cases could be the repurposing of already approved 

drugs against novel targets. Here in this work, we explored the structure-based drug screening 

approach to find potential inhibitors of SARS-CoV2 main protease (Mpro) from the library of 

already FDA approved commercially available drugs. The site-specific and blind docking 

studies, in combination, suggest three potential inhibitors of Mpro, Ergotamine 

(ZINC000052955754), Nilotinib (ZINC000006716957) and Naldemedine 

(ZINC000100378061). Molecular dynamics (MD) simulations and binding free energy 

calculations using the MMPBSA method further reinforced the efficiency of the screened Mpro 

inhibitor candidates. The work yields enough evidence to conduct rigorous experimental 

validation of these drugs before utilizing them for the therapeutic management of SARS-CoV2 

infection. 
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Introduction 

As early as 31st December 2019, a cluster of pneumonia of unknown origin has been reported 

in Wuhan, Hubei Province, Republic of China. Later the causal organism is reported as a newly 

mutated strain of SARS Coronavirus (SARS-CoV) having higher pathogenicity and termed as 

SARS-CoV2 (Severe Acute Respiratory Syndrome CoronaVirus-2) causing the CoronaVirus 

Disease (COVID-19)1. Among all the seven known coronaviruses, SARS-CoV2 is one of the 

three highly pathogenic human coronaviruses, including the MERS-CoV and SARS CoV.  

Although SARS-CoV2 exceeds the transmission rate from previously reported outbreaks of 

human coronaviruses, the virus has a much lower case fatality rate (CFR), i.e., 2-5% 34.4% 

and 10% reported in the case of MERS-CoV and SARS-CoV respectively2–4. The worldwide 

spread of the disease prompted the World Health Organization (WHO) to declare it a pandemic 

of a significant threat to public health, which needs to be addressed adequately by prevention, 

and therapeutics. As per WHO COVID-19 Dashboard, there were 31,798,308 confirmed cases 

of COVID-19 worldwide resulting in 973,653 deaths on 25th september 20205. Clinical 

manifestation of SARS-CoV2 infection ranges in between being symptomatic to experience 

severe respiratory failure6. Early symptoms of the disease comprise anything or the 

combination of low-grade fever, fatigue, dry cough, myalgia, dyspnea, lack of taste, and smell7. 

Pneumonia is found to be associated with most of the SARS-CoV2 infections, but cases of 

having pleuritic chest pain also been reported7. Based on the severity of the symptoms, infected 

patients could be classified into mild, severe, and critical types8. However, most infections are 

self-limiting in nature, leaving approximately 15% cases to reach a severe level, which requires 

hospitalization and oxygen supplementation. Based on the reports, an additional 5% of such 

patients become critically ill, showing hypoxemia, acute respiratory distress, and multiple 

organ failure leading to death in the absence of necessary ventilator support for several 

weeks7,9–13.   

Similar to other coronaviruses, SARS-CoV-2 is an enveloped spherical viral particles 

consisting of a 29903 bp (Accession no. NC_045512) extended positive-sense single-stranded 

RNA (ssRNA (+)) as genetic material. The genomic features of the SARS-CoV2 are well-

conserved, showing 79.5% sequence similarity with early reported SARS-CoV. Despite having 

high sequence similarity, genetic modifications are highly impactful, resulting in resistance 

towards those drugs which were previously found effective against SARS-CoV14. Virus 

assembly consists of several protein molecules, viz- spike(S), envelope (E), membrane (M), 

nucleocapsid (N), major protease (Mpro), replicase-transcriptase, etc. Several of these proteins 

could serve as essential targets for therapeutic design and development, considering their 

crucial role in the viral life cycle15–17. The spike (S) protein of SARS-CoV2 is a trimeric class 

I viral fusion glycoprotein, which assists in an initial attachment to the angiotensin-converting 

enzyme II (ACE2) is known to allow fusion with the host cells such as alveolar epithelial 

cells8,18,19. The protein is an essential target for vaccine and inhibitor drug design3,4. 

Chymotrypsin, like protease (3CLpro) or SARS-CoV2 major protease (Mpro), is also an 

attractive target for drug design and development due to high sequence conservation and its 



critical role viral pathogenesis20. The protease process the viral polyprotein 1a/1ab, into mature 

non-structural proteins (mNSPs), which play an essential role in blocking host immune 

response21.  However, the primary function of SARS-CoV-2 Mpro is the regulation of 

replication and transcription machinery of SARS-CoV2 by controlling the synthesis of non-

structural proteins (NSPs) required for replicase-transcriptase assembly22.  The protein also 

shows a high sequence similarity, i.e., 96% with SARS-CoV major protease (Mpro). It makes 

Mpro an ideal target for structure-based drug design and development. SARS-CoV2 Mpro is a 

homodimer of 306 amino acid long polypeptide chains. Crystal structure analysis suggests 

amino acid residues His41, Phe140, Leu141, Asn142, Gly143, Cys145, His163, Met165, 

Glu166, Leu167, Pro168, Phe185, Asp187, Gln189, Thr190, Ala191, and Gln192 define the 

substrate-binding pocket of protease20,22,23. At the same time, the His41 and Cys145 served as 

a part of the catalytic dyad. These residues could be regarded as prime targets during structure-

based drug development to measure their interaction with potential ligand molecules to obtain 

SARS-CoV2 Mpro inhibitors 24–26. 

The repurposing of approved drugs provides an alternative approach to develop safe and 

effective therapeutics in case of rapidly emerging diseases and sudden outbreaks, as in the case 

of COVID-1927. While the conventional drug development pipeline is time-intensive and costs 

millions, repurposing already available drug molecules could result in the timely development 

of effective and safe drugs for clinical testing and applications15,17,24. In this work, we 

performed the structure-based virtual screening of the FDA-approved commercially available 

drugs to find high-affinity inhibitors of SARS-CoV-2 Mpro. First, we estimated the drug-

binding affinities with SARS-CoV-2 Mpro and then conducted the interaction analysis to find 

better hits. Finally, based on the interaction analysis and drug properties, we identified two 

drugs, viz- Ergotamine and Naldemedine showing the appreciable binding affinity and specific 

interactions toward the SARS-CoV2 Mpro active site. 

Materials and Methods 

1- Protein and Ligand Preparation 

SARS-CoV2 crystal structure having PDB ID-5R83 has been studied extensively along with 

other crystal structures such as 5R7Y, 5R7Z, 5R80, 5R81, 5R84, 5RE4, 5RE9, 5REB, 5RF1, 

5EFQ, 6LU7, and 6W63 to identify the critical residues involved in Mpro -inhibitor interaction 

and understand the mechanism of inhibition. For molecular docking-based virtual screening, 

atomic coordinates of SARS-CoV2 Mpro were obtained from the PDB ID 5R83. The crystal 

structure contained 304 amino acid residue long single chain of SARS-CoV2 Mpro in complex 

with hydrolase inhibitor Z44592329 at 1.58 Å. Water molecules and hydrolase inhibitor were 

removed, and the geometry of the protein was cleaned through the "Prepare Protein" module 

of Biovia Discovery Studio 4.5(DS4.5). 

SDF file representing the library of 1045 FDA approved and commercially available drugs 

were downloaded from the ZINC15 database (https://zinc15.docking.org/). Energy 

minimization of all the 1045 ligand molecules was performed in vacuo, using 500 steps of 

conjugate gradients optimization algorithm with universal forcefield updated at one step 



interval. The energy minimization process was stopped at an energy difference of 0.1 kcal.mol-

1. Further, the energy minimized ligand molecules were converted to Autodock ligands (.pdbqt) 

format using PyRx 0.8 (https://pyrx.sourceforge.io/). 

 

Table-1: Grid box size and coordinates used for docking in Autodock Vina. 

 Active site Docking 

On 5R83 

        Blind-Docking  

        On 5R83 

Center(Å)   

X -29.9394            -39.995 

Y -39.3462        -26.077 

Z 14.5804         14.7781 

Box Dimensions (Å)   

X 41.6726         57.6821 

Y 33.7555         64.0011 

Z 49.6611         48.8962 

 

 

2- Structure-based virtual screening  

PyRx 0.8, along with AutoDock Vina v.1.128, was used for structure-based docking studies of 

Mpro with FDA approved ligand molecules. The software was selected owing to its rapid yet 

efficient search capability to find accurate and active conformations29. While the SARS-CoV2 

Mpro protein molecule was considered as a rigid structure, ligand drug molecules were 

considered flexible during the docking process. Molecular docking at the Active site of Mpro 

was performed using AutoDock Vina (V1.1) for all the ligand drug molecules with a grid size 

of 41.67, 33.75, and 49.66 Å, centralized at -29.93, −39.34, and 14.58 Å for X, Y, and Z 

coordinates as mentioned in the table-1. The RMSD of 2 Å was found in the overlapped 

structure of the native inhibitor in the crystal form and the virtually docked form, as shown in 

Figure 1. The assessed binding energy score of the native hydrolase inhibitor (Z44592329) in 

the crystal structure (PDB ID: 5R83) was found -6.0 kcal.mol-1. The threshold value for binding 

energy was set to -8.0 kcal.mol-1to narrow down the search space to obtain only the high-

affinity ligand molecules to SARS-CoV2 Mpro as a target. A total of 9 out of 1045 compounds 

showed binding energy (DG˚) less than -8.0 kcal.mol-1showing the high affinity of these ligand 

molecules towards Mpro active site (Table-2). 

3- Blind docking studies 

Another round of structurally blind docking was performed with initially screened nine FDA 

approved drug ligand molecules using AutoDock Vina. The box dimensions for structurally 

blind docking were 57.68 64.00 and 48.89 Å while the Mpro was centralized at -29.93, −39.34, 

and 14.58 Å for X, Y, and Z coordinates during the docking (Table-1). The grid spacing was 

set to 1.00 Å. The blind docking was performed to cover the entire protein structure under the 

grid search space to check whether the primary screened molecules have an affinity to bind to 

the enzyme other than the active site. Six out of the previously screened nine compounds 

https://pyrx.sourceforge.io/


showed comparable or high affinity to the sites other than the target's active site. Remaining 

three molecules, Ergotamine, Naldemedine, and Nilotinib, had shown a high affinity to the 

active site having minimal or no affinity to other sites. The docked poses of which are shown 

in Figure 2, and selected further for detailed analysis. 

 

4- Inhibition constant calculation 

The inhibition constant selected ligand molecules has been calculated from the obtained ∆𝐺 

parameter from molecular dynamics simulations and putting the values in the following 

formula- 

∆𝐺   = RT (LnKi) …. (1) 

Ki = e (∆𝐺/RT) …. (2) 

 

The value is represented in terms of the negative decimal logarithm of inhibition constant 

(pKi) 

pKi (μM) = −log(Ki) × 10−6 …. (3) 

 

Where ∆𝐺 is binding affinity (kcal.mol-1), R (gas constant) is 1.98 cal. (mol.K)−1, and T (room 

temperature) is 298.15 Kelvin. 

 

5- Molecular dynamics (MD) simulation studies 

Molecular dynamics (MD) simulation studies were conducted using LiGRO30, a GUI based 

MD simulation software with GROMACS 5.1.5 package31 to evaluate the metastability of the 

native inhibitor, and screened drug ligands with SARS-CoV2 Mpro. Transferable intermolecular 

potential water molecules (Tip3p) model for solvation along with Amber FF99sb forcefield 

was applied. The complex was placed inside a dodecahedron box (60 × 60 × 90 Å)  containing 

35,897 water molecules, such that the minimum distance between any atom of the protein-

ligand complex with the box wall was 2nm.  The parameters of ligands were calculated using 

General Amber Force Field (GAFF) and AnteChamber PYthon Parser interfacE (ACPYPE)32 

module in LiGRO. The protein-ligand complex with an overall -3 charge was neutralized with 

0.15M concentration of 107 Na+ and 103 Cl- ions. The equilibration steps under NVT and 

NPT ensemble were run for 1ns each in LiGRO, and the MD production run for each complex 

and free Mpro was run under NPT ensemble at 1.01 bars at 310.15K for 100ns each at High 

performance cluster (HPC) facility at IIT Delhi. The particle mesh Ewald (PME) method and 

LINCS algorithm were applied to correct the electrostatic interactions and constrain the bonds 

with hydrogen atoms. The time step was 2fs, and the frames were stored after every 500 steps. 

The trajectories and images were visualized through VMD33 and Chimera Software34. 

The obtained data were analysed using GROMACS tools (rmsd, rmsf, and energy) to examine 

the overall stability of the protein-ligand system, fluctuations in the local residues, and structure 

over the complete simulation trajectory. In this study, MM-PBSA calculations were done using 

the g_MMPBSA 35 software, and the ΔG was calculated by equation (1), 

 



∆𝐺 = ∆𝐻 - 𝑇∆𝑆 = ∆𝐸𝑒l𝑒 + ∆𝐸𝑉DW + ∆𝐺𝑔b + ∆𝐺𝑛p - 𝑇∆𝑆                     (1) 

Where ΔEele and ΔEVDW are the total gas-phase energy/Molecular mechanics energy 

(ΔEMM), ΔGgb and ΔGnp refer to polar and non-polar solvation free energies respectively, 

and TΔS is conformational entropy upon binding. The solute and the solvent dielectric constant 

values were set to 80. The entropy was calculated as described in the methods reported by 

Wang et al.36 given in equation 2 and 3, 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑆 = ∑ 𝑤𝑖(𝑆𝐴𝑆𝑖 + 𝑘 ∗ 𝐵𝑆𝐴𝑆𝑖| )𝑁
𝑖=1                  … (2) 

Where BSASi = 4π (ri + rprob)2                         …(3) 

  

 

Here the N is the number of atoms in a molecule, wi, SASi, BSASi, ri denotes the weight, the 

solvent-accessible surface area, buried solvent accessible surface area, calculated using 

Equation 2 and the radius of the i atom respectively. The probe radius, rprob, was set to 0.08 

nm. The term k is the adjustable parameter with the values taken from the same work. 

In their approach, the conformational entropy of a molecule, S, can be obtained by summing 

up all atoms' contributions, no matter whether they are buried or exposed. The two types of 

surface areas SAS and BSAS, were weighted to estimate the contribution of an atom to S. 

Atoms having the same atom type shared the same weight. A general parameter k is applied to 

balance the contributions of the two types of surface areas. Since we obtained the enthalpic and 

entropic term, it was possible to obtain the complexes' binding free energies. The inner product 

of the residues present on the interface in the complex enabled us to match if the same residues 

are involved in interface formation in two different complexes. The values range from 0, which 

represents no match to 1 that represents the perfect match. Numerical value equal to or greater 

than 0.5 is usually considered a good match. In the present study, the inner product, γ, have 

been found between vectors Ac and A1, A2, and A3 respectively where, 

 

Ac = residue wise contribution to the interface area of the Mpro in Mpro -Z4492329 complex. 

A1 = residue wise contribution to the interface area of the Mpro in Mpro -Ergotamine complex. 

A2 = residue wise contribution to the interface area of the Mpro in the Mpro -Naldemedine 

complex. 

A3 = residue wise contribution to the interface area of the Mpro in Mpro -Nilotinib complex. 

 

The ith element of vector A is the contribution of the ith residue of the protein to the interface 

of the complex. As a case study, a γ value of 0.67 suggests a 67 % match in the residues 

involved in the protein for two different complexes Ac and A1. 

γ = ( Ac) ⃗⋅(A1) ⃗ =0.67



 

Table-2: Binding energy scores of the primary screened top-ranked inhibitors by Autodock Vina. 

S. No. Compound Structure Name (Formula/ ZINC ID) Docking 

Score 

(kcal.mol-1) 

Molecular Weight 

(Daltons) 

LogP No. of H-

bond 

Donors 

No. of H-

Bond 

Acceptors 

1. 

 

Ergotamine 
C33H35N5O5 / ZINC52955754 

-9.5 581.673 1.991 3 6 

2. 

 

Vorapaxar 
C29H33FN2O4  / ZINC3925861 

-9.3 492.591 5.63 1 5 

3. 

 

Paliperidone 
C23H27FN4O3 / ZINC4214700 

-9.2 426.492 3.081 2 6 

4. 

 

Nilotinib 
C28H22F3N7O / ZINC6716957 

-9.0 529.526 6.356 2 7 

5. 

 

Irinotecan 
C33H38N4O6  / ZINC1612996 

-9.0 586.689 4.091 2 8 

6. 

 

Naldemedine 
C32H34N4O6 / ZINC100378061 

-8.9 570.646 3.48 4 8 

7. 

 

Eltrombopag 
C25H22N4O4 / ZINC11679756 

-8.9 442.475 4.565 0 7 

8. 

 

Dihydro-ergotamine 
C33H37N5O5 / ZINC3978005 

-8.8 583.689 2.081 4 5 

9. 

 

Noxafil 
C37H42F2N8O4 /ZINC28639340 

-8.7 700.791 4.573 1 12 



 

Results and discussion 

1- Structure-based virtual screening results 

FDA approved drug molecules were screened primarily based on their calculated binding 

energy score during docking studies. Three FDA approved drug molecules, viz- Ergotamine, 

Nilotinib, and Naldemedine were selected based on their binding affinities towards Mpro active 

site. Among all docked drug molecules, the highest binding energy score was of Ergotamine, 

which was -9.5 kcal.mol-1. The molecule is a α-1 adrenergic agonist vasoconstrictor, used for 

treating chronic migraine disorders. The molecule interacted within Mpro active site, forming 

conventional carbon-hydrogen bonds with residues Glu166, His41, and Asn142. A π-Sulfur 

bond was evident with Met165 along with four alkyl and π-alkyl interactions with Met49 and 

Pro168 residues. A π- π T-shaped interaction was visualized with His41 residue, and several 

van der Waals interactions were evident in the docked complex (Figures-3B and 4B).  

The next two drug molecules interacted with Mpro of SARS-CoV2 were Nilotinib and 

Naldemedine having predicted binding energy score of -9.0 kcal.mol-1 and -8.9 kcal.mol-1. 

Nilotinib is a tyrosine kinase inhibitor used in the second-line treatment of Chronic 

Myelogenous Leukaemia (CML). Unlike Ergotamine, the Nilotinib molecule in the docked 

complex has shown quite a different molecular interactions with SARS-CoV2 f active site 

residues. There were two conventional hydrogen bonds between Nilotinib and Mpro within 

active site involving Glu166 and Asn119 residues. The docked assembly consisted of three 

halogen bonds in between Nilotinib molecules and amino acid residues Leu141, His163, and 

Met165. The three alkyl and π-alkyl bonds with Cys145 and His163 and multiple van der Waals 

interactions were evident in the docked assembly of Mpro with Nilotinib molecule (Figures-3C 

and 4C). An unfavourable but peculiar donor-donor interaction with Glu143 was seen in the 

docked molecule. The μ-opioid receptor antagonist-Naldemedine, which is used to prevent 

opioid-induced constipation in adult patients, formed four in total (conventional and carbon-

hydrogen) hydrogen bonds with residues Thr26, Asn119 and Gly143. There were three alkyl 

and π-alkyl interactions found with the residues His41 and Met49. A π- π stacked interaction 

with Tyr118 and many van der Waals interactions were also evident in the docked assembly 

(Figures-3D and 4D).  

In contrast to the top three screened FDA drugs, the native hydrolase inhibitor (Z44592329), 

PDB ID-5R83, was docked on the enzyme's active site. The binding energy was -6.0 kcal.mol-

1, much lower than the screened FDA approved inhibitors. The inhibitor formed five hydrogen 

bonds, including the conventional and non-conventional carbon-hydrogen bonds in total with 

the residues Phe140, His163, Met165, and Glu166. The inhibitor formed two alkyl and π-alkyl 

bonds with Met49 and Met165 residues while interacting with His41, His141, and Met165 

through π- π T-shaped interactions. Few van der Waals interactions were also evident in the 

docked structure (Figures-3A and 4A).  

More van der Waals interactions were visible in drug docked structure than native hydrolase 

inhibitor docked assembly, which might be the reason for the higher binding energy score of 

drug molecules. Considering the substantial difference in the binding energy score and 



significant interactions between drug molecules and Mpro active site, it seems possible for these 

FDA approved molecules to act as Mpro inhibitors and abolish its enzymatic activity. 

 

2- Molecular Dynamic Simulation Analysis 

The stability of the drug molecule in the active site serves as an accurate quantifier to assess 

the fitness of potential inhibitors. Mpro complex with all drug molecules and the native 

hydrolase inhibitor Z44592329 at the active site were subsequently subjected to molecular 

dynamic simulation. The protein backbone stability was assessed in terms of root-mean-square 

deviation (RMSD) values of the protein-drug complexes. The RMSD values were calculated 

concerning the initial frame of protein-drug complex and plotted, as shown in figure 5A. The 

RMSD values of Mpro and Mpro -ligand complexes increased gradually from 0 to 5 ns and 

remained stable after throughout the trajectory. The stability for residues was assessed in terms 

of root-mean-square fluctuation (RMSF) values of protein Cα backbone averaging over the 85-

95ns interval, as shown in figure 5B. The RMSF values for the active site residues in Mpro -

drug complexes ranged less than 0.7 Å; however, no significant change in RMSF values was 

observed as compared to that of free Mpro except the N-terminal and C-terminal regions, which 

showed higher flexibility. Also, the mean inner product value was at least 0.5 or more for all 

the Mpro -drug complexes indicating a good match for the residues involved in the Mpro-

Z44592329 complex, as shown in figure 6A. 

 

Table-3. Free binding energy (∆G˚) of the top-ranked putative inhibitors against Mpro of 

SARS-CoV-2. 

 

Drug ∆𝐻 
 (kcal.mol-1) 

𝑇 ∆𝑆 

 (kcal.mol-1) 

∆𝐺   

(kcal.mol-1) 

pKi  

(μM) 
 

Ergotamine 

(52955754) 

 

 

-33.962 ± 2.068 

 

-24.102 ± 0.024 

 

-9.86   ±  2.092 

 

6.974 

Naldemedine 

(100378061) 

 

-29.382 ± 3.594 -21.149 ± 0.027 -8.233 ±   3.621 5.823 

Nilotinib 

(6716957) 

 

-22.499 ± 3.958 -23.974 ± 0.061 1.471   ±  4.019 1.036 

Crystal Ligand 

(Z44592329) 

-19.348 ± 1.904 -11.409 ± 0.019 -7.939  ±  1.923 N.D* 

 

* Not determined 

 

3- Binding Free-energy Calculation 

The meta-stable region for all the complex, i.e., 85-95ns of the molecular dynamics simulation, 

was selected to calculate the binding free energy, as mentioned in the table-3. When compared 

with native inhibitor (Z44592329), Ergotamine and Naldemedine showed lower Gibbs free 

energy, which was in accordance as per the docking score obtained by PyRx. Nilotinib showed 

higher Gibbs free energy, which could be explained due to the lower conformational entropy 



with some fluctuations. The conformational entropy for Ergotamine, Naldemedine, and 

Z44592329 was constant, as shown in figure 6B. Since MM-PBSA is a computational method 

based on approximations and shows an intermediate level of accuracy between empirical 

scoring, and alchemical perturbation methods, there will always be a scope of improvement in 

the calculated values. The pKi (the negative logarithm of predicted inhibition constant) of the 

screened drug molecules, Ergotamine, Nilotinib, and Naldemedine, was 6.974, -1.036 and 

5.823 micromolar (µM) respectively as calculated during the meta-stable region of the 

simulation (Table-3).  

 

Conclusions 

SARS-CoV2 Mpro regulates the replication and transcription of the virus through the generation 

of non-structural proteins (NSPs) from viral polyprotein, which ultimately forms a replicase–

transcriptase assembly. Hence, SARS-CoV2 Mpro is an attractive drug target for structure-based 

drug design and development. Blocking of the Mpro enzyme active site of SARS CoV2 will 

have prophylactic effects on viral infection and progression. Structure-based screening through 

docking of FDA approved drugs in the active site of SARS-CoV2 Mpro helped to identify three 

potential inhibitors of main protease activity; viz- Ergotamine, Nilotinib, and Naldemedine. 

MD trajectory analysis and calculated binding energy (MMPBSA) verifies the stability of these 

drugs in the active site of the enzyme. The obtained result strengthens the idea- the binding of 

these drugs with SARS-CoV2 Mpro could impede the essential proteolytic function of the 

enzyme causing inhibition of viral replication and disease progression. However, the identified 

drug molecules need to be tested through in vitro and clinical experiments for their efficacy 

before being utilized in prophylactic therapy and management of SARS-CoV2 infection. 
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Figures 
 

 
Figure 1. Overlapped representation of Crystal (Green) and Docked (Red) pose of native 

hydrolase inhibitor (Z44592329) at the active site of Mpro. 

 

 
 

Figure 2. Docked Surface view representation of the top-ranked compounds. Mpro complexes: 

(A) Z44592329, (B) Ergotamine, (C) Nilotinib and (D) Naldemedine. 

 



 
 

Figure 3. 3D-interaction illustration of top-ranked compounds. Mpro complexes: (A) 

Z44592329, (B) Ergotamine, (C) Nilotinib and (D) Naldemedine. 

 



 
 

 

Figure 4. 2D-interaction illustration of top-ranked compounds. Mpro complexes: (A) 

Z44592329, (B) Ergotamine, (C) Nilotinib and (D) Naldemedine. 

 

 

 
 

Figure 5. Molecular dynamic (MD) simulation of Mpro –ligand molecule complex, (A) RMSD 

plots of free and drug complexed Mpro and (B) RMSF plots of free and drug complexed Mpro.  



 
 

Figure 6. (A) Inner-product calculation between Mpro-Z44592329 and Mpro-screened drugs 

complex and (B) Conformational entropy of Mpro-screened drugs. 

 

  

 


