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ABSTRACT: Alkyl boronic acids and esters play an important role in the synthesis of C(sp3) rich medicines, agrochemicals, and 
other materials. This work describes a new type of transition-metal free mediated transformation to enable the construction of 
C(sp3)-rich, and sterically hindered alkyl boron reagents in a practical and modular manner. The broad generality and functional 
group tolerance of this method is extensively examined through a variety of substrates, including synthesis and late-stage function-
alization of scaffolds relevant to medicinal chemistry. The strategic significance of this approach, with alkyl boronic acid as a 
linchpin, is demonstrated through various downstream functionalizations of the alkyl boron compounds. This two-step concurrent 
cross-coupling approach, resembling formal and flexible alkyl-alkyl couplings, provides a general entry to previously synthetically 
challenging high Fsp3-containing drug-like scaffolds. 

Introduction 
Convergence and modularity are the key driving forces in 

the development of modern organic chemistry methodologies 
for the synthesis of complex molecules in both industry and 
academia. Recent developments in medicinal chemistry, 
showcasing the improved physiochemical and pharmacokinet-
ic profiles of compounds with higher Fsp3 (fraction of sp3 car-
bon atoms), has resulted in an increased emphasis on sp3-rich 
moieties1,2. This trend toward “increasing saturation” calls for 
a modular and versatile platform to form these C(sp3)–C(sp3) 
bonds. Over the past century, addition of alkyl organometal-
lics, such as Grignard reagents, to electrophiles (carbonyls, 
imides, Michael acceptors et al.) represents one of the most 
reliable approaches to construct C(sp3)–C(sp3) bonds3. Addi-
tionally, transition metal-mediated cross-coupling, a “go-to” 
approach to access diverse chemical space4, has more recently 
enabled the construction of a variety of C(sp3)–C(sp3) bonds. 
However, this process remains a very challenging undertak-
ing5 owing to the propensity of intermediary metal-alkyl com-
plexes to undergo b-hydride elimination6,7. As such, complex 
hydrocarbons are often assembled in “roundabout” ways, lead-
ing to non-modular, linear processes and detracting from over-
all efficiency.  

With the increasing demand for the construction of C(sp3)–
C(sp3) bonds in mind, we envisioned an alternate approach to 
access C(sp3)-rich scaffolds via the preparation of an alkyl 
boronic acid intermediate that can be subsequently employed 
in further transformations. The alkyl boronic acid would func-

tion as a linchpin, allowing to stitch a variety of C(sp3) scaf-
folds and heteroatoms together (Figure 1A). The ability to 
access such an alkyl boron reagent would provide a powerful 
functional handle, allowing for a myriad of downstream func-
tionalizations, including single- and two-electron transfer 
pathways, and 1, 2-metallate rearrangements8-10. To this end, 
radical precursors (such as halides, pseudo-halides, redox-
active esters)11,12, olefins, ate complexes13, organolithium rea-
gents14, and stable diazo compounds15,16 have been demon-
strated as powerful precursors to such alkyl boron species 
(Figure 1B). However, these approaches towards alkyl boron 
compounds are either non-modular and/or require air- and 
moisture sensitive organometallic reagents or potentially ex-
plosive diazo compounds. By leveraging the unique reactivity 
of the sulfone (VI)à sulfinate(IV) reduction, herein we show-
case that readily available alkyl sulfonylhydrazones (from 
aldehydes or ketones) and alkyl boronic acids can be directly 
utilized to access sterically congested alkyl boron compounds 
in the absence of strong base or explosive reagents. This strat-
egy, would thus allow for modular and convergent construc-
tion of sterically hindered C(sp3)–C(sp3) bonds. 

Here we present the invention of a general, operationally 
friendly, modular and scalable synthesis of C(sp3)-rich alkyl 
boronic esters. The transformation is exemplified through the 
synthesis of >110 alkyl boronic esters, including late-stage 
derivatization of bioactive molecules and synthetic applica-
tions to rapidly access pharmaceutically relevant targets. 

 



 

 
Figure 1. Alkylboron Synthesis Enabled by Transition-Metal Free Mediated Alkyl–Alkyl Coupling. (A) Alkyl boronic acids as useful intermediates 
for synthesis of C(sp3)-rich scaffolds; (B) The state-of-art for synthesis of alkyl boron compounds and our modular approach towards alkylboron synthesis; 
(C) Alkyl boronic acid represents a more stable boronic acid in comparison with benzyl and allylic boronic acid; (D) Identification of a viable sulfonylhy-
drazone and reaction conditions to achieve the cross-coupling to access tertiary boronic ester.  
 
Results and Disscussion 

Identification of Sulfonylhydrazone for Boron-Preserved 
Coupling The literature is replete with examples of sulfonyl-
hydrazones serving a variety of different roles in synthesis, 
from the venerable Bamford–Stevens reduction17 and Eschen-
moser-Tanabe fragmentation18, to both transition metal-
mediated19,20 and transition-metal free cross-couplings21. In the 
latter regard, the breakthrough report by Barluenga, Valdés 
and co-workers22 previously demonstrated the coupling of 
alkyl tosyl hydrazones with aryl/vinyl boronic acids in the 
presence of mild base to forge the C(sp3)–C(sp2) linkage (Fig-
ure 1B). In this seminal transformation, they propose for-
mation of an alkyl boronic intermediate, which is spontane-
ously eliminated via protodeboronation22-25. While the lability 
of benzylic and allylic boronic acids likely leads to the ob-
served protodeboronation, we presumed other unactivated 
alkyl boronic acids would be more stable under these condi-
tions. To that end, the stability of a series of alkyl boronic 
acids were evaluated under Barluenga-Valdés conditions (Fig-
ure 1C). Gratifyingly, although the benzylic (3) and allylic (4) 
boronic acids decomposed rapidly (<10 min) under these con-
ditions, simple primary, secondary, and tertiary alkyl boronic 
acids (5–7), demonstrated remarkable stability (>5 h) to the 
basic and heat conditions. Based on these results, we surmised 
that direct access to complex alkylboronic acids 2 could be 
achieved in a simple and modular fashion from the readily 
available sulfonylhydrazone and alkylboronic acid building 
blocks via 1 2-metallate rearrangement of the zwitterion in-
termediate 1. With this hypothesis in mind, we subjected alkyl 
tosylhydrazone 8 and cyclopentyl boronic acid 9 to the Bar 

luenga-Valdés conditions (Figure 1D, Entry 2) and observed 
that the tertiary boronic ester 10 was observed in only 19% 
yield, with majority of the mass balance resulting in decompo-
sition of 8 to an uncharacterized complex mixture. We hy-
pothesized that the sulfonylhydrazone with steric hindered or 
electro-withdrawing substitutions could provide a mild ap-
proach to access the proposed intermediate 1. Subsequent op-
timization of sulfonylhydrazone, base, solvent and temperature 
(summarized in Figure 1D, full table in supplementary infor-
mation) resulted in the identification of optimal conditions, 
which employ mesitylsulfonyl hydrazone, cesium carbonate 
and chlorobenzene to afford the coupling product 10 in 88% 
isolated yield (96% GC yield) (Entry 1). Any deviation from 
these optimized conditions, such as using an alternative sul-
fonylhydrazone (Entry 3), base (Entries 4 and 5), or solvent 
(Entries 6 and 7) led to reduced yields or starting material 
remained. Employing 1.5 equivalents of boronic acid 9 (Entry 
8) or using different temperatures also afforded the product 10 
(Entries 12 and 13), albeit in lower yields. It is noteworthy that 
converting the initially generated alkylboronic acid to the cor-
responding pinacol ester was unexpectedly challenging (e.g., 
0% yield for compound 74, vide infra), presumably due to the 
steric hindrance of the generated tertiary boronic acid (Entry 
10). However, after further optimization, it was found that 
heating at 100 °C for pinacol alcohol (Entry 1) or using eth-
ylene glycol as a condensation reagent (Entry 11)26 enabled 
efficient boronic ester formation. Notably, despite sulfonylhy-
drazone 8 being easy to prepare and bench stable (usually iso-
lated as a crystalline solid by filtration), an in situ protocol was 
developed to enable functionalization of the starting ketone 13 
in one-pot (Entry 16), resulting in comparable results to the 

aYield determined by GC analysis with trimethoxybenzene as an internal standard; b Yield in 
parathesis is isolated yield; cYield determined by crude NMR with dibromomethane as an 
internal standard; dIsolated yield for 14; e12 (3.0 equiv.), BSA (6.0 equiv.), H2O (9.0 equiv.), 
chlorobenzene at 100 °C for 1 h first; f 8 (1.0 equiv.), 12 (3 .0equiv.), BSA (6.0 equiv.), H2O 
(9.0 equiv.), chlorobenzene at 100 °C for 5 h; g13 (1.0 equiv.), MesSO2NHNH2 (1.05 equiv.), 
chlorobezene at 80 °C for 1 h first; Mes = mesityl.
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optimized procedure. Additionally, procedures (Entries 14–15) 
that employ the more stable potassium alkyltrifluoroborate 12 
as a cross-coupling partner were also developed27. Under these 

conditions, the less Lewis acidic alkyl boronic ester were not 
competent as coupling partners. 
   

 

Figure 2. Scope of the Cross-Coupling between Alkyl Sulfonylhydrazones and Alkyl Boronic acids or Alkyl Trifluoroborate Salts. Reaction condi-
tions: a Sulfonylhydrazone 16 (1.0 equiv.), RB(OH)2 17 (3.0 equiv.), Cs2CO3 (3.0 equiv.) in chlorobenzene (0.1-0.2 M) heated at 100 ºC for 5 h; then pinacol 
(5.0 equiv.) was added and stirred at 100 °C for another 1 h; b In situ hydrolysis of potassium alkyltrifluoroborates: RBF3K 18 (3.0 equiv.), BSA (6.0 
equiv.), and H2O (9.0 equiv.) in chlorobenzene (0.1-0.2 M) heated at 100 ºC for 1h; c In situ formation of sulfonylhydrazone. 15 (1.0 equiv.), 
MesSO2NHNH2 (1.0 equiv.), chlorobenzene at 80 ºC for 1 h; d starting material is an E/Z mixture; e add glycol (5.0 equiv.) instead of pinacol; f 5 mmol 
scale; g diastereomeric ratio is undetermined;  See the Supplementary information for experimental details.  
 
     Scope of the Alkyl Boronic Esters With the optimal con-
ditions in hand, the robustness of this cross-coupling reaction 

was demonstrated through the preparation of over 80 sub-
strates (Figure 2, Panels A-D). The substrate scope of this 
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methodology was initially evaluated with a variety of func-
tional groups on both sulfonylhydrazone and boronic acid 
coupling partners (Figure 2, Panel A). Of note, the nitro group 
(20), iodide (21), bromide (24), silyl (25), tertiary amines (31, 
32), alkyne (37), olefins (38–41), electron-rich heterocycles 
(33, 42, 43), and electron-deficient heterocycles (34–36) are 
all compatible with this transformation. Additionally, despite 
alcohols, acids, and amines, are known coupling partners with 
sulfonylhydrazones28,29, this transformation was competent for 
a range of acidic proton-containing substrates, such as phenol 
(22), anilines (23, 28), unprotected indole (33), alkyl alcohol 
(26), carboxylic acid (27) and alkyl amines (29). Therefore, 
the relatively mild conditions and excellent chemoselectivity 
of this transformation enables access to products that would be 
either difficult or impossible to prepare via other known meth-
odologies, including organolithium-promoted 1,2-metallate 
rearrangement and transition-metal catalysis (one- or two-
electron)30.  

Panel B demonstrates the construction of C(sp3)–C(sp3) 
bond as a means to synthesize a broad range of secondary 
alkyl boronate esters. Primary (44, 46, 52, 53, 55), branched 
(45, 54) and cyclic (47, 48–51, 56) secondary boronic acids 
were successfully coupled with an aldehyde derived sulfonyl-
hydrazone to afford the desired alkyl boronate esters in good 
yields. The structure of compound 56 was unambiguously 
confirmed by single crystal X-ray analysis.  

As a testament to the efficiency of this transformation at en-
abling access to sterically-hindered linear, tertiary alkyl boro-
nate esters, 22 compounds with diverse substitution patterns 
were prepared and are delineated in Panel C (57–78). Ani-
sylacetone-derived sulfonylhydrazone was reacted with seven 
different alkyl boronic acids and alkyltrifluoroborate salts to 
access a series of tertiary alkyl boronate esters (57–61, 63, 64). 
Of particular note are the tertiary 1-adamantyl- (63) and tert-
butyl- (64) trifluoroborate salts, which served as viable cou-
pling substrates for the formation of the very hindered C(sp3)–

C(sp3) bonds. The sulfonylhydrazone derived from a more 
hindered piperidyl ketone also coupled smoothly with a varie-
ty of alkylboronic acids to deliver boronic ester products 65–
72 and 74–78. This transformation was not limited to methyl 
ketone-derived sulfonylhydrazones, and was also compatible 
with additional a-substitutions on the ketone (75, 78). In the 
case of transition-metal mediated stereospecific coupling31, the 
stereocenter on a chiral nucleophile readily racemizes via one-
electron or metal hydride pathways, thereby leading to erosion 
in stereochemical fidelity. In contrast, the mechanistic details 
of this transformation, which involve a direct transition metal-
free 1,2-metallate rearrangement on boron, enables the cou-
pling of a chiral alkyl boronic acid (73) with complete stereo-
chemical fidelity. Due to the highly sterically encumbered 
nature of some of the alkyl boronic acid substrates, ethylene 
glycol was selected as a more efficient trapping reagent (74, 
75) in lieu of pinacol. 

In Panel D, a wide range of sulfonylhydrazones derived 
from cyclic ketones were investigated (79–99). A variety of 
four- to seven-membered ring systems, including azetidine 
(79–81), cyclobutane (82–84), azaspiro[3.3]-heptane (85, 86), 
cyclopentane (87–89), pyrrolidine (90), thiane (10), tetrahy-
dropyran (91, 95), piperidine (92–94), cyclohexane (96), cy-
cloheptane (97), azabicyclo[3.3.1]nonane(98), and norbornane 
(99) underwent cross-coupling smoothly with primary and 
secondary alkyl boronic acids. The transformation exemplifies 
excellent diastereomeric specificity, with the stereochemistry 
of the starting alkyl boronic acid transferred to the product 
with complete fidelity (86, 95).  

A number of these substrates in Figure 2 were accessed us-
ing the in situ protocol from the corresponding aldehyde or 
ketone or via the in situ hydrolysis of the potassium alkyl tri-
fluoroborate salts, highlighting the synthetic practicality of this 
method. This operationally simple reaction was also scalable 
and provided comparable yields on 5 mmol scale couplings 
(93; 118, vide infra).  



 

 

Figure 3. Late-Stage Derivatization to Access Alkyl Boronic Ester Building Blocks and Enable Structure-Activity Relationship Efforts. a Reaction 
conditions: Sulfonylhydrazone 16 (1.0 equiv.), RB(OH)2 17 (3.0 equiv.), Cs2CO3 (3.0 equiv.) in chlorobenzene (0.1-0.2 M) heated at 100 ºC for 5 h; then 
pinacol (5.0 equiv.) was added and stirred at 100 °C for another 1 h; b In situ hydrolysis of potassium alkyltrifluoroborates: RBF3K 18 (3.0 equiv.), BSA (6.0 
equiv.), and H2O (9.0 equiv.) in chlorobenzene (0.1-0.2 M) heated at 100 ºC for 1h; c diastereomeric ratio is undetermined; d 5 mmol scale. See the Supple-
mentary Materials for experimental details.   

 
Synthesis of Alkyl Bioisostere-Containing Boronic Esters 

and Late-Stage Derivatization. The synthetic applicability of 
this modular cross-coupling is showcased by straightforward 
preparation of a variety of alkyl bioisosteres-containing bo-
ronic ester building blocks (Figure 3, Panel A).  Alkyl bi-
oisosteres such as cubanes, bicyclo[1.1.1]pentanes (BCPs) and 
cyclopropanes, have been shown to improve drug candidates’ 
physiochemical and pharmacokinetics properties32 and as 
such, new methods for their installation and functionalization 
are highly sought after33. To this end, boronic acids derived 
from BCP and cubane trifluoroborate salts34,35, reacted 
smoothly with linear ketone- (100–102) and aldehyde- (103) 
derived sulfonylhydrazones to afford the expected coupling 
products in good yields. Excellent results were also observed 
for the introduction of BCPs onto the C4-position of the phar-
maceutically relevant piperidine scaffold (104, 105). Moreo-
ver, a sulfonylhydrazone derived from highly sterically-
encumbered BCP ketone, also coupled readily with cyclobutyl 
boronic acid (106). In a similar vein, the 1-methyl cyclopropyl 
group, a tert-butyl bioisostere, was also compatible in the cou-
pling (107, 108)36. In contrast to one-electron approaches, 
where rapid ring opening is observed when a radical is gener-

ated adjacent to strained ring systems (such as 1-methyl cy-
clopropyl and BCPs)37, this cross-coupling demonstrates re-
markable tolerance in preserving these motifs (106–108). 

Given the prevalence of steroids as biologically active scaf-
folds, functionalization of a variety of steroids was targeted. 
Both ketone- (109–112) and boronic acid- (113) derived ste-
roidal coupling partners delivered products in synthetically 
useful yields. Among which, the resultant highly sterically 
encumberedboronic acids from estrone (109) and pregnane-
20-one (110) were trapped by ethylene glycol, while pinacol 
was used in the cases of lithocholic acidic derivatives (111–
113).  

The modularity of this approach and ability to rapidly gen-
erate a “library” of complex alkyl boronic esters from simple 
building blocks was exemplified in the late-stage functionali-
zation of nitrogen atom-rich pentoxifylline, a commonly used 
medication to treat peripheral arterial disease. As shown in 
panel C (Figure 3), a variety of primary (119–123), and sec-
ondary (116–118) alkyl motifs, including medicinally relevant 
heterocycles such as pyridine (126) and piperidine (124), were 
introduced with good to excellent yields. Notably, estrone and 
pentoxifylline, two distinct and structurally complex mole-
cules, could be linked together (122) in excellent yield.   
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Historically alkyl boronic acids have been primarily regard-
ed as versatile synthetic building blocks. However, more re-
cently, their unique biological activity has attracted medicinal 
chemists’ attention for incorporation into drug candidates38. 
One such example is the bicyclic alkyl boronic acid 128 which 
was reported by Merck and Co., Inc as a human arginase in-
hibitor to enhance cancer immunotherapy39. Notably, any 

transposition of the boronic acid motif itself would typically 
require a de novo route for each new analog during structure 
activity relationship (SAR) exploration. However, this meth-
odology now enables the late-stage of derivatization of an 
advanced boronic acid intermediate, such as 128, in a single 
step.  

 

 
Figure 4. Strategic Synthetic Application. See the Supplementary Materials for experimental details. 
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     Strategic Applications via Alkyl Boronic Acids and Es-
ters Functionalizations. As illustrated in Figure 4, the strate-
gic impact of this methodology shines in the ability to com-
bine the modular synthesis of any alkyl boronic acid with the 
power of boronic acids to serve as one of the most versatile 
functional groups. This synergistic application of two highly-
modular and complexity generating transformations opens up 
limitless possibilities for rapid synthesis of complex drug-like 
scaffolds40,41. First, as shown in Figure 4 Panel A, to address 
the limitations of transition-metal catalyzed cross-couplings to 
access hindered C(sp3)–C(sp3) bonds (vide supra), a cross-
coupling/reductive protodeboronation sequence was devel-
oped42-45. This formal alkyl-alkyl cross-coupling provides a 
modular approach to access a variety of unfuctionalized 
C(sp3)–C(sp3) bonds. Starting from ketones, these targets have 
traditionally been prepared via olefination followed by hydro-
genation (vide infra), or Grignard addition followed by deoxy-
genation. Such multistep routes typically rely on often difficult 
to access reagents and harsh conditions; while the sequential 
coupling shown in this context has combined our 2e– coupling 
with mild radical protodeboronation conditions. This modular 
and highly functional group tolerant protocol proceeds in one-
pot from alkyl sulfonylhydrazones 16 and alkyl boronic acids, 
allowing direct access to a range of C(sp3)–C(sp3) bonds, with 
varied substitution patterns and functional groups (130–136). 
Therefore, the approach represents a formal cross-coupling 
between primary- (130) or secondary (131–136) alkyl electro-
philes with either primary (132–135), secondary (130, 131), or 
tertiary (136) nucleophiles (boronic esters) and enables the 
formation of C(sp3)–C(sp3) bonds that could not be accessed 
by the state-of-the-art transition metal catalysis. 

    Additionally, versatile alkyl boronic acid intermediates (e.g. 
138) can be parlayed into diverse structures through distinct 
modes of reactivity (Figure 4, Panel B). For example, the in 
situ oxidation of boronic acid 138 led to the alcohol (139) in 
high yield. This transformation mimics the classical Grignard 
addition into ketone, but obviates the requirement of a strong 
organometallic reagent. One intriguing feature of this method-
ology is that the products are also viable coupling partners as 
well. Therefore, iterative coupling to build complex sp3 rich 
scaffolds can be realized through sequential addition of differ-
ent sulfonylhydrozones. As illustrated in Panel B(c), the in situ 
generated alkyl boronic acid 138 was treated with a second 
sulfonylhydrazone to generate two new C(sp3)–C(sp3) bonds. 
Subsequent trapping with pinacol enables isolation of the it-
erative coupling product (141) in good yield. In addition to 2e– 

functionalizations of 138, under treatment with a radical initia-
tor or oxidant, the alkylboronic acid acts as a radical progeni-
tor to generate an alkyl radical, which could then participate in 
sequential radical cross-couplings. This is showcased by sub-
sequent fluorination (140)46, photo-mediated alkynylation 
(142)47 and Minisci-type radical addition (143, 144)48,49 from the 
in situ alkyl boronic acid 138. They can also be transformed to 
the more stable trifluoroborate salt (145), which are them-
selves valuable substrates for radical transformations via pho-
to-induced electron transfer50,51. 

The synthesis of F-BCP analogs (151–153) in Panel C pro-
vides a template for a general synthetic strategy to enable the 
programmable construction of fully-substituted quaternary 
carbon centers from ubiquitous alkyl carboxylic acids. Starting 
from the carboxylic acid oxidation state, sequential installation 

of three distinct fragments via: 1) nucleophilic addition of 
alkyl lithium to Weinreb-amide 2) cross-coupling with alkyl 
boronic acid (148–150), and 3) Zweifel olefination52 of bo-
ronic esters to vinyl carbamate afforded the desired products 
(151–152) with complete control and selectivity.  

Monofluorinated myristic acid analogs such as 155, are use-
ful probes in the study of membrane topology due to high sen-
sitivity of 19F NMR53. The previous approach to 155 required a 
6-step linear synthetic sequence starting from 1,2-decanediol 
155 (Figure 4 Panel D), with several protecting group- and 
redox manipulations that were dictated by the functional group 
incompatibility of n-butyl Grignard reagents with alcohols or 
carboxylic acids. In contrast, a much simpler retrosynthetic 
template emerges using this cross-coupling strategy, wherein 
all three partners could be stitched together in one step without 
redox- or protecting group manipulations. Starting from 10-
oxocapric acid (154), cross-coupling with n-butyl boronic 
acid, followed by in situ deborylative fluorination of the in-
termediate alkyl boronic acid provides the monofluorinated 
fatty acid 155 in 47% yield. This demonstrates a real-life ex-
ample where the power of a successive cross-coupling strategy 
with broad functional group tolerance allows for rapid and 
modular generation of C(sp3)-rich scaffolds. 

The final case study (Figure 4, Panel E) is drawn from the 
patent literature wherein medicinal chemists at Taisho Phar-
maceutical were interested in the azaspiroalkanes 159 and 160 
as intermediates towards GPR119 agonists54. Although both 
analogs have a similar alkyl chain spacer, with the only differ-
ence being the identity of the azaspiro fragment, step-intensive 
de novo approaches (6–8 steps) were required to access each 
target from the its corresponding azaspiro ketones (157, 158). 
Using the cross-coupling/radical protodeboronation protocol, 
late-stage and modular installation of either of the azaspiro 
fragments could be achieved from a common intermediate, 
allowing for a streamlined and divergent route to both targets 
159 and 160. 

As showcased in Figures 2–4, starting from readily availa-
ble and bench-stable starting materials, this operationally sim-
ple method allows for the rapid and modular preparation of a 
variety of complex, C(sp3)-rich alkyl boronic esters. In addi-
tion to providing access to pharmaceutically relevant building 
blocks, this transformation harnesses the versatility of alkyl 
boron compounds to delineate a novel template that simplifies 
retrosynthetic planning and enables structure-activity relation-
ships (SAR) of lead candidates. As such, numerous applica-
tions of this methodology can be anticipated in both academia 
and industry for rapidly accessing boronic acid derivatives and 
forging C(sp3)–C(sp3) that were previously inaccessible.  
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