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ABSTRACT: Energy-structure-function (ESF) maps have emerged as a powerful tool for in silico materials design, coupling crys-

tal structure prediction techniques with property simulations to assess the potential for new candidate materials to display desirable 

properties.  Despite continuing increases to accessible computational power, however, the computational cost of acquiring an ESF 

map often remains too high to allow integration into true high-throughput virtual screening techniques.  In this paper, we propose 

the next evolution of the ESF map, which uses parallel Bayesian optimization to selectively acquire energy and property data, gen-

erating the same levels of insight at a fraction of the computational cost by limiting the expensive property calculations to a small 

fraction of the predicted crystal structures associated with a molecule.  We utilize this approach to obtain a two orders of magnitude 

speedup on a previous ESF study that focused on methane capture materials, saving over 500,000 CPUh from the original protocol.  

Through acceleration of the acquisition of ESF-type insight, we pave the way for the use of ESF maps in automated ultra-high 

throughput screening pipelines.  This greatly reduce the opportunity risk associated with the choice of system to calculate.  For ex-

ample, it will allow researchers to use ESF maps in the search for physical properties where the computational costs are currently 

just intractable, or to investigate orders of magnitude more systems for a given computational cost. 

   

Introduction 

In principle, the combination of machine learning and virtual 

computational screening is a powerful method for the discov-

ery of new functional organic materials.1,2 Computational 

techniques show great promise for the calculation of both the 

thermodynamic stability and the associated functional proper-

ties of candidate materials, but it is often difficult in practice to 

exploit these breakthroughs. A key challenge is the prohibitive 

computational expense of accurately calculating energies and 

properties for every candidate material that is to be screened, 

and it is here where machine learning may be able to provide 

significant benefit.    

One of the most challenging cases is the a priori design of 

functional molecular organic crystals with desirable materials 

properties.  Unlike their framework-based counterparts, such 

as zeolites   and MOFs,3–5 molecular crystals rarely obey sim-

ple geometric principles that can be exploited for rational de-

sign. Indeed, small changes to the molecular structure can 

have dramatic effects on the crystal packing and, hence, the 

resultant solid-state properties. Molecular crystal packing is 

often dictated by weak, competing intermolecular interactions: 

hence, the a priori design of materials with pre-determined, 

desirable properties requires a more subtle approach than for 

materials where structure and therefore function can be ‘de-

signed in’ through the use of intuitive bonding rules, the ex-

ploitation of known framework topologies, or other geometric 

principles.  

  

ESF Maps 

Energy structure function (ESF) maps are a combination of 

crystal structure prediction (CSP) with per-structure-property 

calculation which have been shown to be a powerful tool for 

the virtual screening of candidate organic molecules for desir-

able properties such as deliverable gas capacity and charge 

carrier mobility.6  In an ESF map, candidate crystal structures 

are generated using CSP methodologies, which are then 

screened virtually for a desired property, such as gas adsorp-

tion capacity6 or charge mobility.7 The resulting pairing of 

energy and function is then used as an indicative tool for the 

propensity of the molecule to express the desired properties. 

This information can be used to guide an experimental cam-

paign, which has been used to validate this ESF map ap-

proach.6,8 However, while this strategy can be effective, gen-

eration of the ESF map can be computationally intensive: for 

example, for the methane storage predictions, it too around 

800,000 CPU hours to compute an ESP map for just one of the 

molecules in the study (T2E), which was distributed approxi-

mately equally between the cost of CSP and property calcula-

tions.6  The cost of computing ESF maps grows as the proper-

ty of interest becomes more computationally expensive, and 



 

also when the ESF maps contain larger numbers of candidate 

structures; this is particularly the case for porous materials, 

where the energy range that includes all observable crystal 

structures is extended by solvent templating. Multiple compo-

nents (e.g., cocrystals) and multiple stable molecular conform-

ers also increase the dimensionality of the energy landscape 

and, so, often lead to more possible crystal structures.8,9 

 

Bayesian Optimization 

Bayesian optimization10  is a technique for evaluating a so-

called black-box function; that is to say, a function for which 

there is not access to the analytical, closed form.  

 

𝑚𝑖𝑛𝑥∈Χ 𝑓(𝑥) 

 

Bayesian optimization has become popular recently in the 

machine-learning community for the efficient tuning of the 

hyperparameters of deep learning models,11     but given its 

strengths as a global optimizer, and its powerful theoretical 

guarantees,12     it has also started to find applications in an 

increasingly diverse set of domains. 13–16 The core application 

area of Bayesian optimization is when each sample of the 

function 𝑓 is expensive to acquire, either in financial cost, 

acquisition time, or both, thus making this approach very at-

tractive for our goal of more efficiently navigating large ESF 

maps.  

Bayesian optimization has two fundamental principles. 

First, it promotes the use of a surrogate function 𝑓 to represent 

the true (unknown) function 𝑓 that is being optimized. Since 

each data point is likely to be expensive to acquire, it is im-

portant that this surrogate function has robust and well-defined 

uncertainties associated with its evaluation. In this study, this 

model is a Gaussian process,17 although other models have 

been used. 18,19  

A Gaussian process is a non-parametric machine-learning 

model, which can be described by a mean function, 𝜇 , and a 

kernel function, 𝐾(𝑥, 𝑥′): 

 

𝑝(𝒇|𝑋) =  𝒩(𝜇, 𝐾(𝑥, 𝑥′)) 

Where 𝒇 is the vector of function values 

[𝑓(𝑥1), 𝑓(𝑥2) … 𝑓(𝑥𝑁)] evaluated at input points 𝑥1,, 𝑥2 …  𝑥𝑁.  

There are many potential choices for the kernel function 

𝐾(𝑥, 𝑥′) and for this study we used a Matern kernel20: 
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where the length-scale 𝑝 is determined on a per-feature basis 

using the automatic relevance determination (ARD)21 protocol. 

We also introduce a white noise kernel, whose scale is deter-

mined as a hyperparameter of the overall Gaussian process, 

and tuned to maximize the log-likelihood of the model with 

respect to the data.  

The second major principle of Bayesian optimization is to 

balance exploration (the acquisition of new knowledge) and 

exploitation (the reliance on existing knowledge) when decid-

ing which data points to acquire.22 This takes advantage of the 

existence of the uncertainties associated with the evaluations 

of the surrogate function 𝑓 and is controlled through a con-

struct known as the acquisition function. There are a number 

of potential acquisition functions, with the most popular being 

Expected Improvement (EI),23        which aims to maximize 

the expected improvement to the optimization of collecting a 

data point. While EI is seemingly a serial methodology, there 

have been strategies implemented recently that generalize to 

the parallel setting.18,24–26         Typically, these do not scale 

well with the number of dimensions, and those which do re-

quire sparsity and incoherence properties of the feature space 

that are not present in this problem.26        Thompson sam-

pling28   solves this problem by approximating the predictive 

distribution as follows: 

 

𝑝(𝑦𝑗|𝑥𝑗 , 𝒟𝔗) =  ∫ 𝑝(𝑦𝑗|𝑥𝑗 , 𝜃)𝑝(𝜃, 𝒟𝔗) 𝑑𝜃 

 

- where 𝑝(𝜃) represents the prior distribution given a set of 

data 𝒟𝔗  - thus approximating the posterior distribution using 

Monte Carlo, based upon a single sample from 𝑝(𝜃, 𝒟𝔗). This 

method thus scales significantly better with the scale and di-

mensionality of the problem.  

 

The use of Thompson sampling for parallel Bayesian opti-

mization requires an adaptation of this methodology known as 

Parallel and Distributed Thompson Sampling (PDTS), 18     

which is described visually in the inset of Figure 1. PDTS 

extends the Thompson sampling framework to a parallel case, 

exploiting the fact that PDTS with batch size S is the same as 

running sequential Thompson Sampling S times without up-

dating the current posterior. This allows the parallel and dis-

tributed calculation of the acquisition function, ensuring that 

this method is highly scalable with increasing batch size. This 

is particularly important in the case described here, since it 

allows for evaluations to be distributed over a cluster comput-

er system, or even over a completely distributed system, such 

as IBM’s World Community Grid,29      which harnesses the 

power of volunteer compute by harvesting ‘idle’ cycles from 

volunteer devices such as laptops, small computational sys-

tems, or even mobile devices.  

 

 



 

In this study, we further extend PDTS to the multi-

objective case (MO-PDTS) without harming the scalability 

and thus the parallel performance. To achieve this, we 

assign a separate PDTS sampler to each objective, the 

acquisition functions of which are then combined in a 

single step, determining the final acquisition function for 

the overall optimization process. Under a Gaussian pro-

cess prior, this combination is equivalent to optimizing a 

single objective consisting of a weighted combination of 

objective values, with one significant advantage. Since the 

acquisition values are distinct from the models used to 

predict them in our MO-PDTS setting, each sampler can 

be built from a completely different set of descriptors. 

Under the reasonable assumption that a model built from 

specifically chosen descriptors is more likely to have 

strong predictive ability than one built from a general set 

of descriptors, the ability to separate the predictors af-

fords the user a framework that is significantly more 

transferable across a range of property types. Since the 

domain over which this optimization is being performed 

is a discrete set of structures, the ability to fully distribute 

this calculation is maintained.  
 

METHODOLOGY 

We test our methodology on three ESF maps that were calcu-

lated to evaluate the potential of three molecular materials for 

methane storage and delivery. We demonstrate how this new 

navigation workflow would have reduced the necessary com-

putation and resulting time to insight for three for three sys-

tems, T2, T2E and P2 (Figure 3) recently predicted to have 

stable crystal structures with desirable methane deliverable 

capacities. These molecules were originally chosen because 

they represent a set of awkwardly-shaped molecules. Hence, 

they have the potential to form porous structures with high 

methane capacities, but intuitive packing arguments alone 

cannot provide sufficient insight to make a priori arguments 

about the relative potential of these three molecules to perform 

well in this application.  ESF maps for this application are 

often very expensive, due to the fact that a large energy range 

of predicted crystal structures needs to be included to take into 

account the effects of solvent stabilization during crystal 

growth. Therefore, in the study of T2, P2 and T2E, crystal 

structures up to 100 kJ/mol were considered, compared to a 

more usual energy range of 10 or 15 kJ/mol for crystal struc-

ture landscapes when porous structures are not the target. 

Since the number of structures on the landscape increases rap-

idly as we move away from the global minimum, this 7-10 

fold increased energy range leads to a much larger increase in 

the number of crystal structures that must be considered. 

 

Crystal structure prediction:

Ranked by force field energies

PDTS for methane 

deliverable capacity
PDTS for lattice energy 

Next structures to 

calculate determined

Energy, structure and 

function added to ESF map 

Deliverable methane 

capacity calculated (e.g. 
Grand Canonical Monte 

Carlo Simulation)

Lattice energy calculated 

(e.g. DFT)

Figure 2 A flow-chart representing the utilization of MO-PDTS for accelerating 

ESF map construction.  It should be noted that in some cases, a sufficiently accu-
rate value for  lattice energy is calculated at the initial generation stage, and in 

these cases, calculation of lattice energy is not necessary, but a second calculation 

at a higher level may be optionally employed.  
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Figure 1 A graphical illustration of the intelligent navigation framework 

 



 

 

 

MO-PDTS Optimization Details 

 

We posed the problem as a multi-objective optimization over 

both energy and methane deliverable capacity, thus searching 

for the ESF maps for low-energy, highly porous, crystalline 

forms. For the purposes of this study, we are testing the meth-

odology as if we do not have the final energies that we require, 

mimicking the case where higher level energies are required 

than were used in the structure search itself. We use the calcu-

lated force field energies as a proxy for these higher level en-

ergies.  We do not consider the expense for these energy cal-

culations when calculating savings, and so this study repre-

sents a lower bound on the potential for this method.  

To demonstrate the modular nature of this approach, the two 

considered properties were modelled with different features – 

28 geometrically defined features for porosity, and the NIST 

JARVIS30    descriptor set for the lattice energy. Since 

JARVIS is a very high dimensional set of features with signif-

icant information redundancy, we use a principle component 

analysis to reduce the number of features, while retaining 99% 

of the variance. This resulted in the feature dimensions for the 

systems shown in Table 1. 

 

 

 

 

 

 Table 1 Dimensionality of JARVIS descriptors, once reduced 

using PCA to retain 99% of original variance 

To quantify the acceleration achieved, we compare our 
results here to the calculation of full ESF maps, previ-
ously reported by some of the authors6.; that is, we ac-
curately computed both lattice energies and methane 
deliverable capacities for all structures on the three 
associated ESF maps. Since ESF maps are used as indi-
cators of the potential for a molecule to behave in a de-
sirable way, we based our metric of success on the first 
encounter time for the global minimum on the ESF 
landscape; that is to say, the structure that has the best 
combination of low energy and high methane delivera-
ble capacity. For this study, we weighted the contribu-

tion to this score from the energy term and the property 
term equally: 

𝑆 = 𝑎𝐸𝑖 + 𝑏𝑃𝑖  

Where 𝑎, 𝑏 are weighting coefficients to energy and 
property respectively, and in this study are equal and 
normalized to remove units and ensure the scales of the 
two properties are comparable.  We note that for a 
more conservative approach, it is possible to weight the 
energy term more highly — that is, to increase the like-
lihood that the identified structure is thermodynamical-
ly accessible in the laboratory.  Figure 4 shows that, in 
general, structures with high deliverable methane ca-
pacity have a high lattice energy.  Thus, we expect that 
the number of structures which have both desirable 
methane deliverable capacity and low lattice energy to 
be small; further emphasising the need for an efficient, 
accelerated approach, and also the importance of the 
multi-objective nature of our search strategy.   

The MO-PDTS was seeded with a novel initialization 
strategy based upon k-means, inspired by the genera-
tion of inducing points for sparse Gaussian processes. In 

System Number of 

Dimensions 

T2 45 

P2 59 

T2E 28 

Figure 4 Chemical structures of the three molecules in this study 

Figure 3 Estimated density plot for the normalized lattice energy and 

the normalized methane deliverable capacity for the T2 system, with 

values normalized over the entire dataset between 0,1 for methane 

capacity (-1,0 for energy).  Upper plot focuses on crystal packings 

with high methane deliverable capacity; lower plot highlights systems 
with low lattice energies. Most of the low-energy systems have poor 

methane deliverable capacity, and the largest high methane capacity 

systems are relatively high in lattice energy; that is, these two proper-

ties are, broadly speaking, orthogonal 



 

this methodology, k centroids were determined over 
input descriptor (feature) space using the k-means al-
gorithm. The structures that minimized the distance to 
these centroids were chosen to initialize the search; 
that is, we selected the nearest structure to each of the 
k-centroids. Under a uniform distribution, this is equiv-
alent to a Latin Hypercube due to the spherical repul-
sion of k-means. However, under a non-uniform distri-
bution, we believe that this initialization captures the 
underlying data structure better, leading to increased 
model stability throughout the optimization process. 
MO-PDTS was then run for 10 epochs, at each of which 
10 structures were selected, and properties calculated.  
In order to account for the difference in magnitudes of 
the two objectives, the values for each were scaled for 
each objective based upon the twenty selected struc-
tures from which the search was seeded. 

Simulation Details 

For each ESF map, candidate crystal structures were 
generated using a quasi-random sampling procedure, as 
implemented in the Global Lattice Energy Explorer 
software.31      Molecules were first sketched in 
ChemDraw, followed by an initial molecular-geometry 
optimization with the COMPASS force field,32       as im-
plemented in the Materials Studio software package.33        
Force-field-optimized molecular geometries were fur-
ther refined by re-optimization using density functional 
theory (DFT) with the M06-2X     exchange-correlation 
functional and 6-311G** basis set. Molecular DFT calcu-
lations were performed with the Gaussian-09 soft-
ware.35       These molecular geometries were held rigid 
throughout crystal structure generation and lattice en-
ergy minimization. 
 
Lattice energy calculations were performed with an 
anisotropic atom–atom potential using DMACRYS.36    
Electrostatic interactions were modelled using an atom-
ic multipole description of the molecular charge distri-
bution (up to hexadecapole on all atoms) from the 
B3LYP/6-31G**-calculated charge density using a dis-
tributed multipole analysis.37    Atom–atom repulsion 
and dispersion interactions were modelled using a re-

vised Williams intermolecular potential.38 

 

Methane deliverable capacity was predicted for each 
structure at a temperature of 298 K and a pressure of 65 
bar. All of the adsorption predictions were performed 
using grand-canonical Monte Carlo (GCMC) simulations 
involving a 50,000-cycle equilibration period and a 
50,000-cycle production run. 
 
 
 
 
 
 
 

Results 

The ESF maps for methane deliverable capacity for 
T2, P2 and T2E contained ~5.5k, ~10k, and ~30k 
structures, respectively. To ensure reproducibility, 
and to display the robustness of our approach, the 
intelligent navigation workflow was tested for each 
system with 10 replicate experiments, each of 
which were seeded with different initial structures 
chosen from the landscape. Using these replicate 
experiments, we were able to use the bootstrap 
methodology to calculate confidence intervals for 
the convergence of each of the three systems with 
respect to ideal behaviour. All of the samplers con-
verge on an ideal solution before 100 samples, or 
10 epochs, have been completed. Since the execu-
tions are completed in parallel, when we calculate 
the first encounter time, we must only base this 
evaluation on the epoch in which the global mini-
mum was discovered; that is, there is no advantage 

Figure 5 Performance of the MO-PDTS sampler for the three systems studied.  

Confidence intervals are generated using the bootstrap methodology from 10 

replicate experiments seeded with different candidate structures 



 

to being discovered halfway through a batch.   
 

Table 2shows the distribution of performance over 
the 10 repeats, with the best performance being 
achieved by the T2 system, which shows a mean 
first encounter time of 14.3 samples, or within 2 
completed epochs. Both P2 and T2E have a mean 
first encounter time of around 4 epochs. This can be 
rationalized by the full ESF maps for these systems: 
when normalized lattice energy (range -1,0) is plot-
ted against normalized methane deliverable capaci-
ty (range 0,1) –(Error! Reference source not 
found.), there are more structures in the bottom 
right of the map for T2 than for other systems, re-
lating to structures that have both a high methane 
deliverable capacity and a low lattice energy. T2 
also exhibits superior performance in our normal-
ized objectives, with a score of circa 1.6, as com-
pared to P2’s score of circa 1.5 indicating that there 
is a more favourable trade-off between low energy 
and high methane capacity structures.  

 

Table 2 The average performance achieved over 10 replicates for the three 
systems studied. Mean Encounter Time is the mean sample number at 
which the minimum is discovered, and Mean Epochs Required is the sam-
pling epoch in which this sample fell. 

 

Comparison to Greedy Sampling 

An alternative approach to the reduction in compu-
tational cost for the exploration of large ESF maps 
(or compound libraries) is to use a greedy sampling 
method. For this class of search algorithm, a model 
is built from existing data, and used to predict val-
ues for data that has not yet been acquired. At each 
epoch of sampling, the candidate that has the larg-
est predicted value is selected (or the smallest val-
ue, for minimisation purposes) and added to the 
training set, from which the model is then refitted. 
Indeed, most traditional QSPR methods use this 
methodology, either implicitly or explicitly, for ac-
celerated materials discovery.  

 

It can be seen from Figure 5 that in all cases the 
MO-PDTS sampler locates the ideal solution, and 
significantly outperforms the baseline random 
sampler.  For T2E and T2 systems, there is a clear 
advantage over the greedy sampler, indicating that 
these are systems where there are competing local 
maxima, and demonstrating the advantage of the 
more sophisticated MO-PDTS method. In the case of 
P2, the performances are similar, indicating that 

there is a single clear structure-property relation-

ship which can be exploited by the greedy sampler.  

 

 The dangers of a greedy sampler are clearly illus-
trated in the case of T2E, and shown diagrammati-
cally in Figure 6 .  It can be seen that the greedy 
sampler identifies a reasonably well performing 
structure property relationship, and concentrates 
its sampling in this area.  Unfortunately, this struc-
ture-property relationship does not indicate the 
existence of a second ‘peak’ of activity, of higher 
value.  The balance of exploration and exploitation 
in MO-PDTS avoids this situation, and samples in a 
more intelligent and robust manner.  The perfor-
mance curves in Figure 5 indicate that there is little 
‘cost’ to adopting this more sophisticated strategy 
over a more traditional, greedy approach when the 
structure-property landscape is simple, but signifi-
cant benefits when it is not.  

 

Computational Savings 

We have seen that the proposed intelligent naviga-
tion approach to ESF maps yields considerable 
computational savings. The exact details are shown 
in Table 3. In all cases, we see greater than 2 orders 
of magnitude improvement in the ‘time to insight’, 

Structure Mean Encounter 
Time 

Mean Epochs Re-
quired 

T2E 39.0 4 

T2 14.3 2 

P2 34.0 4 

Figure 6 A comparison of the MO-PDTS and greedy sampling 

strategies. Candidate structures are colored by their combined 

energy-structure score, and no color indicates the structure was 

not sampled. It can be see for the T2E case, that the greedy 
sampler gets stuck in a local maxima, but that PDTS is able to 

locate the global maximum 



 

which results in hundreds of thousands of saved 
CPU hours. 

 

Table 3 Computational Savings as a fraction of the potential ESF Map for the 

systems T2, T2E and P2. *Computational saving is based upon averaging the 

cost of each calculation over the entire set 

For the entire campaign, 544,955 hours were saved 
using this technique; for context, this saving is simi-
lar in magnitude to a small grant on a supercom-
puter system. For many functional properties, this 
high level of computational acceleration could 
transform ESF maps from a proof-of-concept 
demonstration to an important, routinely-used 
practical tool for in silico high throughput screen-
ing, particularly  for physical properties that are 
expensive to compute. It is important to note that 
we assessed these savings based solely on the sav-
ings in property evaluations. In the case where 
higher level energies are required for lattice energy 
rankings, e.g., by DFT, the savings would be even 
greater. Even only considering the property calcula-
tion savings demonstrated in this study, these 
benchmark figures suggest that this technique 
might allow a user to screen orders of magnitude 
more candidates for the same computational ex-
pense. As with all accelerations of this kind, there is 
not the same completeness guarantee that is possi-
ble by calculating the entire ESF map. However, we 
believe that this is more than compensated by the 
huge increase in throughput and the ability to eval-
uate a much broader range of candidate molecular 
structures. In many cases, the use of this technique 
may be the difference between an ESF map for a 
particular property being calculated and being 
deemed too expensive. This represents a significant 
practical advance in the ESF methodology, allowing 
us to tackle new functional properties that have 
hitherto been deemed impossible because of their 
high computational cost. 

Conclusions 

We present an important evolution in the ESF map-
ping technique for the a priori prediction of materi-
als properties: a smart navigator for ESF maps 
based upon multi-objective, parallel and distributed 
Thompson sampling (MO-PDTS). The scalability of 
this method adds negligable overhead to the com-
putation of the ESF-map; by selectively sampling 
the map, and only requiring the use of expensive 
function calculations for a fraction of the structures, 

we are able to make significant computational sav-
ings. For the three structures here studied, we were 
able to save well over half a million CPU hours.  This 
has two key advantages – first, we significantly re-
duce the opportunity risk for the selection of sys-
tems for ESF map calculation; that is, did I choose 
the right molecule to spend this resource on?  Sec-
ond, through the reduction of computational re-
quirements, we extend the power of the ESF map 
approach both to researchers who are not able to 
access the necessary computational resources and 
also to expensive property calculations for large, 
complex ESF maps that are simply intractable to-
day.  
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