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Predicting Elemental Boiling Points from First Principles†

Jan-Michael Mewes∗a,b

The normal boiling point (NBP) is a fundamental property of liquids and marks the intersection of the
Gibb’s free energies of the liquid and the gas phase at ambient pressure. In this work, we present the
first comprehensive demonstration of an approach to calculate the boiling point of atomic liquids from
first-principles molecular-dynamics simulations. To this end, we combine thermodynamic integration
(TDI) and perturbation theory (TPT) with a density-functional theory (DFT) Hamiltonian to deliver
converged absolute liquid free energies and entropies. Linear extrapolation to the intersection with
the gas phase provides NBPs, which are corrected for systematic over- or under-binding of the
DFT Hamiltonian, thereby eliminating any strong dependency on the density functional. Through
fine-tuning of the TDI, we reduced the walltime from weeks to about a day per element (10−20k
core-hours), which enables extensive testing for B, Al, Na, K, Ca, Sr, Ba, Mn, Cu, Xe and Hg. This
demonstrates the excellent performance and particular robustness of the approach. With a mean
absolute deviation (MAD) of less than 2% from experimental references, and very similar accuracy
for liquid entropies (MAD 2.3 J/(mol*K), 2% relative), the overall deviation is several times smaller
than the variation between literature values for several elements.

1 Introduction

The computational prediction and study of phase transitions is an
active field of research.1 The lion’s share of this research focuses
on transitions between condensed phases like melting or solid-
solid transitions,2–7 as these are most relevant for real-world ap-
plications as, e.g., two polymorphs of the same substance can
have significantly different properties. Perhaps because of this
general focus, the prediction of NBPs from first-principle simu-
lations is a sparsely populated field of research. The only other
published study known to the author that demonstrates a calcu-
lation of NBPs largely based on a first-principles methodology is
by Nakai and coworkers.8 For this, they introduce the so-called
harmonic solvation model (HSM) for calculating liquid free ener-
gies with a polarizable-continuum model (PCM). The HSM differs
from the standard approach for thermochemical contributions in
the treatment of translational and rotational degrees of freedom.
In the HSM, they are replaced with additional vibrational modes
resulting from freezing the PCM cavity in the frequency calcu-
lations. Comparing liquid free energies obtained with the HSM
based on high-level CCSD(T) energies and an MP2 Hessian to free
energies of the gas phase obtained with the standard ideal-gas
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model, they obtain very reasonable normal boiling points (NBPs)
of 109.7◦C and 66.9◦C for water and ethanol, respectively. How-
ever, although the molecules themselves are described with a first-
principles methodology, the description of intermolecular inter-
actions in this approach is entirely based on a PCM with highly
parametrized non-electrostatic contributions (SMD).9 Most other
approaches for the prediction of NBPs are entirely empirical data-
driven methods that rely on machine-learning and quantitative
structure-property relationships (QSPR).10–12 As such, they can
often be related to the group-contributions method of Joback
and Reid.13 Although some of these protocols make use of first-
principles calculations to refine the predictions,11 there have
been no attempts based solely on first-principles methods.

In general, the calculation of phase-transition temperatures
through computer simulations can be carried out in two ways: (i)
So-called direct approaches attempt to simulate the phase tran-
sition either in time (e.g. void method or cluster melting),14,15

or in space (e.g. interface pinning).7 Such direct approaches are
complicated by super-heating and super-cooling. As a result, all
the methods mentioned above are attempts to avoid, mitigate,
or minimize these phenomena. (ii) So-called indirect approaches
circumvent these problems through calculating Gibbs free ener-
gies of the respective phases separately, and subsequently, locate
the point of intersection, i.e. where ∆G = 0. This not only elim-
inates the problems with super-heating and cooling, but allows
to exploit these phenomena to achieve faster equilibration, e.g.,
in solid simulations well above the melting point,16 or here in
liquid simulations above the boiling point. Free-energy based ap-
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proaches may be further divided into two groups: On the one
hand, there are approaches based on relative free energies (iia)
(e.g. the pseudo-supercritical path method)17, and on the other,
there are approaches which attempt the calculation of absolute
free energies (iib). For a more detailed overview and discussion
of these approaches, the interested reader is referred to refs. 18
and 6. Specifically concerning boiling points, direct approaches
(i) as well as those focusing on free-energy differences (iia) are
problematic due to the drastic differences between the condensed
and gaseous phases in terms of volume. Hence, we approach the
problem by calculating absolute free energies.

One approach for the calculation of absolute free energies
of liquids was recently presented by Kresse and coworkers,19

and employed to study the melting of silicon and magnesia
(MgO).19,20 We have further developed this approach to include
spin-orbit relativistic effects to explore the physicochemical prop-
erties and aggregation state of the super-heavy element Cn.16

Since Cn has been inferred to be highly volatile,21 it was nec-
essary to include the NBP. For this purpose, the herein presented
concept was developed. This work describes the adaptation of
this approach to efficiently calculate NBPs, as well as the com-
prehensive testing for a representative set of elements, including
insulators, semiconductors, and metals.

An important part of the approach is a linear scaling of the cal-
culated transition temperatures based on the ratio between the
cohesive energy calculated at the same level as the free energy,
and a high-level reference, i.e., λ = Eref

coh/EDFT
coh . This so-called λ -

scaling increases the accuracy and robustness of the approach,
in particular concerning the choice of the density-functional ap-
proximation (DFA). While the article introducing this correction
makes use of a high-level theoretical CCSD(T) reference,16 this
work mostly employs experimental references since such high-
level calculations are not readily available for all elements con-
sidered here. Although this introduces a certain degree of em-
piricism, we argue that very similar results would be obtained by
using high-level theoretical values, as is demonstrated for Xe.

Before we move to the main article, it bears pointing out that
to our surprise, we found the literature to be peppered with con-
flicting values for the NBPs of common elements, e.g., K (1.5%
variation), B (8.7% variation) and Ba (17% variation). This and
related uncertainties have been studied in detail by Zhang and
coworkers,22 who employed neural networks to rectify conflicts
between several major reference books.23–27 Exploiting, e.g., the
relation between the enthalpy of evaporation and the NBP, they
eventually suggested the most probable and consistent values. We
will follow their suggestions in this work, which are consistent
with our calculations in all but one example. In addition to the
sources considered by Zhang and coworkers, we also include val-
ues from the prominent Hollemann-Wiberg.28

2 Approach

The normal boiling point (NBP) is defined as the intersection of
the Gibbs free energies

G(T, p) =U(T )+ pV −T S(T ) (1)
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Fig. 1 Plot of the Gibbs free energy of the solid, liquid and gas phases
as a function of the temperature to illustrate the employed approach.

of the liquid and gas phase at their respective equilibrium volume
at normal pressure (1013 mBar). To locate this point, we calcu-
late the absolute free energy of the liquid Gl at its equilibrium vol-
ume (pV = 0) in the classical limit using the Born-Oppenheimer
approximation at a given simulation temperature Tsim through
thermodynamic integration (TDI). We integrate from the analyt-
ically known non-interacting reference (with the internal energy
U0 and G0 from eq. (7) in the SI)† to the interacting liquid (with
U1 and G1), which are coupled by the interaction strength λ

G1 = G0 +∆G0−1 = G0 +
∫ 1

0
dλ 〈U1(R)−U0(R)〉λ . (2)

TDI is followed by several steps of thermodynamic perturbation
theory (TPT) as detailed in the SI† to achieve high numerical pre-
cision in terms of plane-wave cut-offs and k-point convergence, as
well as to include spin-orbit coupling. Adding these contributions
to G1 provides the final Gl .

The integral in eq. (2) is evaluated numerically with an n point
Gauss-Lobatto rule, for which it has to be transformed as detailed
in the SI† to adapt the limits of the integral. This transformation is
also used to change the placement of quadrature points by intro-
ducing κ = [0...1[. While a detailed explanation is provided in the
SI,† the important aspect is that κ and n govern the balance be-
tween accuracy and computation effort. The higher κ and n, the
more simulations have to be conducted with very small forces,
which – depending to some extend on the system – becomes te-
dious at λ < 0.01 and strongly increases the demands in human
and computer time. A central task of this work is thus to find
values for κ and n that are sufficiently accurate yet efficient. All
liquid simulations employ 64-atom configurations (Xe: 61) since
previous studies have shown this number to provide converged
free energies compared to larger cells with > 200 atoms.16,19,20

Having calculated Gl at Tsim, the temperature-dependence due
to the liquid entropy is approximated linearly, i.e., Sl = (U l −
Gl)/Tsim, where U l is the average of kinetic and potential energy
from a canonical MD simulation (λ = 1). This allows extrapola-
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tion to the intersection with the free energy of the non-interacting
gas phase Gg as illustrated in Fig. 1. Gg is calculated analytically
using eq. (7) in the SI.† In addition to linear extrapolation of Gl ,
we also test an interpolation between up to three values calcu-
lated at different temperatures.

Finally, the resulting NBP is corrected for any systematic devia-
tion between the DFA and a high-level theoretical or experimen-
tal reference using λ -scaling. To rationalize the λ -scaling, it is
instructive to consider that it was initially conceived as an adap-
tation of upper limit of the integral over the interaction-strength
λ in eq. (2) to match the high-level reference. Only later, it was
recognized and proven numerically as well as analytically that
for a classical system in the Born-Oppenheimer approximation,
λ -scaling is equivalent to simply scaling the (transition) tempera-
ture,16 which is much simpler to implement. Following the same
logic, λ -scaling can be used to correct the temperature of any
(DFT-)MD simulation, or in other words, match the ratio between
available kinetic energy and the depth of the potential energy
wells to that of the reference. At the corrected temperature, the
accessible configuration space of the DFT Hamiltonian is more
similar to that of the reference Hamiltonian at the original tem-
perature, such that properties like densities and (classical) en-
tropies are improved systematically.

For the metallic liquids considered here, an additional compli-
cation arises through the electronic entropy Sel, which is signifi-
cant at elevated temperature of the NBP (up to 10% of the total S,
cf. Tab. 5 in SI)†, but is not included in the classical S. To address
this consistently, we include Sel in the internal energy through
Fermi-smearing of the orbital populations,29 which corresponds
to neglecting the non-classical temperature dependence of G. Ex-
ploratory calculations have shown that this only leads to small
changes of a few K in the calculated NBPs and is thus acceptable.
However, when comparing the calculated liquid entropies to ex-
perimental references, including Sel in S distinctly improves the
agreement (cf. Fig. 3).

3 Results and Discussion

3.1 Detailed Considerations for Xe, K and B

We begin the discussion with a detailed look at Xe, K, and B
to establish the capabilities and limitations of the approach for
a small but diverse group of elements. In contrast to all other
systems considered here, Xe atoms are weakly interacting, and
their bulk forms an insulator, like most noble-gas solids.30 As a
result of their weakly interacting nature, noble-gas liquids are
often considered as prototypical Lenard-Jones fluids. Although
this suggests that an atom-pairwise potential may be suitable, it
has recently been shown that the melting point of Xe deviates
from the experiment by as much as 20 K if three-body effects
are omitted.31 We employ the PBE and revPBE density-functional
approximations (DFAs),32–34 both of which are combined with
Grimme’s atom-pairwise D3 correction with the default Becke-
Johnson damping (in the following just D3).35,36 Hence, three-
body effects are only taken into account in the DFT part of the
calculation. Nevertheless, PBE-D3 accurately recovers the experi-
mental cohesive energy of −0.164 eV of solid fcc Xe. Accordingly,

the scaling factor λ = Eexp/Ecalc is unity. In contrast, revPBE-D3
over-binds slightly with −0.191 eV, resulting in a λ of 0.859.

We calculated free energies of liquid Xe at the experimental
NBP of 165 K with both DFAs. With PBE-D3, we moreover explore
the parameters for the integration, as well as increasing the simu-
lation temperature Tsim to 200 K. The results of these calculations
are compiled in Tab. 2, while a breakdown of the liquid free en-
ergy is provided in Tab. 1. Inspection shows that all calculations
for Xe are in excellent agreement with the experimental NBP of
165 K. The results are moreover virtually identical for both sim-
ulation temperatures, and there is excellent agreement between
the entropy-based linear extrapolation at each Tsim with a direct
interpolation between the free energies calculated at 165 K and
200 K. The over-binding of revPBE-D3 evident from λ < 1 causes
the liquid to be too stable and, in turn, the calculated NBP to be
too high by 30 K. However, this systematic deviation is quanti-
tatively compensated by λ -scaling. To eliminate the empiricism
introduced by this scaling, the experimental cohesive energy in
the calculation of λ can be replaced with a high-level theoret-
ical value of −0.166 eV, which has been derived from coupled-
cluster calculations and includes zero-point vibrational energies
(ZPVE).37 This results in a slight change of the λ s to 1.017 (PBE-
D3) and 0.874 (revPBE-D3), and, accordingly, also the calculated
NBPs are very similar ranging from 169.2−170.5 K.

This brings us to another aspect, namely the influence of ZPVE,

Table 1 Breakdown of the contributions to the free energy for the liquids
of Xe, K, and B from TDI and TPT. Following the element, the employed
density-functional approximation (DFA), simulation temperature Tsim and
density ρ are given. The column ∆G provides the contribution of each
step, while "total G" is the running sum. "TPT A//B" indicates that
TPT was used to correct the free-energy obtained from TDI with method
B to that of method A. Θ is the electronic degeneracy of the atoms in
the gas phase. The last row provides the free energy of the gas phase at
the simulation temperature. All values are given in eV/atom.

step, cut-off, k-grid ∆G total G U T S
Xenon, PBE-D3, 165 K, ρ = 2.73 g/ccm
non-interacting liquid −0.1657 0.0213 0.1870
TDI, 150, Γ −0.0775 −0.2432 −0.1470 0.0962
TPT, 300, Γ 0.0065 −0.2367 −0.1405 0.0962
TPT, 300, 23 −0.0001 −0.2368 −0.1406 0.0962
gas phase, Θ = 1 −0.2334 0.0213 0.2547
Potassium, PBEsol, 1000 K, ρ = 0.696 g/ccm
non-interacting liquid −1.1004 0.1293 1.2297
TDI, 250, Γ −0.6329 −1.7332 −0.6392 1.1128
TPT, 500, Γ −0.0003 −1.7335 −0.6397 1.1128
TPT, 500, 23 0.0024 −1.7311 −0.6371 1.1128
gas phase, Θ = 2 −1.7076 0.1293 1.8369
Boron, PBE-D3, 4000 K, ρ = 2.04 g/ccm
non-interacting liquid −3.6408 0.5170 4.1578
TDI, 350, 23 −4.8894 −8.5302 −4.8288 3.7015
TPT, 600, 23 −0.0072 −8.5375 −4.8360 3.7015
TPT, 600, 33 0.0009 −8.5365 −4.8350 3.7015
TPT, PBE//PBE-D3 0.1799 −8.3567 −4.6552 3.7015
TPT, SCAN//PBE-D3 0.2689 −8.2676 −4.5662 3.7015
gas phase, Θ = 6 −7.7326 0.5170 8.2496
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which is relatively large for Xe due to its small cohesive en-
ergy. Using the ZPVE-uncorrected high-level value from ref. 37
of 0.172 eV (or back-correcting the experimental value) distinctly
increases the λ s to 1.053 (PBE-D3) and 0.905 (revPBE-D3), and
significantly worsens the agreement with the experiment as evi-
dent from the NBPs of 175.5-176 K. This suggests that implicitly
including ZPVE via the cohesive energy corrects for the absence
of ZPE in our otherwise entirely classical approach. Thus, we will
use ZPVE-uncorrected λ s in the following. In any case, the rela-
tive size of the ZPVE is distinctly smaller in all further examples
(cf. Tab. III in ref. 38).

Potassium is a metallic liquid with a NBP of 1047 K23–25

as suggested by Zhang and coworkers,22 while other sources
give values of 1026 K,28 1032 K,26,27 and 1040 K.39 Although
gaseous K atoms exhibit a strong pairwise interaction in the
form of a covalent bond of 0.55 eV, the resulting virial correc-
tion (eq. (9) in SI with σ = 3.496 Å and ε = 0.55 eV)† merely
amounts to 1.2 meV/atom at 1000 K, and thus hardly affects
the NBP (∆T ≈ 1 K). Another result of this strong interaction is
that potassium vapor is known to consist of about 5% dimers at
the NBP.39,40 However, exploring the impact of dimerization us-
ing the Quantum-Cluster Equilibrium (QCE) approach as imple-
mented in the Peacemaker program41,42 revealed that this has
negligible influence on the free energy at 1000 K (< 1 meV). The
reason is that the decrease in entropy just cancels the stabilizing
effects on internal energy and volume (pV ). For reference, the
electronic double-degeneracy (Θ = 2) of K atoms stabilizes the
gas by about 60 meV, decreasing the BP by about 75 K.

Solid K crystallizes in a body-centred cubic (bcc) lattice, for
which PBEsol provides excellent agreement with the experimen-
tal cohesive energy (λ = 1.002). We will thus use PBEsol in
most calculations, and conduct additional tests with PBE and the
dispersion-corrected PBE-D3. To test the consistency of the ex-
trapolation scheme for this metallic system, we conducted free-
energy calculations for liquid K at temperatures of 923 K (650◦C),
1000 K, 1023 K (750◦C) and 1123 K (850◦C). For the calcula-
tions at 1023 K, we tested three different values for κ (0.75,
0.70 and 0.60). Finally, to establish the sensitivity concerning
the employed volume, we conducted additional calculations at
1023 K with the cell-dimensions varied by ±2%, corresponding
to ∆V ≈ 6% and 〈p〉= 0.8/−0.5 kBar.

The results for K are compiled in Tab. 2, while a detailed break-
down of the contributions to the free energy for the PBEsol calcu-
lation at 1000 K is provided in Tab. 1. Inspection shows that first
and foremost, all results obtained with PBEsol are consistent and
virtually independent of the tested parameters. Interpolation be-
tween the free energies calculated with PBEsol at 923 K, 1023 K,
and 1123 K provides virtually the same NBP as the entropy-based
extrapolation. The calculations at different volumes afford such
consistent NBPs that it is questionable if the differences are sig-
nificant considering the statistical uncertainties of 1-2 K. Also, the
parameters for the numerical integration do not exert any signifi-
cant influence in the calculated NBP, showing that a value of 0.6
is sufficient. Considering only the results of PBEsol suggests that
the NBP of K is 1032 K, in agreement with the CRC Handbook
and the Tab. of Physical and Chemical Constants (better known

Table 2 Calculated and experimental normal boiling points (NBPs) of Xe,
K and B. Experimental data taken from Holleman-Wiberg as well as from
Zhang and coworkers with their suggestions set in bold.22,28 Calculated
data is given for various functionals (DFAs), simulation temperatures
Tsim, integration parameters (κ and n), pressures, as well as with and
without λ -scaling. "A//B" indicates that TPT was used to calculate the
free energy with method A for configurations obtained with method B.
The reference cohesive energy used to determine λ is given in eV/atom
after the name of the respective element.43 For Xe and K, we also provide
NBPs obtained by interpolation between the calculations at 165 K and
200 K (Xe), and 923 K, 1023 K, and 1123 K (K).

NBP /K
DFA, Tsim, n, κ λ(EDFT

coh ) direct λ -scaled
Xenon, Eexp

coh =−0.164 lit. 165.2 K
PBE-D3, 165, 7, 0.75 1.000 166.9 167.0
PBE-D3, 200, 7, 0.75 1.000 166.5 166.5
PBE-D3, interpolated, 1.000 166.6 166.7

revPBE-D3, 165, 8, 0.60 0.859 195.2 167.7
Potassium, Eexp

coh =−0.934 lit. 1026, 1032, 1047 K
PBEsol, 1023, 7, 0.60 1.002 1028 1030
PBEsol, 1023, 7, 0.70 1.002 1027 1029
PBEsol, 1023, 7, 0.75 1.002 1028 1030

PBEsol, 923, 7, 0.75 1.002 1027 1029
PBEsol, 1123, 7, 0.75 1.002 1029 1031

PBEsol, interpolated 1.002 1030 1032
PBEsol, 1023, +0.8 kBar 1.002 1027 1028
PBEsol, 1023, −0.5 kBar 1.002 1028 1030

PBE, 1000, 7, 0.60 1.073 968.5 1039
PBE-D3, 1000, 7, 0.60 0.945 1064 1006
PBEsol, 1000, 7, 0.60 1.002 1029 1030

PBEsol//PBE-D3, 1000 1.002 1026 1028
Boron, Eexp

coh =−5.920 lit. 3931, 4203, 4273 K
PBE-D3, 4000, 6, 0.60 0.916 4643 4252
PBE-D3, 4000, 8, 0.60 0.916 4646 4255

PBE-D3, 4000, 10, 0.60 0.916 4649 4258
PBE//PBE-D3, 4000 0.928 4505 4179

SCAN//PBE-D3, 4000 0.932 4433 4132

as “Kaye and Laby”),26,27 whereas the value of 1047 K suggested
by Zhang and coworkers (without any discussion of data to sup-
port it) appears too high at first glance. However, the deviation
of the two values is only about 1.5%, and the results of our calcu-
lations vary slightly between the different DFAs.

Compared to PBEsol, PBE-D3 slightly over-binds solid K as ev-
ident from λ = 0.945, whereas plain PBE slightly under-binds,
leading to a λ of 1.073. The results for the NBP before λ -scaling
are as one would expect: The over-binding PBE-D3 stabilizes the
liquid over the gas phase, moving the calculated NBP to higher
temperatures (1064 K), while the under-binding PBE provides a
lower NBP of 969 K. Interestingly, λ -scaling not only reduces the
overall differences but also inverts the sign of the deviation. The
scaled NBP of PBE-D3 lies significantly below the PBEsol result
at 1006 K, whereas the scaled NBP of PBE lies (just) above it at
1039 K. This over-compensation is presumably a result of using
the cohesive energy of the solid at 0 K as the basis for λ -scaling,
whereas the NBP is depends on the stability of the liquid. Since
differences between the DFAs are certainly more pronounced in
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the highly ordered solid than in the disordered liquid, it is to
be expected that the correction slightly over-shoots. The notably
larger deviation in the scaled NBP of PBE-D3 could moreover be
related to certain shortcomings of the D3 correction for densely
packed alkaline metals, and it would be interesting to explore
how the improved D4 scheme performs here.44 Finally, to demon-
strate TPT between DFAs, we recalculate 10 configurations from
the PBE-D3 simulation with PBEsol. The resulting correction of
Gl of 33.3 meV moves the NBP to 1028 K, and thus very close to
the consistent PBEsol result.

Bulk boron is a covalently bound semiconductor. The litera-
ture values of its NBP vary from 3931 K25,28 over 4203 K23,24

to 4273 K.26,27 The gas phase consists of isolated boron atoms
with Θ = 6. To determine the scaling factor λ , we employ α-
rhombohedral boron (12 atoms/unit cell) instead of the ther-
modynamically most stable β -rhombohedral phase (105-108
atoms/unit-cell)45 to avoid dealing with partial occupations.
Since the energy difference between the two phases is very
small,45 this should not lead to any significant differences. For α-
boron, PBE, PBE-D3 and SCAN provide good agreement with the
experimental cohesive energy as evident from the respective λ s of
0.928, 0.919 and 0.932. We calculate the free energy at 4000 K
with PBE-D3 and subsequently use TPT to include also SCAN and
plain PBE. The calculated NBPs range from 4132 K (SCAN//PBE-
D3) over 4179 K (PBE//PBE-D3) to 4258 K (PBE-D3). As such,
they are in good agreement (< 2%) with the experimental value
of 4203 K suggested by Zhang and coworkers,22 as well as with
the value of 4273 K from refs. 26 and 27. In contrast, the value
of 3931 K reported in refs. 25 and 28 is too low by > 5%, i.e.,
more than two times the overall MAD.

To elucidate the influence of the number of quadrature points
on the accuracy of the NBP, we conducted the numerical integra-
tion for B with 6, 8, and 10 points. Since increasing the number
of points includes calculations for increasingly small λ values of
0.0047 (6 points), 0.0010 (8 points) and 0.0003 (10 points), this
improves the sampling of the at 4000 K particularly important
repulsive part of the configuration space (cf. Fig. 4 in SI)†. How-
ever, there is only small decrease of the value of the integral by
≈ 3 meV/atom from 6 to 8 points, and again by the same amount
from 8 to 10 points. Although these deviations are an order of
magnitude larger than the statistical error, they translate to a to-
tal ∆T of merely 6 K (6 to 10 points), or 0.1% of the NBP.

To summarize, the two most relevant results from this detailed
look at Xe, K and B are (i) the approach is robust concerning
simulation temperature, the volume, and also the choice of the
DFA, and (ii) TDI conducted with 6-8 quadrature points and κ =

0.60 is sufficiently accurate for the determination of NBPs. This
last point is of particular practical relevance since these settings
lead to much more stable and efficient simulations compared to
the previously used settings. This allowed us to test the approach
for many more elements, which we will discuss in the following.

3.2 Additional Elements

We conducted additional calculations for sodium (Na), aluminum
(Al), calcium (Ca), strontium (Sr), barium (Ba), manganese

(Mn), and copper (Cu), and mercury (Hg). Their gas phases con-
sist of isolated atoms with Θ = 1 (Ca, Sr, Ba, Hg), 2 (Na, Cu) or 6
(B, Al, Mn). Cu and Ba moreover exhibit low-lying electronically
excited states which are significantly populated near their NBPs.
This causes a stabilization of the gas phase by 23 meV/atom for
Cu and 32 meV/atom for Ba at the NBP (energy differences rela-
tive to ref. 39), which in turn significantly affects the calculated
NBP. We take this into account pragmatically, i.e., by using frac-
tional degeneracies of 2.19 and 1.18 for Cu and Ba, which quan-
titatively restores the agreement with the reference values at and
around the NBP. A notable interaction between the atoms in the
gas phase exists only in case of Na (ε = 0.75 eV, σ = 2.76 Å),46 Al
(ε = 1.66 eV, σ = 2.41 Å),47 and Cu (ε = 2.03 eV, σ = 1.98 Å).48

However, similar to K, neither of these experience a significant
contribution from the two-body term at the NBP (Na −0.79 meV,
Al −0.49 meV, Cu −0.37 meV). The gas phases of Na and perhaps
also that of Al and Cu contain some dimers, but as already dis-
cussed for K, their influence on the free energy is negligible at the
NBP.

For Na, Al, Ca, Sr, Cu, and Hg, the variation between the experi-
mental references is small, and the agreement with the calculated
NBPs very good, as evident from Fig. 2 and Tab. 3. The mean ab-
solute deviation (MAD) over all elements with respect to the liter-
ature values suggested by Zhang and coworkers is just 1.38% and
the mean deviation (MD) −0.25% (this value uses the PBE-D3 re-
sults for the alkaline-earth metals, PBE for Mn and PBEsol for K
and Na). The results further demonstrate how λ -scaling improves
the predicted NBP, in particular, if there exists significant over- or
under-binding at the DFT level, i.e., when λ deviates from unity
(cf. B, Ca/PBEsol, Sr, Hg). As a result, the final λ -scaled NBPs
calculated with various DFAs are consistent despite substantial
differences in the DFA description of the respective bulk solids (cf.
PBE/PBE-D3/PBEsol for the alkaline-earth metals). For Na, we
included a free energy calculated at a simulation temperature of
just 400 K, i.e., just above the melting point as a hardship case
for the entropy-based extrapolation. Despite the large ∆T , the
resulting NBP is very reasonable at 1000 K.

Mn and Ba stand out from the other results. For Mn, the
variation in the experimental NBP is not too large with a range
of 2235− 2373 K (6%),22 whereas the variation between the
calculated NBPs is unusually large. We first employed RPBE
and subsequently also SCAN because they provide a much bet-
ter agreement for the cohesive energy of α-Mn (distorted bcc
with 51 atoms/cell) than PBE, as evident from the respective λ s
of 0.916 (RPBE), 0.980 (SCAN), and 0.751 (PBE). This strong
over-binding is particularly surprising since PBE tends to under-
binding for all other elements considered here and in general.38

However, despite their good agreement for the cohesive energy,
the NBPs calculated with RPBE and, in particular, with SCAN fall
significantly short of the range of experimental values with rel-
ative deviations of 5% and 9% (with respect to the lower value
of 2235 K), i.e., several times the MAD. Surprisingly, the calcula-
tion with PBE (conducted at an increased temperature of 3200 K
to compensate for the strong over-binding) provides an NBP of
2197 K with a relative deviation of just 2%. Although further
calculations would be required to draw any ultimate conclusions,
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Fig. 2 Plot of the range of calculated values (orange and red, all λ -
scaled) against the range of literature values (light and dark blue) as
shown in Tabs. 2 and 3. The MAD over all elements with respect to the
literature values suggested by Zhang and coworkers is just 1.38% and the
MD −0.25% (based on the PBE-D3 results for the alkaline-earth metals,
PBE for Mn and PBEsol for K and Na).

these results suggest the good agreement of RPBE and SCAN for
the cohesive energy is the result of a fortuitous error compensa-
tion between the energy of the bulk and the energy of the isolated
atom. Despite its stark over-binding of the solid, PBE appears to
provide a consistent description of the solid and liquid, such that
λ -scaling based on the cohesive energy of the solid does provide
a reasonable NBP. We speculate that these issues are the result of
the challenging electronic structure of this d-block element with
several partially occupied shells. This may impact the calculation
of the isolated atom as well as the bulk material and is evident
already from the surprisingly strong over-binding of PBE. While
it would certainly be interesting to see how an inclusion of non-
local exchange and electron-correlation via TPT would change the
picture, such a focused investigation of a single element is beyond
the scope of this general work.

For Ba, the NBPs provided in the literature show a large vari-
ation of almost 17%. While the CRC Handbook, as well as the
Tables for Physical and Chemical Constants, provide values of
2118−2173 K,26,27 other sources provide a distinctly lower value
of 1910−1950 K,23–25 or even 1810 K in Holleman-Wiberg.28.
Zhang and coworkers suggested the value of 1910 K based on a

Table 3 Calculated and experimental NBPs for the second set of elements.
Experimental data taken from Holleman-Wiberg as well as from Zhang
and coworkers with their suggestions set in bold.22,28 Calculated data
is given for various functionals (DFAs), simulation temperatures Tsim, as
well as with and without λ -scaling. All calculations are conducted in
the scalar-relativistic (SR) limit except for Ba and Hg, for which (also)
spin-orbit (SO) relativistic results are presented.

NBP /K
DFA, Tsim, n, κ λ(EDFT

coh ) direct λ -scaled
Sodium, Eexp

coh =−1.113 lit. 1153−1163 K
PBEsol, 1000, 7, 0.60 0.958 1184 1135
PBEsol, 400, 7, 0.70 0.958 1043 1000

Aluminum, Eexp
coh =−3.390 lit. 2743−2793 K

PBE, 2800, 7, 0.60 0.994 2783 2766
Calcium, Eexp

coh =−1.840 lit. 1757−1760 K
PBE, 1800, 7, 0.60 0.961 1854 1781

PBE-D3, 1800, 6, 0.60 0.855 2050 1753
PBEsol, 1800, 8, 0.60 0.871 2037 1774

Strontium, Eexp
coh =−1.720 lit. 1653−1657 K

PBE, 1570, 7, 0.50 1.071 1586 1698
PBE-D3, 1800, 7, 0.60 0.951 1775 1688
PBEsol, 1800, 7, 0.60 0.952 1781 1697

Barium, Eexp
coh =−1.720 lit. 1810,28 1910−2173 K

SR-PBE, 2000, 7, 0.60 1.013 1963 1988
SO-PBE, 2000, 7, 0.60 1.010 1967 1986
PBE-D3, 2000, 7, 0.60 0.915 2144 1961

Manganese, Eexp
coh =−2.920 lit. 2235−2373 K

PBE, 3200, 7, 0.60 0.751 2924 2197
RPBE, 2400, 8, 0.60 0.916 2309 2115
SCAN, 2400, 8, 0.60 0.980 2082 2041

Copper, Eexp
coh =−3.490 lit. 2833−2868 K

PBE, 2700, 7, 0.60 1.002 2836 2841
PBE, 3000, 7, 0.60 1.002 2851 2857

Mercury, Eexp
coh =−0.670 lit. 629.7−630.2 K

SO-PBEsol, 700, 8, 0.60 1.076 591.8 637.0
SR-PBEsol, 700, 8, 0.60 1.227 521.7 640.0

prediction of their neural network of 1600 K. However, they have
not considered ref. 28 in their study,22 which provides a value
much closer to their estimate. Based on the accurate prediction
of the NBPs of Ca and Sr with a very systematic over-estimation
of just 2−3%, we conclude that our approach is as accurate for
Ba, for which it affords an NBP 1961−1988 K. Correcting for
the systematic deviation observed for Ca and Sr yields a value
of ≈ 1920 K, which is in excellent agreement with refs. 23,24 and
25, strongly suggesting this value to be correct.

For the heavy metal Hg an accurate account of relativistic ef-
fects is essential for accurate properties. Here, the incremental
nature of the approach not only enables the inclusion of compu-
tationally very demanding spin-orbit coupling (SOC), but also an
in-depth analysis of their influence on the physicochemical prop-
erties, which we will demonstrate in the following.

The gas phase of Hg consists of weakly interacting atoms with
Θ = 1. Spin-orbit relativistic (SO) PBEsol provides a cohesive en-
ergy of−0.622 eV (rhombohedral phase) in reasonable agreement
with the experiment, yielding a λ of 1.076 (for a detailed discus-
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sion of the experimentally lowest structure, see ref. 49). In the
scalar-relativistic approximation, i.e., without explicitly account-
ing for SOC in the valence space, the calculated cohesive energy
is distinctly smaller with −0.546 eV resulting in a λ of 1.227. The
SO-relativistic calculation provides a NBP of 636.9 K in excellent
agreement with the experimental value of 630.2 K. Conducting
all calculations in the SR approximation and including SOC only
via λ -scaling leads to a NBP of 640.1 K (521.7 K before scaling),
and thus an only slightly larger deviation from the experiment.
This shows that SOC maybe included via λ -scaling without loos-
ing much accuracy. Note that SOC also has a significant impact on
the volume, leading to a significant increase of the density from
11.6 g/ccm (SR) to 12.3 g/ccm (SO). However, as already ob-
served for K, the influence onto the calculated NBP is negligible
with 0.1 K.

3.3 Liquid Entropies

In addition to calculating and comparing NBPs, the calculated liq-
uid entropies may be compared directly to experimental ones.39

For this, we obtain experimental entropies by linear interpolation
between the four closest values provided in ref. 39 at the cor-
rected effective temperature (Tcor = λTsim), and plot them against
the calculated entropies in Fig. 3. Concerning the calculated val-
ues, we include the purely classical entropy S used for the linear
extrapolation, as well as the sum of classical and electronic en-
tropy S+Sel. Inspection of Fig. 3 reveals a picture very consistent
with that of the NBPs. In cases where the calculated NBP agrees
well with the experimental data, also the entropies are in good
agreement, which is perhaps most evident from the example of
Mn. It is the element with the largest deviation of the calculated
NBP between DFAs, which is reflected in the entropies. Simi-
lar to the NBP, SCAN shows a substantial deviation, while PBE
agrees reasonably well. The other example with a notable de-
viation is Ba, and illustrates the disadvantage of a comparison
to “experimental” entropies. The problem the entropy is not di-
rectly accessible experimentally, but modeled to reproduce vari-
ous experimental data under certain assumptions, which may be
flawed. The only source for the liquid entropy of Ba uses an NBP
of 2119 K,39 which is – as previously discussed – most certainly
too high. This presumably explains why the deviation of the cal-
culated entropies is more significant for Ba than for Ca and Sr. For
all other elements for which experimental data is available (all
except Xe), the agreement between calculated and experimental
entropies is excellent. Statistical analysis of the shown data (one
calculation per element, using PBE-D3 for Ca, Sr and Ba, PBEsol
for K, and PBE for Mn) confirms that including the electronic
entropy systematically improves the agreement with the experi-
mental data for both temperatures. For the experimental value
at the effective temperature, including Sel reduces the MD from
−5.7 J/(K*mol) (−4.7%) to 1.1 J/(K*mol) (0.7%) and the MAD
from 5.8 J/(K*mol) (4.9%) to 2.3 J/(K*mol) (2.0%). In conclu-
sion, this comparison shows that the approach can also provide
very accurate liquid entropies with MD below 1%, and moreover,
that their accuracy strongly correlates with that of the predicted
NBPs.

Fig. 3 Calculated liquid entropies excluding (yellow) and including (or-
ange) the electronic entropy compared to experimental values for the
corrected temperature (λTsim, given on the x-axis, blue). All values given
in J/(mol*K). Experimental values are obtained by linear interpolation
between the four closest values from ref. 39.

4 Summary and Conclusion
We have presented and evaluated an approach for the prediction
of normal boiling points (NBPs) and entropies of atomic liquids
from first principles. The approach efficiently combines thermo-
dynamic integration (TDI) from a non-interacting reference with
thermodynamic perturbation theory (TPT) based on plane-wave
DFT to provide numerically converged liquid free energies at rea-
sonable computational cost. The incremental scheme not only
allows the consideration of computationally demanding effects,
like explicit spin-orbit coupling as demonstrated for Hg, but can
moreover reveal the impact of each contributions on the NBP as
well as other physicochemical properties. Such an analysis re-
vealed that the electronic degeneracy and low-lying excited states
of the atoms in the gas phase significantly affect the calculated
NBPs, whereas conbtributions from two-body interactions — di-
rect as well as indirect via dimer formation — are negligible for
the studied elements.

Calculating the NBPs of a representative set of elements in-
cluding insulators (Xe), semiconductors (B), alkaline (Na, K),
alkaline-earth (Ca, Sr, Ba), transition (Cu, Mn, Hg) and main-
group metals (Al), we demonstrated the approach to be robust
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with respect the choice of the density-functional approximation
(DFA), and very accurate with an MAD < 2.0%. The only signifi-
cant deviation between tested DFAs was observed for Mn, which
we traced back to the challenging electronic structure of the atom.
For B and Ba, the variation between the literature values of the
NBP is several times lager (9% and 17%) than the overall MAD
of the calculated values. Most notably is Ba, where the deviation
of the calculated NBPs is moreover very systematic for the lighter
congeners. Accounting for this, our estimate of 1920 K is in ex-
cellent agreement with the the literature value of 1910 K,22–25

questioning the accuracy of other values of 1810 K and well above
2000 K reported elsewhere.26–28

The robustness of the calculated NBPs regarding the choice of
the DFA is a result of λ -scaling. The fact that this works so well
for the NBP of the studied elements can be rationalized by consid-
ering that for their liquid (and solid) to gas transitions, all inter-
atomic forces have to be overcome. As a result, fine details of
the potential shape (width, asymptotic behavior etc.) exert only
a small influence, whereas the potential depth is crucial. Since λ

scaling is based on the relation of the cohesive energies, it very
efficiently corrects for the potential depth. As a result, any λ -
scaled method or DFA that affords a reasonable liquid structure
(and a good account of the electronic entropy) can provide accu-
rate NBPs. Interestingly, as we have learned form other ongoing
projects, an entirely different pictures emerges for the melting
point, which does strongly depend on the shape and particularly
the width of the potential.16 This will be explored in more detail
in forthcoming projects.

Besides the NBPs, also calculated liquid entropies were shown
to be in excellent agreement with reference values,39 while their
accuracy correlated with that of the NBPs. The mean devia-
tion (MD) from the references over all examples is just 2.0% or
1.1 J/(mol*K). Since the calculation of the NBPs requires the free-
energy of the gas phase, whose calculation becomes tedious if
several low-lying electronic states and/or molecular species are
present, this direct comparison of entropies expands the scope of
systems for which the approach can be tested.

One limitation of the presented approach in its current form is
that it is only applicable to structurally simple systems that con-
stitute a global minimum on the potential-energy surface, which
essentially excludes molecular systems. The underlying prob-
lem is that a presence of complex structure conflicts with the
reversibility-criterion of the TDI, since covalent bonds are read-
ily broken and reformed at low interacting strength. We are cur-
rently testing a modification of this approach which overcomes
this limitation.

5 Computational Details
All DFT calculations have been carried out with VASP 5.4.4.50–53

The core region is modeled using the projector-augmented wave
(PAW) approach of Joubert and Kresse using the softest potential
available in the VASP library.54,55 For Cn and Og, the PAW
potentials and D3 parameters introduced in ref. 56 were used.
Calculations with the SCAN functional take into account non-
spherical contributions from the PAW potentials (LASPH = TRUE)
through TPT. The volume calculations were conducted in the

Γ-point approximation, or, if there was a significant non-linear
influence, with a 23k-point grid (B, Al and Cu). Thermodynamic
integration was conducted with the lower energy cut-off shown
in Tab. 6 in the Γ-point approximation, except for B and Hg,
where a 23 grid was employed. Thermostating was done with
a Nosé-Hoover thermostat with SMASS = 2-4, SCF convergence
(ECONV) reduced to 10−4, and PREC = normal. The timestep
was chosen for each case based on atomic mass and simulation
temperature, and further reduced if necessary to ensure accurate
thermostating. For the integration point closest to the non-
interacting limit, the timestep is reduced significantly to stabilize
the simulation numerically. In few cases with particularly small
λ values, it was required to switch to a Langevin thermostat
with a very large friction coefficient (LANGEVIN_GAMMA = 8+). In
general, each integration point was sampled with at least about
10000 steps, of which the first 2000 are considered equilibration.
The length of each simulation was chosen such that the statistical
error of the NBP is below 0.2%. For thermodynamic perturbation
theory, several single-point calculations are conducted for 10-20
statistically independent snapshots taken from the trajectory with
λ = 1; one with the same settings as the simulation, one with
the increased cut-off, precision and convergence critera (PREC =
accurate, ECONV = 10−6), and finally one with all settings from
above as well as a finer k-point grid as specified in Tab. 6. The
contributions from these steps are shown for Xe, K and B in Tab. 1.
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6 Supporting Information

In addition to the information presented on the following pages,
we provide the spreadsheets (in open-document format) used to
conduct all calculations starting from the raw data (simulation
averages) to the final boiling points.

6.1 Calculation of the Liquid Free Energy

The free energy of the liquid is calculated through TDI from a
non-interacting reference (ideal gas). For this purpose the differ-
ence of the internal energies is integrated along the a coupling
parameter λ

∆G0−1 =
∫ 1

0
dλ 〈U1(R)−U0(R)〉λ , (3)

which relates the liquid with U1 to the ideal gas with U0 at the
same T and V by scaling the forces, and added to the free energy
of the ideal gas (eqs. 7 and 8). This integral is evaluated us-
ing numerical quadrature in the form of a n-point Gauss-Lobatto
rule, in principle requiring one NVT simulation for each λ . Al-
though most of these simulations are straightforward, the ones
very close to the ideal-gas limit (λ � 0.01 or < 1% of the DFT
forces) are tedious, whereas and the simulation for the end point
λ = 0 is hardly possible with a PAW+DFT methodology. This is
because close-encounters between the (almost) non-interacting
atoms lead to singularity in the energy resulting in numerical in-
stabilities in errors in the simulations, partly resulting from over-
lapping core-electrons. An approach to circumvent these issues
was devised and implemented by Kresse and coworkers and will
be used here with slight modifications.19

The approach is based on substituting λ in eq. (3) with λ (x) =
( x+1

2 )1/(1−k), which yields

∆G =
1

2(1−κ)

∫ 1

−1
f (λ (x))λ (x)κ dx . (4)

Note that this introduces an explicit dependency on λ in the in-
tegrand, which not only dampens the impact of the technically
challenging calculations near the non-interacting limit (cf. effec-
tive weights in Fig. 4), but also completely eliminates the point
for λ = 0. The substitution also introduces a parameter κ to influ-
ence the mapping of the quadrature points between the domains.
While a value close to 0 retains the original (equidistant) spacing
of the Gauss-Lobatto quadrature, choosing κ close to 1 increases
the density of quadrature points in the λ domain in the region
close to λ = 0, where the slope of f (λ ) is the largest (cf. Fig. 4).
While Kresse and coworkers suggest κ > 0.8, we demonstrated
here that at least for the calculation of NBPs, much smaller values
suffice. This dramatically reduces the computational effort as it
allows to avoid the technically challenging simulations near the
non-interacting limit almost entirely.

Since it is nevertheless prohibitively expensive to carry out the
TDI at a converged level of theory, it is instead combined with
thermodynamic perturbation theory (TPT)

∆G1−2 =−
1
β

ln〈e−β [U2(R)−U1(R)]〉1 , (5)
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Fig. 4 Effective weight plotted against the λ s (logarithmic scale) at
which simulations have to be conducted for a 6-point Gauss-Lobatto
rule for several different choices of κ. The interaction-strength the the
most “non-interacting” simulation (min) is given in the legend in %. For
reference, the evolution of the value of the integrand taken from B at
4000 K with PBE-D3 is shown in blue on the secondary axis. The effective
weight is (wiλ

κ )/(2(1−κ)) where wi is the weight from the respective
Gauss-Lobatto rule.

where the index after the angle bracket indicates that the dif-
ference ∆U1−2 is evaluated for configurations generated by H1.
Thus, by exploiting the linear shift of a refined Hamiltonian (e.g.
increased cut-off, k-points or even another functional), TPT can
often provide a very good estimate for the respective free-energy
difference from as few as 5-20 single-point calculations. Instead
of the exact equation, we use the second-order cumulant expan-
sion

∆G1−2 ≈ 〈∆U〉1−
β

2
〈(∆U−〈∆U〉)2〉1 , (6)

which is sufficiently accurate since already the second-order term
is � 1 meV/atom in all cases, and can thus be neglected. Us-
ing TPT, all final results are converged to within ≈ 2 meV/atom,
which translates into a error in the NBP of about 2 K.

6.2 Calculation of the Gaseous Free Energy
The free energy of the gas phase is calculated for the non-
interacting (ideal) gas at its equilibrium volume. For a given
atomic degeneracy Θ, volume V , temperature T , particle number
N and mass m this is

Gid =− 1
β

ln(Z(T,V,N)) , with (7)

Z(T,V,N) =
(ΘV )N

Λ3NN!
and Λ = h

√
β

2πm
. (8)

For the gas phase, this equation is solved using the Stirling ap-
proximation, which is sufficiently accurate since we are consider-
ing an arbitrary number of particles. The same equation is also
used to calculate the free energy of the non-interacting reference
for the liquid (at the equilibrium volume of the liquid). Here,
however, the Stirling approximation is no longer suitable since
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the number of particles is finite (61 or 64). Moreover, since – in
contrast to the real atoms in the gas phase – the non-interacting
reference for the liquid consists of hypothetical point-masses, they
are not degenerate.

To validate the accuracy of the non-interacting model, we eval-
uate the first virial (two-body) correction for each of the exam-
ples assuming a Lennard-Jones (12,6) potential with the param-
eters derived from first-principles calculations for the respective
dimers. This leads to the following integral

Gg
LJ = Gg

id−
2πN2

V β

∫ [
r2e
−4εβ

[
( σ

r )
12−( σ

r )
6
]
−1
]

dr (9)

which can be evaluated as described in ref. 43. This provides
generally very small corrections (≤ 1.0 meV/atom), which in turn
have a negligible impact on the calculated boiling points (≤ 1 K).

7 Determination of Equilibrium Volumes
To calculate the equilibrium volume, the 61 or 64-atom super-
cells are simulated with the default settings (cf. Tab. 6) at several
slightly different volumes until the statistical average of the pres-
sure is converged to within 0.3 kBar. For about 5-20 equidistant
snapshots from the trajectory, single-point calculations are con-
ducted with the converged settings to obtain a correction for the
influence of Pulay stress, a finer k-point grid, and increased nu-
merical precision (as well as spin-orbit coupling in case of Ba, Hg,
Cn and Og). The corrected pressures at each point are fitted with
a second-order polynomial and interpolated to the x-intersection
(p = 0). Final volumes are confirmed during the TDI, where the
simulation with λ = 1 and subsequent TPT provides the residual
pressures given in Tab. 4, along with the calculated atomic vol-
umes and corresponding densities.

Table 4 Calculated equilibrium volumes (in Å3/atom), corresponding den-
sities ρ (in g/cm3), and residual pressures (in kBar) for all studied el-
ements. Volumes of Al, Cu, B, and Cn are calculated with 23k-point
grid in the simulations, all others employ the Γ-point approximation and
include the effect of more k-points perturbatively.

element/DFA/Tsim V/atom ρ residual p
Xe/PBE-D3/165 K 79.8 2.73 0.1
Xe/PBE-D3/200 K 85.8 2.54 0.1
Xe/revPBE-D3/165 K 79.8 2.73 −0.1
K/PBE/1000 K 90.42 0.718 0.0
K/PBEsol/1000 K 93.22 0.696 0.3
K/PBE-D3/1000 K 101.9 0.637 0.1
B/PBE-D3/4000 K 8.820 2.04 −0.2
Al/PBE/2800 K 23.62 1.90 0.1
Na/PBEsol/1000 K 46.24 0.825 0.2
Ca/PBE/1800 K 52.51 1.27 −0.5
Ca/PBED3/1800 K 47.63 1.40 0.2
Ca/PBEsol/1800 K 49.22 1.35 −0.2
Sr/PBE/1570 K 66.92 2.17 0.0
Sr/PBED3/1800 K 64.00 2.27 −0.2
Sr/PBEsol/1800 K 65.55 2.22 −0.7
Ba/PBE/2000 K 81.25 2.81 0.0
Ba/PBED3/2000 K 73.40 3.11 0.1
Mn/PBE/3200 K 12.75 7.16 0.5
Mn/RPBE/2400 K 12.49 7.30 −0.4
Mn/SCAN/2400 K 11.58 7.89 −1.2
Cu/PBE/2400 K 12.49 7.30 −0.4
Hg/SO-PBEsol/700 K 25.86 12.9 −0.1
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Table 5 Calculated free energies, internal energies (in eV/atom), as well
as classical and electronic entropies (in meV/[atom*K]) for the liquid
phase of all studied elements.

DFA, Tsim, Teff G U S Sel
Xenon

PBE-D3, 165, 165 −0.2368 −0.1406 0.5831 0.0
Sodium

PBEsol, 1000, 959 −1.8091 −0.8605 0.9486 0.0112
Potassium

PBE, 1000, 1073 −1.6822 −0.5685 1.1137 0.0200
PBE-D3, 1000, 945 −1.7617 −0.6803 1.0822 0.0182
PBEsol, 1000, 1002 −1.7311 −0.6371 1.0940 0.0188

Boron
PBE-D3, 4000, 3664 −8.5304 −4.8373 0.9233 0.0248
Aluminum

PBE, 2800, 2782 −5.5099 −2.5913 1.0488 0.0327
Calcium

PBE, 1800, 1729 −3.2486 −1.3322 1.0644 0.0658
PBE-D3, 1800, 1540 −3.4238 −1.5414 1.0327 0.0657
PBEsol, 1800, 1568 −3.4256 −1.5298 1.0458 0.0656
PBEsol, 2100, 1829 −3.7680 −1.4770 1.0909 0.0755

Strontium
PBE, 1570, 1680 −2.9156 −1.1088 1.1509 0.0621

PBE-D3, 1800, 1712 −3.3560 −1.2506 1.1697 0.0707
PBEsol, 1800, 1714 −3.3618 −1.2305 1.1841 0.0708

Barium
PBE, 2000, 2026 −3.9186 −1.2899 1.3144 0.1088

PBE-D3, 2000, 1830 −4.0781 −1.4942 1.2920 0.1020
Manganese

PBE, 3200, 2402 −6.3447 −2.9140 1.0721 0.1307
RPBE, 2400, 2198 −4.7648 −2.3975 0.9852 0.0987
SCAN, 2400, 2342 −4.4795 −2.1522 0.9697 0.0833

Copper
PBE, 2700, 2705 −5.5273 −2.5896 1.0881 0.0175
PBE, 3000, 3006 −5.8769 −2.5039 1.1243 0.0220

Mercury
SO-PBEsol, 700, 753 −1.0814 −0.3609 1.0279 0.0045

Table 6 Settings used for the DFT-MD calculations in the thermodynamic
integration and perturbation theory. The reduced timestep used in the
simulations near the non-interaction limit is given in parenthesis.

element cut-off k-grid timestep [fs]
Xe (165 K, 200 K) 200→ 400 Γ→ 23 8 (4)

K (923 K, 1023 K, 1123 K) 200→ 400 Γ→ 33 8 (1)
K (1000 K) 250→ 500 Γ→ 23 4 (1)

Na (1000 K) 250→ 500 Γ→ 23 4 (1)
B (4000 K) 350→ 600 23→ 33 1 (0.25)
Al (2800 K) 400→ 600 Γ→ 23 2 (1)

Ca (1800 K, 2100 K) 200→ 400 Γ→ 23 4 (1)
Sr (1800 K) 200→ 400 Γ→ 23 4 (1, 0.5)
Ba (2000 K) 200→ 400 Γ→ 23 5 (0.5)

Cu (2700 K, 3000 K) 350→ 600 Γ→ 23 2 (1)
Mn (2400 K) 300→ 600 Γ→ 23 2 (1)
Mn (3200 K) 300→ 600 Γ→ 23 1.5 (0.3)

SR/SO Hg (700 K) 250→ 500 23→ 33 12 (3)
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