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Abstract

A population balance model (PBM) is developed for unseeded batch crystallization,

with temperature-cycling strategies to control the crystal size distribution. The model

is able to predict the evolution of crystal size distributions of crystallizing paracetamol

from ethanol solutions considering the characteristics of primary nucleation, secondary

nucleation, growth, dissolution, and disappearance of crystals. Process analytical tech-

nology (PAT) tools were employed to collect solute concentration data and crystal size
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distribution data. This model employs a boundary condition to describe the disappear-

ance of crystals in temperature-cycling strategies where the temperature is increased

and decreased repeatedly. As a result, the obtained model can describe the evolution of

crystal size distribution when repetition of cooling and heating is carried out. Moreover,

this model can be applied to investigate phenomena that are challenging to explain with

experimental data alone, thereby we can gain insight and optimize the operation of the

process.

Introduction

Separation and purification are critical steps in the production of many chemical products.

Among numerous separation processes, crystallization is used extensively in the food, chemi-

cal, and pharmaceutical industries. Crystallization can be operated in a batch or continuous

manner according to the manufacturing scale or change of product grades. Batch crystalliza-

tion processes are often used because they have many advantages such as simple facilities,

low installation cost, and flexibility in a product change.1

Crystallization is mainly affected by the supersaturation in the solution. In order to

control product characteristics and the crystallization process, process variables are manipu-

lated such as the supersaturation, system temperature, pH of the solution, system pressure,

amount of anti-solvent, and so on. Among various ways to control the supersaturation, cool-

ing crystallization can be performed by adjusting only a single control variable, temperature,

without an addition of another component.2

Temperature cycling has been employed in batch crystallization processes to control many

crystal properties such as crystal size and distribution,3–6 shape,7,8 polymorphic form,9,10 and

chirality of crystals.11,12 Cycling the temperature leads to dissolution and recrystallization,

so that the system can eliminate small undesired crystals. As reported by Wu et al.,13 a

temperature-cycling strategy can be classified into the following three categories: 1) contin-

uous dissolution in equipment external to the crystallizer, 2) sequential heating and cooling
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in the crystallizer, and 3) simultaneous heating and cooling at different locations in a single

crystallizer. Among these three categories, the second approach is used here because of the

simplicity in the experimental setup.

Among various crystal qualities, a uniform crystal size and narrow size distribution im-

prove the efficiency of filtration in commercial processes.2,14 Mathematical modeling can

reduce the experimental efforts and time needed to optimize temperature profiles for obtain-

ing a desired crystal size distribution. Such models should include nucleation and growth of

crystals, and also may include agglomeration, breakage, and attrition. However, the main

mechanisms that affect the final crystal product qualities are nucleation and growth.2 More-

over, the dissolution and disappearance of crystals take place as well when the temperature-

cycling strategy is employed. Hence, the model must describe the disappearance of crystals

as well as nucleation, growth, and dissolution in order to model attributes of crystallization

by temperature cycling. In this study, a full population balance model (PBM) is used to

describe the crystallization in a batch process. While many studies have examined primary

nucleation, secondary nucleation and growth,14–18 few modeling studies involving disappear-

ance of crystals are found in the literature.3,19,20

Most PBMs cannot be solved analytically except for very simple cases. Therefore, various

techniques have been employed to solve the PBM numerically, which include method of

moments,21–23 method of characteristics,24,25 finite-element method (FEM),26 finite-volume

method (FVM),27–29 and the conservation element/solution element (CE/SE).17,30 Qamar

et al.31 compares various numerical methods to solve the PBM, and the CE/SE scheme

demonstrated “much better performance” among tested approaches.

The present study aims to develop and validate a mathematical model of unseeded

crystallization of paracetamol from an ethanolic solution in a batch process employing a

temperature-cycling strategy. The model handles kinetics of primary and secondary nu-

cleation, growth and dissolution of crystals, and disappearance of fines. Experiments that

apply temperature-cycling strategies were carried out to estimate kinetic parameters. Each
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experiment employed process analytical technology (PAT) tools such as focused beam re-

flectance measurement (FBRM) and attenuated total reflectance-Fourier transform infrared

(ATR-FTIR) spectroscopy to measure properties of particles and solution, respectively. The

final crystal size distribution was analyzed by an ex situ method, sieve analysis after washing

and drying crystals.

Modeling

Population Balance Model

The one-dimensional population balance model can describe the well-mixed batch crystal-

lization system.14,17 If agglomeration and breakage of crystals can be ignored, the population

balance equation can be expressed as

∂n

∂t
+G

∂n

∂L
= 0 (1)

where n represents the number density of crystals [#/(µm·kg of solvent)], G denotes the

growth rate of crystals [µm/min], t is the time [min], and L is the characteristic crystal

size [µm]. Equation (1) is based on assumptions that the crystal shape does not depend on

the crystal size and the growth rate is size-independent and without dispersion. The initial

condition and the boundary condition for batch crystallization from a clear solution are

n(t, L = 0) =
B

G
, S ≥ 1 (2)

n(t = 0, L) = n0 (3)

where B denotes the nucleation rate [#/(min·kg of solvent)], n0 is the initial number density

for each crystal size domain, and S is the supersaturation, which is defined as the concen-
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tration in the solution, c, over the saturated concentration at the system temperature, cs.

New nuclei are assumed to appear only in the smallest size domain. In the initial condition,

Equation (3), where G is independent of L, n0 is zero in the entire domain from 0 to Lmax

for unseeded crystallization since this process begins with a clear solution.

The nucleation rate, B, can be divided into primary and secondary nucleation. Primary

nucleation is the mechanism in which crystals are formed from a clear solution (i.e. does not

have any crystals). On the other hand, secondary nucleation models the mechanism where

formation of new nuclei is caused by existing crystals.32

According to classical nucleation theory (CNT), the homogeneous primary nucleation

rate is given by the surface free energy change of nuclei and the free energy change on the

phase transformation.

B1 =


kb1 exp

(
− 16πν3σ3

3k3T 3(lnS)2

)
, S ≥ 1

0, S < 1

(4)

where kb1 is a pre-exponential rate constant [#/(min·kg solvent)], ν is the volume of one

solute molecule [m3], σ is the interfacial energy between crystal and solution [J/m2], k is the

Boltzmann constant [m2kg/s2/K], T is the system temperature [K]. In this paper, kb1 and σ

are handled as parameters, T and S are provided by experimental measurements, and v is

calculated with the molecular weight and density of the solid solute.

In this study, the secondary nucleation rate, B2, is described by an empirical model:

B2 =


kb2 (S − 1)αmβ

s , S ≥ 1

0, S < 1

(5)

where kb2 is the pre-exponential rate constant [#/(min·kg solvent)], ms is the mass of crystals

in the unit mass of solution [g-solute/g-solvent], and α and β are the exponential parameters

for the model. In this model, secondary nucleation is determined by the supersaturation
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of the solution and mass of crystals in the slurry. The secondary nucleation is known to

be affected by collisions among crystals in the system according to the stirring rate,33–36 so

we used a constant stirring speed to minimize this effect. The total nucleation rate, B, is

determined by

B = B1 +B2 (6)

In this study, size-independent growth and dissolution were assumed.14,17 Hence, growth

and dissolution rates of crystals can be expressed similarly as functions of temperature and

the absolute supersaturation.

G = kg exp

(
−
Eag
RT

)
(c− cs)γg , c ≥ cs (7)

D = kd exp

(
−Ead
RT

)
(cs − c)γd , c < cs (8)

where D is the dissolution rate of crystals [(µm/min)], kg and kd are the pre-exponential rate

constants for the crystal growth [(µm/min)(g-solute/g-solvent)−γg ] and dissolution [(µm/min)

(g-solute/g-solvent)−γd ], respectively, Eag and Ead are the activation energies [J/mol] for

growth and dissolution, γg and γd are exponential parameters on supersaturation for the

growth and dissolution, respectively, and R is the universal gas constant [J/mol/K]. Crys-

tals grow when the concentration of the solution is higher than solubility, but crystals dissolve

into the solution under the opposite condition. Therefore, c − cs and cs − c determine the

growth and dissolution of crystals in the model, respectively.

Disappearance of crystals in the PBM

If the concentration in the solution is kept lower than the solubility, crystals dissolve contin-

uously and some small crystals may disappear, so it is necessary that the PBM framework

describes disappearance as well as dissolution of crystals. In order to describe the disappear-
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ance of crystals, various criteria such as the critical size of crystals,19 detection limit,3 and

physically minimum size of crystals20,37 have been applied to describe the disappearance of

crystals. In this study, an additional boundary condition is introduced to describe crystal

disappearance:

n(t, L ≤ 0) = 0, S < 1 (9)

Numerical method

In this work, the ‘space-time conservation element and solution element’ (CE/SE) method

was employed to obtain the solution of the PBM. This scheme was originally developed to

solve Navier-Stokes and Euler equations,38 and it has been applied to solve many partial

differential equations in fields such as magnetohydrodynamics,39 heat transfer,40,41 adsorp-

tion,42,43 and crystallization.17,20,30,31,37,44,45 Motz et al.30 showed the CE/SE method can

provide more accurate and faster solutions for the PBM than those given by the FVM, with

fewer grid points. Also, Qamar et al.31 reported that the CE/SE method presents faster

estimation and more accurate results than all other presented schemes such as the high

resolution semi-discrete FVM and PARSIVAL. In particular, the CE/SE scheme accurately

simulated the sharp peaks and discontinuities.

In this study, an artificial size domain that has a negative value of L, which is the bin

size in the model, was employed to describe the disappearance of crystals as shown in Figure

1. The change of the number density distribution illustrates when dissolution occurs. The

initial density distribution (blue) moves left in Figure 1 because the crystal sizes decrease

during the dissolution phase. As a result, fine crystals disappear and a part of the final

density distribution (red) moves into the negative size domain. Because crystals cannot

have negative sizes, number densities of crystals having size less than or equal to zero are

removed in the model.

In order to describe the crystallization system including crystallization, dissolution, and
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Figure 1: Concept of the negative cell in the PBM. The blue and red distribution represent
the initial and final number density distribution, respectively. The initial distribution moves
left by dissolution and the disappeared crystals, which are expressed as the hatched pattern,
are removed.

disappearance of crystals, the CE/SE scheme was coded in MATLAB™ R2019b for a size

range from −∆L µm to 1000 µm with evenly spaced bins of ∆L, where ∆L is 5 µm. The grid

from -5 µm to 0 µm is the pseudo spatial domain to describe the disappearance of crystals

when the solution becomes undersaturated.

Estimation of mean crystal size

More than 20 different methods have been reported to evaluate the mean crystal size.46

Among these methods, the volume mean crystal size is frequently used to evaluate the mean

crystal size.46 Assuming the crystal density is constant, the definition of volume mean crystal

size is

L̄v =
ΣniL

4
i

ΣniL3
i

=
Σ(MiLi)

ΣMi

≈ µ4

µ3

(10)

where L̄v represents the volume mean crystal size; n, L, and M are the number density of
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crystals, geometric mean crystal size, and mass of crystals, respectively; and subscript i is

the size bin number. In this study, mean crystal sizes for crystallization and dissolution were

estimated based on Equation (10) to compare the experimental and predicted results and to

estimate dissolution parameters.

Parameter estimation

In this study, parameter estimation was carried out for crystallization and dissolution by

minimizing the sum of squared relative errors between results from experiments and model

predictions. The minimization problems were solved by the fmincon function which is an

SQP solver47 in MATLAB™ R2019b.

Parameters for the primary nucleation, secondary nucleation, growth, and dissolution of

crystals were obtained using the following objective function based on the concentration and

the final volume density distribution:

Φc(θc) = wc

Nr∑
i=1

Nd,i∑
j=1

1

Nd,i

(
ĉij − cij(θc)

ĉij

)2

+
Nr∑
i=1

Nm,v∑
k=1

1

Nm,v

(
v̂ik − vik(θc)

v̂ik

)2

(11)

where θc = {kb1, σ, kb2, α, β, kg, Eag , γg, kd, Ead , γd} is the parameter set for nucleation, growth,

and dissolution kinetics, Nr is the number of experimental runs, Nd,i is the number of sam-

pled data for i th run, Nmv is the number of size ranges for volume density distribution, c

and v represent concentration and volume density distribution term, respectively; wc is the

weight for the term of concentration; ĉij and cij are the measured and predicted concentra-

tions; and v̂i and vi are the measured and predicted final volume density distribution from

each run.

The PBM was solved by the CE/SE method which can solve partial differential equations

efficiently. However, because the time grid of the CE/SE method does not necessarily match

the time points in the experimental data, the solution of the model is interpolated. Similarly,

for the final volume density distribution, the sieving analysis has 11 unequally spaced bins
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while the model has equally spaced finite elements which are 5 µm. Thus, the crystal size,

L, was integrated over multiple size ranges that match the size bins in the sieve analysis.

Uncertainty in the model parameters can be quantified via confidence intervals. To esti-

mate confidence intervals accurately, uncertainty in the experimental measurement must be

quantified, which requires repetition of experiments. For this problem, an alternative method

given by Bard et al.,48 which is employed for crystallization by Li et al.17 and Rawlings et

al.,49 was used for approximation of the confidence intervals for estimated parameters.

(θ − θ̂)T(Vθ)
−1(θ − θ̂) ≤ χ2

Np,α (12)

The confidence intervals for each parameter, θ̂, are calculated by Equation (12) with an

assumption that the sum of squared errors follows a chi-square distribution. The degree of

freedom, Np, is the number of parameters, and α is 0.05 in 95% confidence for the chi-squared

distribution:

(Vθ)
−1 =

∑
q

(V q
θ )−1 =

∑
j

(
Bj
q

)T
(V q)−1 (Bj

q

)
, q ∈ {c, sv} (13)

where Vθ is a covariance matrix of parameters, θ, from different measured data for concen-

tration, sieved results for the crystallization, which are represented by c and sv, respectively,

Bj is a Nm × Np matrix of the sensitivities, Nm = Nc + Nv is the total number of mea-

sured variables, dy/dθ, of the nth sample, and V is the diagonal covariance matrix of the

measurements. V and Bj
k can be estimated by Equations (14) and (15):

V q
ii =

1

Nd,q

Nd,q∑
i

e2
i,q, q ∈ {c, sv} (14)

where Nd,q is the number of samples for each measurement, e2
i is the squared error between

experimental data and predicted results using θ̂, e.g. e2
i,c = (ĉi − ci(θ̂))2 for concentration.

The sensitivity matrix, Bj
k is approximated by the finite difference method.
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Bj
k,q =

∂yj
∂θ

∣∣∣∣
θ=θ̂

≈
yjk,q(θ̂ + hkek)− yjk,q(θ̂)

hk
, k = 1, 2, . . . , Nm, q ∈ {c, sv} (15)

where yjk,q is simulated result according to parameters, hk is perturbation to θ̂, and ek is

an 1 × Np unit vector. In this work, Nm,c = 1 for concentration and Nm,v = 11 for sieving

and, Np = 11 for the number of parameters. The degree of perturbation, hk, is 0.1% of the

magnitude in each element of θ̂.

Experimental Section

Materials and Apparatus

Crystallization and dissolution experiments for paracetamol (Sigma-Aldrich, > 99%) were

performed in ethanol (KOPTEC, 200 proof anhydrous) in a 250-ml glass crystallizer with

a pitched four-blade stirrer and temperature controller. The equipment, which is shown in

Figure 2, includes three sensors which are Attenuated Total Reflectance-Fourier Transform

Infrared (ATR-FTIR), Focused-Beam Reflectance Measurements (FBRM), and temperature

sensors to measure characteristics of solutions and crystals in the crystallizer. The crys-

tallization system, Optimax™ from Mettler-Toledo, can control the experimental conditions

via a connected computer and software, iControl™ 6.0 by Mettler-Toledo. The ATR-FTIR,

ReactIR iC10™ by Mettler-Toledo, measured the IR spectrum for wavenumbers from 650

to 3000 cm−1 every 30 seconds. The ATR-FTIR equipment was purged by compressed air

purged and cooled down by liquid nitrogen before every measurement. Measured IR ab-

sorbance data were collected through software, iCIR™ by Mettler-Toledo. The concentration

of the solution was evaluated based on measured IR absorbance data with a calibration

model; further detail is provided later in the calibration section. The FBRM equipment,

ParticleTrack G400™ by Mettler-Toledo, was set in the macro mode with the laser focus
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distance of 0 µm and a scanning speed of 2 m/s. The FBRM measures the chord length

every 30 seconds, and the computer and the software, iCFBRM™ by Mettler-Toledo, ana-

lyzed the chord length distributions (CLD). The software divides the chord size from 1 µm

to 1000 µm into 100 bins via a logarithmic scale and generates the chord length histogram

for each measurement. The range of experimental temperature was from 0 to 70 ◦C and

every experiment was performed with a constant stirring rate of 400 rpm. When we needed

to control the crystallization based on the supersaturation, iDataShare™ by Mettler-Toledo,

which is an add-on package on MS Excel™, was utilized to convert IR absorbance to the

concentration and import converted values into iControl™ software in real-time.

ATR-FTIR 

Probe

FBRM 

Probe

Temperature 

sensor

Vessel

Agitator

FBRM

ATR-FTIR

Figure 2: OptiMax system from Mettler Toledo equipped with probes for focused beam re-
flectance measurements (FBRM) and attenuated total reflectance Fourier transform infrared
(ATR-FTIR) measurements.

Calibration for solution concentration

The concentration of the paracetamol solution was estimated by the measured IR absorbance

data and a calibration model. In this study, we used mass fraction between the paracetamol
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and ethanol, consistent with previous studies.3,8,14,17,50 Generally, the definition of a solution

concentration is the mass or mole of a solute divided by the volume of a solution. However,

it is difficult to track the accurate volume of a solution because it depends on the dissolved

amount of solute. Thus, the unit of g-solute/g-solvent or g-solute/kg-solvent was employed.

Here, a univariate approach was applied to infer the characteristics of crystallization because

only two species affect the concentration of the solution; univariate approaches usually use

peak heights, integrated peak area, or ratio of peak heights or area.51 In this study, the cali-

bration model is based upon the ratio of peak heights of each material on the FTIR spectrum

because the peak height of paracetamol increases, and the peak height of ethanol decreases

when the paracetamol concentration increases. According to the previous research,17 the

wavenumbers of ethanol and paracetamol are 1048 cm−1 and 1667 cm−1, respectively as

shown in Figure 3. However, the FTIR signals depend on various conditions such as probe

alignment, contact of liquid and probe, and background absorbance.52 To handle this prob-

lem, the peak at 1800 cm−1, which is not affected by the concentration of paracetamol and

ethanol, was used as a reference peak. The concentrations of ethanol and paracetamol were

given by normalizing two peaks, at 1048 and 1667 cm−1, by that of the reference peak. The

information to be estimated from the ATR-FTIR is the concentration of paracetamol in the

ethanol solution. This concentration is based on the ratio between these two species, so the

ratio of peak heights for paracetamol and ethanol was applied to determine the concentration

in the solution.

A set of experiments was performed to relate the response of the peak height ratio of

IR absorbance to the actual concentration and temperature change. Figure 4 shows that

the ratio of peak heights changes according to the temperature of the solution even when

the concentration of the solution is constant. Hence, the influence of temperature should be

considered in the calibration model between the ratio of IR peak heights and concentration.

The calibration model is
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Figure 3: IR spectra for pure ethanol and paracetamol solution. Peaks at 1048 cm−1 and
1667 cm−1 represent ethanol and paracetamol, respectively.
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Figure 4: Change of IR peak height ratio based on temperature. Values shown together
with the peak ratios are the actual concentration of the solution. Peak height ratio has a
nonlinear relationship with the solution concentration and the system temperature.
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h = k1X
2 + k2XT + k3X + k4T + k5T

2 + k6 (16)

where h is the FTIR peak height for paracetamol (1667 cm−1 of wavelength) divided by the

peak height for ethanol (1048 cm−1 of wavelength), based on reference peak height of 1800

cm−1 of wavelength. Here, X is the mole fraction of paracetamol in the ethanolic solution,

and T [K] represents the temperature of the system. The sensitivity of ATR-FTIR depends

on the evnironmental conditions in the lab, so calibration is carried out periodically to obtain

accurate parameters for Equation (16).

Solubility of paracetamol in ethanol

-10 0 10 20 30 40 50 60

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5: Five sets of solubility measurement data for paracetamol in the ethanol solution.

Solubility of paracetamol in ethanol was determined by five sets of continuous dissolution

experiments by increasing temperature slowly. Each dissolution experiment was performed

on a different day and the measured data varied slightly. Figure 5 shows the result of the

solubility measurements. Solubility data sets have similar trends, and the average values
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of these data sets was used to correlate the solubility of paracetamol in ethanol, cs [g-

paracetamol/g-ethanol], as the following polynomial equation

cs = −8.707 + 9.669× 10−2T − 3.610× 10−4T 2 + 4.590× 10−7T 3 (17)

Volume shape factor

It is difficult to determine the volume of the paracetamol crystal directly because of its

complicated shape. Hence, a volume shape factor has been used to approximate the volume

and mass of crystals.53 Generally, the shape factor, kv, is defined as follows:

kv =
V

L3
=

mc

ρL3
(18)

where kv is the volume shape factor of crystals, V is the actual volume of crystals [m3], L is

the size of crystals [m], mc is the mass of crystals [kg], and ρ is the crystal density [kg/m3].

1st group

2nd group
3rd group

4th group

5th group

6th group

7th group

8th group

9th group

10th group

11th group

12th group

13th group
14th group

15th group

Figure 6: An example of the measurement of the volume shape factor of crystals. In this
example, the crystal sizes are between 355 µm and 425 µm, and the geometric mean crystal
size of two boundaries, 388.4 µm, represents all crystal sizes. In order to count crystals
easier, crystals were grouped into bundles of ten crystal each. The mass of the 152 crystals
is 7.68 mg.

The volume shape factor of paracetamol crystal was obtained by optical observations.

Because the density of paracetamol crystals is already reported,54 measured crystal size and

mass can provide the shape factor, via Equation (18). As shown in Figure 6, the mass and
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number of sieved crystals were measured to estimate the shape factors. In this work, 19

observations were carried out with crystals from seven different sieve size ranges of trays

with 106–150, 150–212, 212–250, 355–420, 420–500, 500–600, and 600–850 µm, resulting in

a shape factor of 0.797, which is close to 0.866 obtained by Worlitschek and Mazzotti.14

Crystallization with temperature cycling

The experiments applied a temperature plateau to minimize the effect of stochasticity of

primary nucleation, in the same manner as in Li et al.17 The stirring speed in this system

was fixed as 400 rpm to minimize bubble formation while maintaining mass and heat transfer

in the system. The initial temperature of the system was set higher than the saturation

temperature of the initial concentration so that the initial solution was undersaturated. The

system temperature was decreased until the supersaturation reached the target value, with

-1.0 ◦C/min as the cooling rate. The time when the decrease in temperature begins was

considered as the initial time for the modeling. Next, the system was kept on the plateau

temperature between 60 and 150 minutes, based on the status of crystals in the solution. The

first appearance and growth of crystals took place during this temperature plateau. After

this step, the temperature-cycling strategy was employed to obtain crystals with different

mean sizes and size distributions. Each experiment had different initial concentrations and

supersaturations on the temperature plateau. The plateau temperature was determined by

the initial concentration and the target supersaturation. The concentration of paracetamol

in the solution was evaluated based on the in situ ATR-FTIR measurement.

Results

Results of crystallization experiments with temperature cycling

In this study, six experiments were performed, and the conditions and the results are shown

in Table 1. The initial concentrations, cini, are between 0.245 and 0.378 g-solute/g-solvent.
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The supersaturation values at the plateau temperatures, Splat, are chosen among 1.2, 1.3,

and 1.4. The plateau temperatures, Tplat, were set based on the initial concentration and

target supersaturation during the plateau time, tplat. The final mass of recovered crystals,

mfin, was measured after the washing and drying procedures and is related to the initial and

final concentrations by a mass balance. The final volume-weighted mean crystal size, L̄fin, is

estimated using the results of sieving analysis.

Table 1: Conditions and measured results of crystallization experiments

Exp.

Desired
cini

[g-solute
/g-solvent]

Measured
cini

[g-solute
/g-solvent]

Desired
Splat
[-]

Measured
Splat
[-]

Tplat

[◦C]

tplat

[min]

Tfin

[◦C]

mfin

[g]

L̄fin

[µm]

Training sets
1 0.300 0.308 1.40 1.41 30.0 120 10.7 15.6 317.4
2 0.250 0.245 1.30 1.27 24.0 150 19.9 7.25 259.7
3 0.350 0.348 1.20 1.18 44.3 150 25.9 14.2 451.7

Test sets
4 0.370 0.378 1.40 1.40 40.0 60 6.7 22.1 307.6
5 0.275 0.282 1.40 1.43 25.0 120 4.8 12.6 258.7
6 0.300 0.300 1.30 1.27 33.2 120 11.4 14.6 345.9

Figures 7 and 8 show the trends of mass of crystals and supersaturation, together with

temperature profiles for all runs. The temporal trends of crystal mass in Figure 7 are

estimated using the paracetamol concentration in the solution based on the ATR-FTIR

measurements. Differences in between values from a mass balance (based on measurements

of solution concentration) and weighing product crystals differed by less than 5%, as shown

in Table 2.

Table 2: Comparisons of final crystal mass between by scale and by ATR-FTIR

Exp. measurement of
final crystal mass [g]

final crystal mass
by ATR-FTIR [g]

Error based on
measurement

1 15.6 15.8 1.3%
2 7.2 7.2 0.0%
3 14.2 13.7 -3.5%
4 21.1 21.9 3.8%
5 12.6 13.2 4.8%
6 14.6 14.6 0.0%
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Figure 7: Mass of crystal and temperature profile from crystallization experiments. (a)
Exp. 1, (b) Exp. 2, (c) Exp. 3, (d) Exp. 4, (e) Exp. 5, and (f) Exp. 6: blue solid line
— supersaturation and red dash-dotted line — temperature profile. Ranges of axes in all
figures are fixed based on the largest range among all data sets for easier comparison.
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Figure 8: Supersaturation and temperature profile from crystallization experiments. (a)
Exp. 1, (b) Exp. 2, (c) Exp. 3, (d) Exp. 4, (e) Exp. 5, and (f) Exp. 6: blue solid line
— supersaturation and red dash-dotted line — temperature profile. Ranges of axes in all
figures are fixed based on the largest range among all data sets for easier comparison.
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Parameter estimation for nucleation, growth, and dissolution

Among six experimental data sets in Table 1, the first three experiments were used as the

training set for the parameter estimation and the last three experiments were utilized as the

test set. All crystallization experiments were carried out from clear solutions without any

seed crystals, so the initial number density distributions are set to zero.

Due to the high non-linearity of the kinetic models, multiple local minima may exist in

the optimization problem of parameter estimation. For this problem, GlobalSearch and

MultiStart functions in MATLAB™ were applied to identify the global minimum. For rate

constants such as kb1, kb2, and kg, logarithm with base 10 was applied to the parameters to

reduce the range of parameter values in the search for optimal solutions.

Table 3: Estimated parameters and confidence intervals for the primary nucleation rate,
secondary nucleation rate, and growth rate of crystals

Parameter Unit Value Confidence interval
Primary
nucleation rate

kb1 [#/min/kg solvent] 8.381 8.309–8.454
σ [mJ/m2] 4.174 0.017–8.330

Secondary
nucleation rate

kb2 [#/min/kg solvent] 1.346×106 (1.231–1.471)×106

α [-] 2.650 2.631–2.669
β [-] 0.459 0.372–0.547

Growth
rate

kg [(µm/min)(g/g)−γg ] 1.217×109 (0.974–1.521)×109

Ea,g [J/mol] 40300 40300–40300
γg [-] 1.149 1.145–1.153

Dissolution
rate

kd [(µm/min)(g/g)−γd ] 4.075×104 (4.075–4.075)×104

Ea,d [J/mol] 9800 9800–9800
γd [-] 0.898 0.874–0.923

Table 3 lists the parameters obtained from the optimization, and Figures 9–11 com-

pare the trends of supersaturation, crystal mass, and the final volume density distributions

between experimental data and model fits for the training sets. The calculated profiles of su-

persaturation and crystal mass based on temperature cycling generally match those in each

experimental run. Notably, the model describes the slow consumption of supersaturation in

Exp. 2, as shown in Figure 9b.

For validation of obtained kinetic models, three experimental runs, Exp. 4–6 were pre-
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Figure 9: Comparisons of supersaturation between experimental data and fitted results for
training sets. (a) Exp. 1, (b) Exp. 2, and (c) Exp. 3: black dashed line — supersaturation
from experimental data, blue solid line — supersaturation from model prediction, and red
dash-dotted line — temperature profile
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Figure 10: Comparisons of crystal mass between experimental data, as determined from
measurements of solution composition and a mass balance, and fitted results for training
sets. (a) Exp. 1, (b) Exp. 2, and (c) Exp. 3: black dashed line — crystal mass from
experimental data, blue solid line — supersaturation from model prediction, and red dash-
dotted line — temperature
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Figure 11: Comparisons of volume density distributions between experimental data and
fitted results for training sets. (a) Exp. 1, (b) Exp. 2, and (c) Exp. 3: black bars —
experimental data from sieving analysis and gray bars — predicted results from the model
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Figure 14: Comparisons of volume density distributions between experimental data, as de-
termined from measurements of solution composition and a mass balance, and predicted
results for test sets. (a) Exp. 4, (b) Exp. 5, and (c) Exp. 6: black bars — experimental
data from sieving analysis and gray bars — predicted results from the model
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dicted, with the conditions of the test sets in Table 1. Predicted supersaturation, crystal

mass, and volume density distributions for experiments are compared to the experimental

data in Figures 12–14, respectively. The predicted results for Exp. 5 and 6 have reasonable

differences from experimental data. However, the prediction of volume density distribution

for Exp. 4 tend to be larger than experimental data despite the reasonable match for su-

persaturation and crystal mass as shown in Figure 14a. In particular, the prediction results

for three size ranges, 355–425 µm, 425–500 µm, and 500–600 µm of Exp. 4 have obviously

higher values than densities experimentally produced.

Table 4: Comparisons of final mean crystal sizes and span (d90 − d10) between experiments
and simulation

Exp. volume mean crystal size
from experiment [µm]

volume mean crystal size
from simulation [µm]

Error based on
experimental results

1 317.4 316.8 -0.2%
2 260.0 251.4 -3.3%
3 452.0 498.9 10.4%
4 307.6 369.0 20.0%
5 258.5 261.5 1.1%
6 346.2 372.0 7.4%

Exp. d90 − d10

from simulation [µm]
d90 − d10

from experiment [µm]
Error based on

experimental results
1 210.6 252.4 19.9%
2 190.6 213.1 11.8%
3 356.3 312.4 -12.3%
4 179.2 272.1 51.8%
5 177.6 218.2 22.9%
6 213.3 280.7 31.6%

Table 4 lists and compares the volume mean crystal sizes and the span of crystal size

distributions from experiments and predicted results. The first term in Equation (10),

L̄v = ΣniL
4
i /ΣniL

3
i , estimates the mean crystal size given by the model, and the second

term in Equation (10), L̄v = Σ(MiLi)/ΣMi, calculates mean crystal size measured in the

experiments. The span of crystal size distribution was defined as the difference between 90

percentile and 10 percentile to show how broad size distributions are. Errors between mean

crystal sizes from experiments and simulations range from -4% to 20%, which may be partly
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due to inaccuracies associated with the sieving process. Spans in crystal volume distribution

between experiments and predictions show larger errors for test sets, particularly for Exp

4. The initial experimental concentration, cini, of Exp. 4 is out of the range of the initial

conditions of experiments in the training set, even though the ranges of other experimental

conditions in the test set are not too different from the conditions for the training set, as

shown in Table 1. Moreover, some crystals may agglomerate during post-crystallization steps

such as washing and drying and it may have led to measurement error in the crystal size

distributions of the final product. These reasons can cause disagreement on the predicted

volume density distribution of Exp. 4. Nonetheless, the errors for the remaining test data is

similar to that for the training data, suggesting that the model is predictive.

Discussion

Dissolution modeling

Unlike most models of crystallization processes, our model can describe both the increase

and the decrease of the zeroth moment when the temperature increases, which is critical

for the temperature-cycling strategy. Figure 15 compares the zeroth and third moments

given by the models with and without the scheme to describe crystal disappearance. This

comparison was carried out using the temperature profile of Exp. 3. Figure 15a shows that

the zeroth and third moments increase and decrease simultaneously. Such behavior occurs

when the solution becomes undersaturated as the temperature increases. On the other hand,

Figure 15b shows what happens without a disappearance scheme: the zeroth moment does

not change while the third moment becomes lower. As the temperature rises and creates

undersaturation, existing crystals get smaller so that the total volume of crystals shrinks.

However, crystals do not vanish without the disappearance scheme, so the number of crystals

does not change.
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Figure 15: Comparison of trends between the third moment, µ3 and the zeroth moment, µ0

for Exp. 3. (a) with the scheme to describe the crystal disappearance and (b) without the
scheme. Inset : zoomed-in trend for the part in the rectangle.

Prediction of the evolution of volume density distribution

Figure 16 presents predictions for the development of volume density distributions for Exp.

1–6. The absolute volume density increases over time, and the distributions shift toward

larger regions. By comparing the volume density change over time with the temperature

profiles from Figures 8 and 9, we can also see the volume density decreases when the tem-

perature increases in Figure 16.

Analysis of increasing crystal mass at temperature plateau

Among the crystallization experiments, the supersaturation profile of Exp. 2 showed different

behavior from other runs which should be analyzed. In Exp. 2, supersaturation maintained

a relatively high value of 1.3 for the relatively long duration in 30–150 minutes, while in all

other experiments the supersaturation decreased relatively quickly as shown in Figure 8. To

analyze the distinct supersaturation profile in Exp. 2 (Figure 8(b)), we compare the primary

nucleation rate, secondary nucleation rate, and growth rate given by the model for cases in
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the training set as shown in Figure 17.
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Figure 17: Comparisons of (a) primary nucleation rates, (b) secondary nucleation rates, and
(c) growth rates for experimental cases in the training set: blue dashed line — Exp. 1, red
solid line — Exp. 2, and black dash-dotted line — Exp. 3.

It can be seen that the secondary nucleation and growth rate in Exp. 2 are the slow-

est among the three experiments (Figure 17b and c), while the primary nucleation rate is

comparable with other experiments (Figure 17a). The slow secondary nucleation rate and

growth rate in Exp 2 explain the slow decrease of supersaturation (Figure 8b). In partic-

ular, the crystal growth makes the most significant difference because it increases the size

of existing crystals, which tends to consume solute molecules more quickly than nucleation

which creates only small nuclei.

Conclusions

A mathematical model for unseeded batch crystallization of paracetamol in ethanol solutions

was developed that includes primary and secondary nucleation, growth, dissolution, and

disappearance of crystals. The approach employed a bin of negative size to describe the

disappearance of crystals during the dissolution process. As dissolution moved crystals

into this negative bin they were deemed to have disappeared and no longer were part of

the population balance model. Parameter estimation for the rates of primary nucleation,
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secondary nucleation, growth, and dissolution was carried out at the same time because the

key phenomena cannot be observed separately. The developed model was validated using

experimental data from three unseeded batch crystallizations that followed the temperature-

cycling strategy.

This model can account for the dissolution and disappearance of crystals when the tem-

perature rises, and we verified that the developed model works reasonably by comparing the

behavior of the moments when the temperature-cycling strategy was employed. Therefore,

this model can be used to explain and analyze the evolution of a crystal population density

distribution when heating and cooling are part of the crystallization protocol. In addition,

this model was conducive to analyze nucleation and growth rates separately to look for the

reason for the experimental observation where supersaturation profiles differ significantly

under some experimental conditions. A model using the principles developed in the present

work will be a powerful tool whose utilization will facilitate optimization of batch cooling

crystallization processes that employ the temperature-cycling strategy.
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