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Abstract 

Scaffold hopping, aiming to identify molecules with novel scaffolds but share a similar target 

biological activity toward known hit molecules, has always been a topic of interest in rational drug 

design. Computer-aided scaffold hopping would be a valuable tool but at present it suffers from limited 

search space and incomplete expert-defined rules and thus provides results of unsatisfactory quality. 

To addree the issue, we describe a fully data-driven model that learns to perform target-centric scaffold 

hopping tasks. Our deep multi-modal model, DeepHop, accepts a hit molecule and an interest target 

protein sequence as inputs and design bioisosteric molecular structures to the target compound. The 

model was trained on 50K experimental scaffold hopping pairs curated from the public bioactivity 

database, which spans 40 kinases commonly investigated by medicinal chemists. Extensive 

experiments demonstrated that DeepHop could design more than 70% molecules with improved 

bioactivity, high 3D similarity, while low 2D scaffold similarity to the template molecules. Our method 

achieves 2.2 times larger efficiency than state-of-the-art deep learning methods and 4.7 times than rule-

based methods. Case studies have also shown the advantages and usefulness of DeepHop in practical 

scaffold hopping scenario.  

  



Introduction 

Over the past decades, the rapid developments of both high-throughput screening (HTS)1 and 

fragment-based screening technologies2 have largely facilitated the hit identification process for drug 

discovery. These screening strategies, together with the combinatorial compound library, discover 

extensive collections of diverse chemical series as starting points (hits) for further work towards 

identifying clinical candidates.3 However, in general these identified hits have weak potency and do 

not necessarily possess ideal ADMET profile. Usually lead identification (LI), i.e. transform a hit to a 

more potent lead compound), and lead optimization (LO) process is needed to further optimize their 

structures to improve the potency and ADMET properties before the drug discovery project can be 

moved into clinic.  

One common strategy in LI is scaffold hopping. The goal of scaffold hopping is to discover 

structurally distinct compounds starting from a known reference compound for a given target protein 

by changing the backbone of the compound, while the three-dimensional structure or the 

pharmacophore of the original compound is largely unchanged to preserve the biological activity4-5. 

This terminology was coined by Schineider and co-workers5 and has been widely used, as such design 

can result in novel hit series and improved molecular properties including activity, toxicity, synthetic 

accessibility, and selectivity. However, when a “hop” is applied to a hit molecule, there is no guarantee 

that the corresponding transformation will work in an expected way. This can be due to an incomplete 

understanding of the protein-ligand interaction mechanism6, unfavorable ADMET properties of 

hopped structure, or activity cliff.7 Predicting which hops can be successful is quite challenging even 

for the best human medicinal chemists. 

To this end, a variety of computational methods have been proposed to help chemists to find better 



scaffold hops.4, 8-9 Many of them utilized matching algorithms based on two-dimensional (2D) or three-

dimensional (3D) molecular representations10-14. Others developed fragment replacement techniques, 

including fingerprints and combining experimental information15-19. However, almost all methods 

published to date relied exclusively on a predefined database to select a molecule or a fragment, with 

the differences between approaches arising solely from the searching algorithms of the database, the 

ways to define similarity of compound pairs or the contents of the scanned database. As a result, these 

methods are inherently restricted to a set of pre-defined rules or examples, limiting the exploration of 

vast chemical space.  

In parallel, upon the call for the more exhaustive and intelligent exploration of chemical space, the 

field of de novo molecule design has been advanced by recent breakthroughs in deep generative 

models20-21. Various generative architectures, including RNNs22-24, autoencoders25-27, and generative 

adversarial networks (GANs)28 have been proven to be effective methods for generating desirable 

molecules, which are either represented by simplified molecular input line entry specification 

(SMILES)29 or molecular graph. However, all the methods aim for the same goal, which is to design 

structurally “diverse” compounds from scratch, has the capability to search in the whole drug-like 

space and doesn’t rely on any predefined database or rules, no matter for scaffold hopping or derivative 

generation.  

More recently, two different lines of research are carried out for molecule design under scaffold 

constraint. One research line is named as scaffold-based molecule design worked by Lim et al.30 and 

Li et al.31, where the graph generative models were applied to extend a given scaffold by sequentially 

adding atoms and bonds. In this context, the generated derivatives are guaranteed to maintain the 

scaffold with certainty, and their properties can thus be controlled by conditioning the generation 



process on desired properties. However, due to the nature of these tasks, the shapes of the suggested 

molecules often differ significantly from the starting points in the 3D level, and many of the proposed 

transformations are R-group modifications.32 The other research line is referred to as fragment linking. 

The original idea of Imrie and co-workers is to join fragments together with a generated linker while 

keeping the relative conformations of the fragments33. Yang et al. further extended it as a sentence 

completion problem with transformer neural networks34. Although these approaches claim its 

capability in scaffold hopping since they can generate molecules with high 3D similarity to the original 

molecule, the 2D similarity is often higher than expected due to the nature of fragment replacement, 

resulting in unfavorable intellectual property issues. Moreover, all these models were trained in a 

ligand-based paradigm using a large number of bioactive compounds in a broad sense from public 

database, regardless of the correspondent relationship between bioactivity and specific target protein. 

This imposes a limitation on applying these methods into the target-centric drug development process. 

In this work, we introduce a novel target-based scaffold hopping framework, DeepHop, to optimize 

hit/lead compounds based on a multi-modal deep generative model. Our method takes as input a 

reference molecule X and a specified protein target sequence Z, and designs a scaffold hop Y 

incorporating 2D and 3D structural information, protein target information, as well as bioactivity 

information. The model has been trained with over 50K constructed scaffold hopping pairs across 40 

kinases. Extensive experiments show that our model is capable of generating bioisosteric molecular 

structures for seed molecules with novel backbones but improved activity. More importantly, our 

model could be easily extended to new protein targets outside the training set, which is essential for 

target-centric drug development.  

 



 

Methods 

Task Definition. An exemplary scaffold hop is shown in Figure 1. In this work, we broadly define a 

scaffold hopping process as such: given an input reference molecule X and a specified protein target 

Z, the model predicts the “hopped” molecule Y with improved pharmaceutical activity and dissimilar 

2D structure but similar 3D structure.   

 

Figure 1. A typical scaffold hop extracted from tankyrase-2 inhibitors.4 The two compounds have 

different scaffolds (2D Tanimoto scaffold similarity = 0.2), but similar 3D shapes ( 3D shape and 

pharmacophore similarity =0.6).  

Data preparation. There have only been a limited number of successfully reported examples for 

scaffold hopping. As such, for training and large-scale evaluation, we constructed sets of scaffold-

hopping pairs using a custom-made similarity scoring function from a subset of ChEMBL20.35  

Specifically, we first processed the ChEMBL20 dataset by filtering kinase-related target proteins 



with at least 300 up to 5000 unique bioactivity instances. The scaffold hopping application in the kinase 

family has always been a topic of interest because the kinase patent literature is notoriously 

complicated.36 We further filtered out the SMILES strings containing disconnected ions or fragments. 

The molecules were then normalized using RDKit, which involved the removal of salt and isotopes, 

as well as charge neutralization. After the preprocessing, the final data set contained 103,511 

bioactivity data points across 152 kinases (Table S1). Note that we used pChEMBL values as the 

standard activity unit, which were defined as: -Log(molar IC50, XC50, EC50, AC50, Ki, Kd or 

Potency). 

Multi-task QSAR model. Before constructing the scaffold hopping pairs, one important factor 

required to assess the performance of scaffold hopping is whether the generated molecules have similar 

bioactivity on the desired targets. To enable a rapid and accurate profiling of generated molecules, 

virtual profiling models were trained on all the data points in the above-curated kinase datasets. We 

evaluated several state-of-the-art messages passing neural networks (MPNNs)37-38 and multi-task deep 

neural networks (MTDNN)39 with molecular graphs or molecular fingerprints as the molecular 

representations. MTDNN was found to obviously outperform other models with an average R2 of 0.62 

and RMSE of 0.61 (pCHEMBL value) on internal test sets. Thus, the MTDNN model was used as the 

virtual profiling model in the following studies. All the modeling details and results are shown in 

Supplementary files.  

For the quality of the virtual bioactive assessments, we kept only targets that had a 5-fold cross-

validation R2 higher than 0.70, resulting in 40 targets in the end. 

Construction of scaffold hopping pairs. The scaffold hopping definition emphasized on two key 

components: (i) different core structures and (ii) similar topology and pharmacophore that ensure 



biological activities of the new compounds relative to the parent compounds. To mimic the scaffold 

hopping scenario, we constructed our data set following the idea of matched molecular pairs (MMPs) 

cutting algorithm proposed by Hussain et al40. More specifically, we sampled target-based hopping 

pairs ((X; Y)|Z) with significant bioactivity improvement (pCHEMBL Value ≥ 1) for new compound 

Y over original compound X in the context of protein Z and a strict molecular similarity condition of 

(2D scaffold similarity (X; Y) ≤ 0.6)∩(3D similarity (X; Y) ≥ 0.6).  

The 2D scaffold similarity was measured by the Tanimoto score over Morgan fingerprints41 of the 

compound scaffolds and 3D molecular similarity by the shape and color similarity score (SC score) 

used by Imrie et al.33. To provide molecular 3D structural information, we generated 3D conformers 

for the curated data set using RDKit and took the lowest-energy conformation among 100 samples for 

each molecule. The SC score was computed by the pharmacophoric feature similarity42 and the shape 

similarity43 between a pair of molecular conformers. The SC score is a float value in the range of [0, 

1], and a higher value represents a higher similarity between the generated molecule and its parent 

compound. Scores above 0.6 indicate a fair structural match, and those above 0.8 indicate an excellent 

one. 

To avoid redundancy of training pairs, we only allowed up to 10 hops for each source molecule. For 

each target, we first randomly took 10% molecules as the test set. The rest 90% molecules were 

constructed into scaffold hopping pairs and randomly divided into two sets of a ratio of 9:1 for training 

and validating. These processing steps resulted in a training set of 57,537 pairs over 40 kinases.  

Independent test set. To explore the generalization ability to proteins that have never been observed 

during the training process, we further used CDhit44 to retrieve six typical target proteins (the R2 of 

QSAR models of these six proteins are higher than 0.65) from the curated database as the independent 



test set based on the sequence identity. Among them, three proteins (CHEMBL2208, CHEMBL2147, 

CHEMBL2523) are non-homologous with sequence identity less than 25% to any sequence in the 

training set, while others (CHEMBL4225, CHEMBL2292, CHEMBL2041) are homologous to the 

training set with the highest sequence identities of 59%, 63%, 76%, respectively. The compounds in 

these six proteins would never be observed in the previous training, validating, and testing processes. 

The details of these six proteins have been shown in Table S2. 

Model Architecture. A novel multi-modal graph transformer model was proposed for generating 

scaffold hops with inputs of a source molecule and a protein sequence based on the transformer 

architecture45. Transformer, as a classical encoder-decoder architecture, has recently shown the state 

of the art performances in many sequence-to-sequence translation tasks, including machine 

translation46, retrosynthesis47, and fragment assembly34. In previous chemical applications like 

retrosynthesis and fragment assembly, chemical structures were often simply converted into SMILES 

strings that ignored spatial information naturally embedded in chemical 3D conformers. In addition, 

none of them considered the protein target information during the transformation of the molecule pairs. 

Obviously, both of these two features play crucial roles in the scaffold hopping task that need to be 

considered. 

 



 

Figure 2. The basic architecture of the multi-modal transformer model DeepHop. The model 

comprises three main components: (1) a 3D graph neural network for molecular conformer embedding, 

(2) a pre-trained encoder for the target protein embedding, and (3) a transformer for mapping the 

scaffold hopping pairs.  

To this end, DeepHop (as shown in Figure 2) introduces a graph neural network (GNN)-based 

molecular conformer encoder and a protein encoder to ensure the conformational information as well 

as the protein information to satisfy the explicit criterion. Basically, DeepHop comprises three main 

components: (1) a 3D graph neural network (GNN) for molecular conformer embedding, (2) a pre-

trained encoder for target protein embedding, and (3) a transformer for mapping the scaffold hopping 

pairs.  



3D graph conformer encoder. We adopted a simple 3D spatial GNN as the conformer encoder 

following the strategy of Danel et al.48, which can learn both the molecular graph representation and 

spatial distances between atoms in the 3D space. The GNN follows the paradigm of message passing 

neural networks. The input of the conformer encoder is a 3D molecular graph 𝐺 = (𝑉, 𝐸), where 𝑉 =

{ 𝑣1, … , 𝑣𝑛} denotes a set of nodes (atoms) and 𝐸 = [𝑒𝑖𝑗]𝑖,𝑗=1
𝑛  represents edges (bonds) between 

atoms i and j. Each atom 𝑣𝑖 is represented by a d-dimensional initial feature vector hi containing the 

2D chemical features computed by RDkit (See more details in Table S3). The atom is additionally 

attached with its 3D coordinates 𝑝𝑖  ∈ ℝ𝑡  obtained by the molecular conformer. The 3D GNN then 

updates the atom embedding with message passing operations: 

ℎ𝑖
(𝑙+1)

(𝑈, 𝑏) = ∑ 𝑅𝑒𝐿𝑈(𝑈𝑇(𝑝𝑗 − 𝑝𝑖)+ 𝑏) ⨀ ℎ𝑗
(𝑙)

𝑗∈𝑁𝑖

) 

where 𝑈 ∈ ℝ𝑡×𝑑, 𝑏 ∈ ℝ𝑑 are trainable network parameters, d is the dimension of the feature vector 

ℎ𝑗
(𝑙)

, l denotes the updating at the l-th iteration and ⨀ denotes element-wise multiplication.  

Herein, the overall atom embeddings can be described as 𝐻(𝑙) = {ℎ1
(𝑙)

, … ℎ𝑛
(𝑙)

}. In the last iteration 

of the node embedding updating, we introduced a Gated Recurrent Unit (GRU) network49 to increase 

the power of the network and obtained the final atom embedding, as shown as  

�̂�(𝑣) = 𝐺𝑅𝑈(𝐻(𝑙)(𝑣)) 

Protein encoder. Compared to the drug molecules, protein molecules are much bigger, typically 

containing more than 1,000 heavy atoms. To avoid a bulky model that contains too many parameters, 

we adopted Tasks Assessing Protein Embeddings (TAPE)50, a recently proposed semi-supervised 

protein sequence representation learning method, to generate the protein pre-trained embeddings. 

TAPE was trained by a large transformer neural network in an unsupervised paradigm with millions 



of protein sequences. After training, it can generate an information-enriched feature vector for an input 

protein sequence. Formally, a protein can be described as a linear sequence that consists of a list of 

amino acid residues 𝑃 = (𝑟1, … 𝑟𝑙). After processing through the TAPE, a fixed vector 𝐻𝑝 can be 

obtained, where 𝐻𝑝 is a k-dimensional pre-trained feature vector for protein sequence 𝑃. 

Transformer architecture. The fundamental architecture of DeepHop is a typical Transformer neural 

network containing multiple encoder-decoder modules. Each encoder layer consists of a multi-head 

self-attention sub-layer and a position-wise feed forward network (FFN) sub-layer. Multi-head 

attention has several scaled dot-product attention functions working in parallel, which allows the 

model to focus on messages from different subspaces at different positions. An attention mechanism 

computes the dot products of the query (Q) with all keys (K), introduces a scaling factor dk (equal to 

the size of weight matrices) to avoid excessive dot products, and then applies a softmax function to 

obtain the weights on the values (V). Formally 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉        (1) 

The FFN sub-layer adopts the ReLU activation.51 Then, layer normalization52-53 and a residual 

connection54 were introduced to link the above two sub-layers. Each decoder layer has three sub-layers, 

including an FFN sub-layer and two attention sub-layers. The decoder self-attention sub-layer utilizes 

a mask function to hinder attending to unseen future tokens. The encoder-decoder attention layer helps 

the decoder to focus on essential parts in the source sequence, and to capture the relationship between 

the encoder and decoder. 

For a given source molecule, we concatenate the learned 3D graph representations �̂�𝑠  with 

SMILES sequence embedding Ms = (s1, ..., sm) and convert them through a simple linear transformation. 



The combined multi-modal molecular representations are then sent to the Transformer encoder to 

convert into a latent representation 𝐿 ∈ ℝ𝑚×𝑓, where m is the sequence length of molecular SMILES 

and f is the hidden state dimension. Afterwards, we concatenate 𝐿 with target protein embedding 

𝐻𝑝 ∈ ℝ𝑘, resulting in a comprehensive representation �̂� ∈ ℝ𝑚×(𝑓+𝑘). Given �̂�, the decoder iteratively 

generates an output SMILES sequence Y = (y1, ..., yo) until the ending token "⟨/s⟩" is generated. 

During training, the model minimizes the cross-entropy loss between the target sequence Mt = (t1, ..., 

tk) and the output sequence Y.  

ℒ(𝑌, 𝑀) = − ∑ 𝑦𝑖 𝑙𝑜𝑔 𝑡𝑖

𝑘

𝑖=1

         

Baseline Models. We compare our approaches with the following baselines: 

1. MMPA. We utilized the implementation by Hussain et al.55 to perform MMPA as a baseline 

algorithm. Molecular transformation rules were extracted from the kinase dataset for 

corresponding tasks. During the test, we translated a source molecule multiple times using different 

matching transformation rules and selected the translation with the highest average bioactivity as 

scored by the virtual profiling model. 

2. Seq2seq. Our second baseline is a seq2seq model that utilizes SMILES strings to encode molecules. 

The model has been successfully applied to other molecule transformation tasks56. 

3. G2G. The third baseline is a Graph-to-Graph model57 that extends the junction variational 

autoencoder (VAE) via attention mechanism and generative adversarial networks (GAN). The 

model is capable of translating the current molecule to a similar molecule with pre-defined desired 

property (e.g., logP). 

Notably, these models were not designed for multi-task transformation. For a fair comparison, we 

choose a single target protein CHEMBL2835, which contained the largest number of scaffold pairs in 



our training set, as a representative to evaluate the effectiveness of the baselines and our model. 

Evaluation Metrics. Our model aims to generate various hops for an input molecule for a specific 

target. We quantitatively analyze the hopping success rate, bioactivity improvement, validity, 

uniqueness, diversity, and novelty of different methods. 

 Success rate is a metric that considers both similarity and bioactivity improvement. Since the task 

is to generate a molecule that (i) is similar to the input molecule and (ii) has bioactivity 

improvement simultaneously. We design criteria to judge whether it satisfies these two 

requirements: the generated molecule Y should (a) meet the structural condition, i.e., (2D scaffold 

similarity (X; Y) ≤ 0.6)∩(3D similarity (X; Y) ≥ 0.6); (b) has a positive bioactivity gain, i.e., 

pBioactivity(Y) - pBioactivity(X) ≥ 0, where the multi-task QSAR models are used to compute the 

activity of generated molecules. A constraint success rate is also accounted by confining the 

pBioactivity(Y) - pBioactivity(X) ≥ 1. 

 Bioactivity improvement is the average improvement of biological activity between source 

molecule and the generated molecule computed as pBioactivity(Y) - pBioactivity(X) 

 Validity is the percentage of generated chemically validly generated molecules;  

 Uniqueness refers to the number of unique structures generated;  

 Novelty refers to the percentage of novel molecules among the chemically validly generated 

molecules (not present in the training set); 

 Diversity is the average pairwise Tanimoto distance between a set of molecules, where Tanimoto 

distance is defined as dist(X; Y ) = 1 − sim(X; Y ).  

Model Training and Optimization of Hyperparameters. The DeepHop model was implemented 

based on OpenNMT58 and all scripts were written in Python59 (version 3.7). The models were trained 



on four GPU (Nvidia 2080Ti) and saved checkpoint per epoch. The best hyperparameters were decided 

based on the loss of the validation set. We adopted the beam search procedure60 to generate multiple 

candidates with different beam widths. All generated candidates were canonicalized using RDkit and 

compared to the source molecules. 

 

Results and Discussion 

In this section, we mainly discussed our DeepHop performance from four parts. First, we evaluated 

our model with different training paradigms on the kinase internal datasets. Then, we compared our 

methods with other state-of-the-art deep learning models as well as conventional methods on a single 

target protein. Subsequently, we tested our model in unseen protein sets and performed few-shot 

transfer learning on proteins with low performance. Lastly, our DeepHop method was applied to 

several case study examples to demonstrate the capability of the model for practical scaffold hopping.  

 

Model Performance on the multi-kinase dataset. We first assessed the performance of models on 

the internal test set with different training paradigms (single-task, multi-task and DeepHop). Note that 

both the single-task and multi-task models did not integrate the protein information. The top 10 

candidate sequences for each reference compound were generated (note that the generated sequences 

are not guaranteed to be valid or unique SMILES strings). Table 1 lists the average results on a total 

of 40 targets. Our multi-modal DeepHops achieved a success rate of 65.2±17.5 and constraint success 

rate of 43.7±21.0, significantly outperforming those by Multi-task model (success rate = 58.9±20.9, 

constraint success rate = 34.6±19.7) and Single-Task models (success rate = 27.5±15.9, constraint 

success rate = 15.5±14.7). The poor performance in most of the metrics by the single-task model 



should be due to the relatively small number of data points for each single kinase task, leading to a 

fragile model that is difficult to learn the transformation between scaffold pairs. When integrating all 

the pairs from different kinase sets for multi-task learning, the model is capable of capturing key 

structural information in molecular translation, achieving a top-10 success rate of 58.9%. However, as 

there is no protein target information given to the model, its bioactivity improvement is much lower 

than multi-modal DeepHop, with an average bioactivity improvement of 0.64 versus 0.97. When 

simultaneously considering the structural condition and bioactivity condition, DeepHop vastly 

outperforms the multi-task model with an increase of 9.6% on the Constraint Success Rate, indicating 

that the protein information can help the model learn specific bioactivity information for each target.  

 

Table 1. Performance comparison of different training settings on curated internal test set. 

Metrics 
Models 

Single-task Multi-task DeepHop 

Success Rate (%) 27.5±15.9 58.9±20.9 65.2±17.5 

Constraint Success (%) 15.5±14.7 34.6±19.7 43.7±21.0 

Improvement 0.53±0.31 0.64±0.28 0.97±0.24 

Validity (%) 12.9±6.3 92.7±3.8 95.7±3.8 

Uniqueness (%) 8.7±5.5 88.2±8.8 76.4±9.3 

Novelty (%) 99.0±5.1 99.6±0.3 99.4±0.5 

 

Comparison of other Methods. Since all the previous methods were performed on a single target or 



property, it is impractical to evaluate them in the same setting. For a relatively fair comparison, we 

choose the Tyrosine-protein kinase JAK1 (CHEMBL2835), which has the largest number of scaffold 

hopping pairs in our training set, as a representative. Table 2 summarizes the validity, success rate, and 

improvement of the molecules generated by different models for comparison. Despite the strict 

restriction imposed in the scaffolds, DeepHop achieved an order-of-magnitude improvement over the 

current state-of-the-art baseline G2G model with 2.6 times of increases in both the success rate and 

the constraint success rate. Though our validity is slightly lower than G2G (95.8% vs 99.5), the 66.2% 

uniqueness (4.8 times higher than the one by G2G) indicates the quality and diversity of our generated 

molecules. The low success rates and uniqueness by G2G are probably because the model cannot 

process the transformation between two 2D dissimilar graphs, as it only focused on the 2D topological 

information while ignored the 3D spatial information. In addition, the G2G model suffered from a 

limited chemical space because of the small size of substructure vocabulary derived from the small 

training set, resulting in poor uniqueness value. On the other hand, though MMPA had higher 

uniqueness than DeepHop (98.6 vs. 66.2%), it achieved a poor success rate and constraint success rate 

that are 4.7 and 5.1 times lower than our DeepHop model. In addition, the lower bioactivity 

improvement indicates that the simple rule-based method cannot handle scaffold hopping well. 

Compared to these two baselines, seq2seq performed relatively well with a success rate of 32.6%, 

indicating that the SMILES sequence transformation model is better suited for scaffold hopping tasks. 

However, the low uniqueness by the seq2seq model suggests that the generated hops are also stuck 

into a limited chemical space. In summary, DeepHop has a balanced performance in all metrics.  

 

 



Table 2. Performance comparison of models on the Tyrosine-protein kinase JAK1 (CHEMBL2835).  

Metrics 

Models 

Validity 

(%) 

Success rate 

(%) 

Constraint 

success rate 

(%) 

Improvement 
Uniqueness 

(%) 

MMPA 100 15.7 6.6 0.29 98.6 

Seq2seq 34.6 32.6 13.4 0.28 16.9 

G2G 99.5 27.7 13.1 1.11 13.9 

DeepHop  95.8 73.2 33.8 0.41 66.2 

 

Properties of the Generated Molecules. We further dug into the property of generated molecules by 

comparing Drug-likeness score (QED score), the calculated water-octanol partition coefficient (logP), 

molecule weight (MW), bioactivity improvement, and similarity with source ones. 

   For each source compound in the test set, the properties of its top 10 candidates generated by 

different models were calculated. As shown in Fig 3a-c, the hopping molecules generated by DeepHop 

are similar to the source molecules in the distribution of QED, logP, and MW. In contrast, there is a 

large deviation in the distribution among source molecules and molecules generated by G2G and 

MMPA, suggesting that both methods cannot maintain the properties of source molecules when 

performing the molecular transformation. Though Seq2seq also generated a similar distribution to the 

source molecules, it has much smaller diversity and scale due to its much lower validity and uniqueness. 



 

Figure 3. Distribution of chemical properties (a) QED, (b) logP, (c) Weight, (d) diversity, (e) 2D 

scaffold and (f) 3D structural similarity for source molecules and generated molecules from different 

models. 

When comparing the diversity of different models, MMPA achieved the highest diversity score (Figure 

3d), and DeepHop had slightly lower diversity. The seq2seq and G2G models kept much lower 

diversity, indicating that both models are prone to overfit the training set and get stuck in small 

chemical space. Besides, the compounds generated by G2G and MMPA are less similar than the ones 

generated by DeepHop, especially the 3D similarity. These results again proved that DeepHop overall 

outperformed state-of-the-art methods even in a single protein task and can generate high-quality 

scaffold hops for seed molecules efficiently.  

Figure 4 shows two example of the top-predicted molecules generated by DeepHop. The modified 

groups lead to big changes in 2D while small changes in 3D. More cases are shown in the 

Supplementary File. 



 

Figure 4. Example of top-4 successful hops ((2D scaffold similarity ≤ 0.6)∩(3D similarity (X; Y) ≥ 

0.6)∩Activity Improvement ≥ 1 ) with two test molecules generated by DeepHop. The changes in 

the generated molecules compared with starting molecule are highlighted in red. 

 

Model Performance on External Targets. We have shown that DeepHop achieves good performance 

in the internal test set. However, in real-world cases, scaffold hopping is often required for target 



proteins that have only a few known active compounds, and thus it is unable to construct sufficient 

scaffold hopping pairs for training. To mimic this scenario, we further examined whether DeepHop 

can be generalized to external targets that have never been observed in the training set. Following the 

same sampling strategy as above, we generated ten molecules for each parent molecule on six unseen 

targets.  

Table 3. The independent tests of three heterogeneous proteins without homologs and three 

homogeneous proteins with homologs to the proteins in the training set. 

Metrics 

ChEMBL Target 

Homogeneous Heterogeneous 

CHEMBL 

4225 

CHEMBL 

2041 

CHEMBL 

2292 

CHEMBL 

2208 

CHEMBL 

4523 

CHEMBL 

2147 

Success Rate 0.765  0.630  0.705  0.024  0.055  0.129 

Constraint 

Success Rate 
0.471 0.519 0.341 0.024 0.009 0.036 

Improvement 0.515 1.259 0.824 -0.378 -1.210 -1.263 

 

As shown in Table 3, the homogeneous targets performed very well in the external test set, even if all 

the molecular structures and protein sequences in these tasks have never been observed by the model. 

The results are expected as the deep learning models are often capable of generalizing to similar tasks 

while insufficient to perform tasks that are out-of-scope. It also suggests that when there are only a 

few known actives for a specific target protein that has over 60% sequence identity similarity to the 

training target proteins, DeepHop can be alternatively applied to generate scaffold hops directly 

without the need of re-training from scratch. We also noticed that the model achieved low success rates 

on three heterogeneous protein targets that are non-homologous to our training proteins (sequence 



ID<25%). 

For the heterogeneous target proteins, we wonder how many scaffold pairs are required to achieve 

a decent hopping. To this end, we equipped the model with the scheme of transfer learning and tested 

how well it can design inhibitors for the unfamiliar proteins. Specifically, the trained DeepHop were 

fine-tuned with 5%, 20%, 50%, 80% of scaffold hopping pairs from each unseen target protein, 

respectively. 

As shown in Figure 5, by iteration with 100 epochs, only 5% (around 40~200) scaffold pairs can 

help unseen proteins to achieve fair success rates. At this point, the uniqueness of the generated 

molecules is poor because of the overfitting of limited data points. Thereafter, with the increase of 

scaffold hopping pairs, the model can gradually achieve a decent level of success rates and uniqueness. 

Note that the improvements are stable after fine-tuning 5% pairs, suggesting that the bioactivity feature 

is easy to capture compared to structural ones. 



 

Figure 5. Transfer learning with different ratios of scaffold hopping pairs on the heterogeneous unseen 

protein targets.  

 

Scaffold Hopping Case Study. Next, we chose PIM-1 kinase (CHEMBL2147), a well-studied target 

for antitumor drugs, as a representative to mimic a real-world scaffold hopping process. To search for 

novel inhibitors of the PIM-1 kinase, Saluste and co-workers once reported a typical fragment hopping 

by replacing imidazopyridazine scaffold with triazolopyridine, which maintained the primary activity 

and significantly improved off-target selectivity as well as ADME property16.  

We started with one lead inhibitor (seed 1, IC50 = 0.024nM) and two hit inhibitors (seed 2, IC50 = 



155nM; seed 3, IC50 = 130nM), and aimed to generate potential scaffold hopping candidates with the 

improved pharmaceutical property. We used the trained model to generate 500 candidates for three 

seed compounds, respectively. All the generated candidates were then carried out with the docking 

process using AutoDock Vina61.  

 

Table 4. Scaffold hopping case study on PIM-1 kinase with three seed compounds.  

Metrics 
Scaffold Hopping 

Seed 1 Seed 2 Seed 3 

Unique structures 387 264 332 

Structurally successful hops 51 66 40 

Predicted activity < Lead 11 138 167 

Docking score < Lead 102 184 202 

 

  As shown in Table 4, DeepHops can generate a large number of novel hops for each molecule by 

simply increasing the beam search width. The uniqueness values for seeds 1-3 are 77.4%, 52.8% and 

66.4%, respectively. Among them, there are 51, 66, and 40 structurally successful hops generated for 

seed 1,2 and 3, meeting the requirements of (2D scaffold similarity ≤ 0.6) ∩ (3D similarity (X; Y) ≥ 

0.6). In terms of bioactivity, we found that 26.4%, 69.7% and 60.8% of generated hops have a better 

docking scores than the seed compounds, demonstrating the effectiveness of our model. It is worth to 

note that even though the seed 1 has extremely high activity (IC50 = 0.024nM), there are 11 molecules 

to have better-predicted activities and 102 molecules that have better docking scores, suggesting that 

DeepHop could be a powerful tool in developing Me-too or Me-better molecules. 

Several examples are shown in Figure 6. All scaffolds hops meet the condition of structure while 

obtaining a similar or improved activities compared to the starting seeds. 



 

Figure 6. Overlay of the seed inhibitors (sliver) and top-predicted hops (colors). The 2D structures are 

shown below, and the structural similarity (2D Scaffold Tanimoto Similarity and 3D Shape and Color 

Similarity) and docking scores are attached in the upper left. Protein structure is retrieved from 5KZI62. 

 



Conclusions 

In the current study, we have proposed a novel multi-modal deep generative model, DeepHop, for 

scaffold hopping, which is a critical task in rational drug design. The model can generate large sets of 

potential hops with novel backbones and improved bioactivities. This can be used in not only early 

drug discovery phases like hit-to-lead or lead optimization, but also patents busting for Me-Too and 

Me-Better molecules. Furthermore, we demonstrated that the model could generalize to new target 

proteins if fine-tuned with a small set of active compounds. This enables the generation of scaffold 

hops in low source scenarios. Through several case examples, we have shown that our method can be 

applied to practical scaffold hopping tasks, where most of the generated molecules have better docking 

scores than the original seeds while maintaining 3D similar but 2D dissimilar structure.  

In the following work, we will seek to classify the types of scaffold hopping by deeply analyzing 

the molecular transformation paradigm. The hopping mode, like heterocycle replacement, ring-

opening and ring closure, and topology transformation, should become a controlled condition. 

Additionally, a broad-spectrum target proteins dataset will be constructed and tested in order to 

enhance its scope of use. Furthermore, an interesting extension to the DeepHop models would be to 

use multi-objective reinforcement learning to allow our generated hops to match the comprehensive 

expectation (e.g., ADMET, synthesizability) of medicinal chemists. 

The use of DeepHop in chemistry can only be validated experimentally, but we believe that the 

pipeline and model architecture described in our work constitutes an important early step toward 

solving the structure based rational drug design.  
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