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Abstract

Robust, high-performance gas sensing technology has applications in industrial processmon-
itoring and control, air quality monitoring, food quality assessment, medical diagnosis, and secu-
rity threat detection. Nanoporous materials (NPMs) could be utilized as recognition elements in
a gas sensor because they selectively adsorb gas. Imitating mammalian olfaction, sensor arrays
of NPMs use measurements of the adsorbed mass of gas in a set of distinct NPMs to infer the
gas composition. Modular and adjustable NPMs, such as metal-organic frameworks (MOFs), of-
fer a vast materials space to sample for combinations to comprise a sensor array that produces
a response pattern rich with information about the gas composition.

Herein, we frame quantitative gas sensing, using arrays of NPMs, as an inverse problem,
which equips us with a method to evaluate the fitness of a proposed combination of NPMs in a
sensor array. While the (routine) forward problem is to use an adsorption model to predict the
mass of gas adsorbed in the NPMs when immersed in a gas mixture of a given composition, the
inverse problem is to predict the gas composition from the observed mass of adsorbed gas in
each NPM. The fitness of a given combination of NPMs for gas sensing is then determined by the
conditioning of its inverse problem: the prediction of the gas composition provided by a fit (unfit)
combination of NPMs is insensitive (sensitive) to inevitable errors in the measurements of the
mass of gas adsorbed in the NPMs. For illustration, we use experimentally measured adsorption
data to analyze the conditioning of the inverse problem associated with a [IRMOF-1, HKUST-1]
CH4/CO2 sensor array.

1 Introduction

New, robust, high-performance gas sensing technology [1,2] would find applications in worker safety
and process control in industry [3], air quality monitoring [4, 5], food quality assessment [6, 7], the
diagnosis of disease [8], and security threat (chemical warfare agents, explosives) detection [9, 10].
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Gas sensors can produce qualitative or quantitative predictions about the composition of a gas. Qual-
itative gas sensors aim to discriminate between distinctive and, often, complex gas mixtures, e.g.
between the breath of healthy patients and of lung cancer patients [11]. Quantitative gas sensors,
the subject of this article, aim to determine the concentrations of components in a gas mixture, e.g.
of carbon monoxide in the air of a home [12].
Nanoporous materials, such as metal-organic frameworks (MOFs) [13], covalent organic frameworks
(COFs) [14], porous organic cage molecules (POCs) [15], and metal-organic polyhedra (MOPs) [16],
could be utilized as recognition elements in a gas sensor by exploiting their selective gas adsorption
properties [17–23]. In principle, any measurable property of a nanoporous material that is altered by
the adsorption of gas– such as mass [24], luminescence [25], mechanical strain [26, 27], conductiv-
ity [28], or color [29]– could be exploited to infer changes in the gas composition. Without much loss
of generalization, we focus on utilizing a MOF as a sensor by monitoring the mass of adsorbed gas
in it [18]. The mass of adsorbed gas depends upon and thus contains information about the compo-
sition of the bulk gas in which the MOF is immersed; given a mathematical model of gas adsorption,
observation of the adsorbed mass of gas in a MOF places a constraint on the composition of the
gas phase. A mass-based MOF sensor can be miniaturized by depositing a thin film [30–32] of the
MOF on a quartz crystal microbalance (QCM) [33] or surface acoustic wave (SAW) device [34], which
can measure the (total) mass of gas adsorbed in the thin film at the nano-gram scale [18]. Several
experimental feasibility studies demonstrated gas sensing with MOF-coated QCMs [24, 35–42] and
SAWs [43–45] for binary gas mixtures or distinct, pure gases.
Engineering MOFs that diversely interact with the different components of the gas is paramount
for the development of MOF-based sensors. Attributed to their modular synthesis (building blocks:
metal nodes/clusters and organic linker molecules) [46] and post-synthetic modifiability [47], many
MOFs with diverse pore sizes, shapes, and surface chemistries, and therefore with diverse interac-
tions with gases, can be and have been synthesized [48].
Any individual mass-based MOF sensor, however, is insufficient for quantitative gas sensing in do-
mainswhere the gasmixture hasmultiple degrees of freedom (e.g., gasmixtureswhose components
vary independently in concentration) because of cross-sensitivity. Practically, many components of
a gas mixture will adsorb in the MOF and contribute to the adsorbed mass (although, to varying ex-
tents). Consequently, any given (total) adsorbed mass in the MOF could result from many different
compositions, rendering the single-sensor response→ gas composition problem non-invertible.
MOF-based gas sensor arrays [49] confront cross-sensitivity by usingmeasurements of the adsorbed
mass of gas in multiple, distinct MOFs to infer the gas composition. See Fig. 1. Despite that eachMOF
in the array could adsorb all components of the gas mixture (cross-sensitivity), the collection of ad-
sorbedmassmeasurements in eachMOF in the array (the response pattern) could provide sufficient
information to determine the composition of a multi-component mixture, i.e., to render the sensor
array response pattern→ gas composition problem invertible. In other words, a cross-sensitive gas
sensor array is capable of producing an information-rich, high-dimensional response pattern from
which we can determine the concentrations of several components in multi-component gas mix-
tures encountered in practice [49]. The modularity and adjustability of MOFs allows us to synthesize
a diverse set of MOFs to comprise a sensor array that produces a response pattern with high infor-
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mation content. Inspiringly, a sensor array comprised of cross-sensitive MOFs is analogous to the
mammalian olfactory system (see Ref. [50], Box 1), whose olfactory receptors are cross-sensitive to
different odorants [51]; in part for this reason, a sensor array in conjunction with a pattern recogni-
tion system [52] is dubbed an “electronic nose” [1,53].

Figure 1: A gas sensor array that exploits the selective gas adsorption properties of metal-organic
frameworks (MOFs). Two distinct MOFs [HKUST-1, IRMOF-1] are in equilibrium with a CH4/CO2 gasmixture, with p = [pCO2, pCH4] the partial pressures of its components. The total mass of gas ad-
sorbed in each MOF, m = [m1, m2], depends on p. The forward problem, routine in the porous
materials community, is to predict m from p. In quantitative gas sensing, the task is to solve the
inverse problem: predict p from m. However, the observation of m is inevitably contaminated by
measurement error that propagates onto and corrupts the predicted gas composition. The fitness of
a proposed combination of MOFs for a gas sensor array depends on the sensitivity of the predicted
gas composition to this measurement error.
The computational design of MOF-based gas sensor arrays is an emerging research area pioneered
by Wilmer and coworkers [50, 54–57]. Instead of choosing a combination of MOFs for a sensor ar-
ray by trial-and-error, computational methods that can rank combinations of MOFs for a gas sensor
array, based on either simulated [58] or experimentally measured adsorption properties, can accel-
erate the development and deployment of MOF-based gas sensor arrays.
In this article, to enable the computational design of quantitative gas sensor arrays, we formulate
the problem of determining the composition of a multi-component gas mixture using mass-based
MOF sensor arrays as an applied [59] inverse problem [60–62]. The (isothermal) forward problem as-
sociated with a set of MOFs immersed in a gasmixture is routine in the porousmaterials community:
given the gas composition and an adsorption model, determine the mass of gas adsorbed in each
MOF at thermodynamic equilibrium. The adsorption model could be constructed from experimen-
tal adsorption measurements [63, 64], molecular simulations of adsorption [58], simple statistical
mechanical models [65], or statistical machine learning models (e.g., a neural network [66]). The
inverse problem, defined in relation to the forward problem, is encountered in gas sensing: given
the mass of gas adsorbed in each MOF and an adsorption model, determine the gas composition.
While the forward problem is concerned with determining the effect (gas adsorption) of the cause
(gas composition), the inverse problem is concerned with determining the cause from the effect1.

1To justify invoking causality here, we take the gas phase to be a reservoir so that the mass of gas adsorbed in the
MOF cannot change the composition of the gas phase.
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The formulation of mass-based MOF array sensing as an inverse problem provides a methodology
to rank combinations of MOFs for a gas sensor array based on their adsorption properties (more
precisely, based on a mixed-gas adsorption model for each MOF in the array). When solving the in-
verse problem, by inverting the adsorptionmodel, inevitable noise/error in themassmeasurements
propagates onto and corrupts the prediction of the gas composition; the optimal gas sensor array
will yield an inverse problem whose solution, the predicted gas composition, is insensitive/robust to
this measurement error [50,59].

Inverse problems

The most famous inverse problem [59,67] in mathematics is perhaps “can one hear the shape of a
drum?” [68–70]. Here, we provide an illustrative example of an inverse problem that is more accessible
to the chemical sciences.

Consider a hot cup of coffee solution at a (spatially uniform) initial temperature, T0. The temper-
ature of the coffee, T = T (t), evolves with time, t , as it exchanges heat with the air at ambient
temperature, Ta. Take T0, Ta ∈ (0◦C, 100◦C) so that the coffee begins and remains in the liquid
phase. A crude dynamic model for T = T (t) is:

C
dT

dt
= hA(Ta − T ) (1)

T (t = 0) = T0, (2)
with C the thermal capacity of the coffee, h the heat transfer coefficient, and A the surface area of the
coffee through which heat is transferred. Take the time constant τ := C/(hA) and Ta as known. Inthe forward problem, the initial temperature T0 is given, and the task is to use this dynamic model to
predict the temperature at a later time t∗ > 0, T (t∗). Fig. 2 shows the numerical solution to eqn. 1,
for varying T0 in eqn. 2. In an associated inverse problem, the temperature at a later time t∗ > 0,
T (t∗), is given, and the task is use the model to predict the initial temperature, T0 [71]. Graphically,the solution to the inverse problem is found in Fig. 2 by identifying the point (t∗, T (t∗)) on the graph
and following the trajectory that passes through it backwards in time to reach T0. Though simple, this
inverse problem presents interesting features:
� (inversion of causality) In the forward problem, we predict the effect (later in time) of a cause

(earlier in time), whereas, in the inverse problem, we predict the cause of an effect.
� (ill-conditioning) For t∗ >> τ , the temperature of the coffee, T (t), is close to the ambient

air temperature, Ta, for all initial temperatures, T0. As a result, for t∗ >> τ , a small error
in the measurement of T (t∗) is amplified into a large change in the predicted T0. For t∗ suf-ficiently large, it is practically impossible to predict T0 from T (t∗) accurately because of this
ill-conditioning.

� (possibility that a solution does not exist) For t∗ >> τ , small errors in the measured T (t∗)
could result in a predicted T0 outside the feasible range of temperatures for which the model
is valid, T ∈ (0◦C, 100◦C).

N.b., model error emanating from simplifying assumptions to arrive at eqn. 1 also corrupts the predic-
tion of T0 in the inverse problem.
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Figure 2: The temperature T (t) of coffee at different initial temperatures T0 under themodel
in eqns. 1-2 with time constant τ := C/(hA) and Ta = 20◦C.

2 Framing an electronic nose as an applied inverse problem

Wefirst frame quantitative gas sensing, usingmeasurements of themass of gas adsorbed in an array
of MOFs, as a mathematical inverse problem [60–62].
Consider a set of nm distinct MOFs in thermodynamic equilibrium with a gas mixture containing ngcomponents. Let p ∈ Rng denote the gas composition– a vector containing the partial pressure of
each component of the gas mixture– and T be the temperature of the gas. Letm ∈ Rnm denote the
resulting sensor array response– a vector containing the total adsorbed mass of gas in each MOF.

2.1 The adsorption model

The adsorption model
f (p;T ) = m (3)

maps the composition p and temperature T of the gas phase to the equilibrium mass of gas ad-
sorbed in each MOF, m. Hereafter, we take temperature as fixed and omit T in eqn. 3, making f
the equilibrium, mixed-gas adsorption isotherm. We assume the domain of f is comprised of all
possible gas compositions, P ≡ [0,∞)ng . The codomain of f isM≡ [0,∞)nm . i.e. f : P →M.
In contrast to our previous study [50], we allow f to be nonlinear to account for (i) the saturation
of adsorption sites in the MOF and (ii) non-additive contributions to the adsorbed mass of gas by
different components of the gas. We take f : p 7→ m to be a continuously differentiable function,
thereby prohibiting adsorption/desorption hysteresis and gas-induced structural transitions seen in
flexible MOFs [72].
Constructing an adsorption model is routine in the porous materials community, whether through
fitting/interpolating experimental adsorption data [63], ideal adsorbed solution theory [73–75],molec-
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ular models and simulations of gas adsorption [58], simple statistical mechanical models [65], or
statistical machine learning models [66].

2.2 The forward problem

The forward problem is also routine– and sometimes trivial– in the porous materials community:
given the gas composition p and the adsorption model f , determine the equilibriummass of gas ad-
sorbed in each MOF,m. Per the constraints we imposed on f , which prohibit adsorption/desorption
hysteresis, the solution to the forward problem exists and is unique.

2.3 The (applied) inverse problem

In quantitative gas sensing, we are confronted with the inverse problem, defined in relation to the
forward problem: given the mass of gas adsorbed in each MOF, m, and the adsorption model, f ,
determine the gas composition p. i.e., the inverse problem is to find p that satisfiesm = f (p).
As opposed to an exact inverse problem, we consider the practically relevant applied inverse prob-
lem [59], where we take into account uncertainties in the inputs. In practice, the observations of
the adsorbed mass of gas in each MOF are corrupted by measurement noise/error, δm ∈ Rnm . This
measurement error will propagate onto and corrupt the prediction of the gas composition. Acknowl-
edging this is key to evaluating the fitness of a gas sensor array: the optimal gas sensor array will
yield an inverse problem whose solution, the prediction of the gas composition, is insensitive to the
measurement error.
However, despite the well-posedness of the forward problem, the applied inverse problem could
have (i) multiple solutions if f is not injective (one-to-one) or (ii) no solution if f is not surjective
(onto). An underdetermined system, giving case (i), certainly occurs if the array is composed of an
insufficient number of MOFs to fully constrain the ng degrees of freedom in the gas composition
(nm < ng). Case (ii) is problematic if measurement error contaminatesm and pushes it outside the
range of f . The inverse problem has no solution ifm + δm /∈ M′ ≡ f (P). This almost certainly
occurs if there are more MOFs comprising the sensor array than degrees of freedom in the gas
composition (nm > ng), giving an overdetermined system. See Ref. [50] for further discussion in the
context of linear systems.
Hereafter, we assume the sensor array is composed of nm = ng distinct MOFs (i) to avoid under- and
over-determined systems, which will require a longer paper to treat, and (ii) as the most economical
yet sufficient gas sensor array. Moreover, we take the adsorption model f to be injective so that, if
a solution to the inverse problem exists, it is unique.

2.4 A remark on causality

Changes in the gas composition cause changes in the amount of gas adsorbed in theMOFs, provided
the gas phase is a reservoir. For this reason, adsorption models f (p;T ) are often constructed from
underlying physical principles (thermodynamics) [58,65,73], but are sometimes empirical [66]. While
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the task in the forward problem is to determine the effect (m) of the cause (p), in the inverse problem,
the task is to determine the cause (p), given knowledge of its effect (m).

2.5 A left inverse of the adsorption model

The applied inverse problem has a unique solution provided (i) f is injective and (ii) the observed
mass vector falls in the range of f , i.e.,m+ δm ∈M′ = f (P). We find the solution by constructing
the left inverse of the adsorption model, g :M′ → P :

g(m) := f −1(m) = p ⇐⇒ f (p) = m. (4)
We carefully defined the domain of the left inverse g to be the image of f ,M′. From the adsorption
model f , we can (i) possibly, analytically solve for g(m) or (ii) numerically, for a givenm, compute
g(m) = p by searching for a root [76] of the function f (p)−m.

2.6 The conditioning of the applied inverse problem

The conditioning of an inverse problem refers to the sensitivity of its solution to a perturbation in the
input [61]. In an ill-conditioned (well-conditioned) problem, small perturbations in the input cause
large (small) perturbations in the solution. In quantitative gas sensing, the input is the observed/mea-
sured sensor array response, and the solution is the predicted gas composition. We wish the inverse
problem in gas sensing to be well-conditioned, so that errors in the measured mass of adsorbed gas
in each MOF minimally corrupt the predicted gas composition.

the pristine inverse problem
g

m p

the perturbed inverse problem
g

m+ δm p+ δp

Figure 3: To analyze the conditioning of the in-
verse problem, we consider when the pristine in-
put, m, is contaminated by measurement error,
δm. The solution to this perturbed problem dif-
fers from the solution to the pristine problem by
δp, by its definition. We wish ||δp|| to be small,
so that the predicted gas composition is insensi-
tive to measurement error. The resulting ||δp||
depends on g, which in turn depends on the com-
bination of MOFs that comprise the sensor array.

Let δm ∈ Rnm be a perturbation in the sensor
array response,m. Assume that (i) f is injective,
so that its left inverse, g in eqn. 4, exists and (ii)
the observed response falls in the image of f ,
i.e.,m+δm ∈M′. In the pristine inverse prob-
lem, the input ism, and the predicted gas com-
position is p = g(m). In the perturbed inverse
problem, the input ism+δm, and the predicted
gas composition is p+δp = g(m+δm), which
defines δp as the perturbation of the pristine so-
lution that results from the perturbation δm of
the pristine input. See Fig. 3. The conditioning
of the inverse problem is characterized by the
ratio of the relative error in the predicted gas
composition to the error in the mass measure-
ments (since we generally expect ||δp|| to grow
with ||δm||):
||δp||/||p||
||δm|| =

||g(m+ δm)− g(m)||/||p||
||(m+ δm)−m|| .

(5)
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The equality on the right in eqn. 5 shows conditioning as the ratio of the relative error in the output
of g to the error in the input to g (see Fig. 3).
The condition number [77] is defined by eqn. 5 under the limit of small ||δm||, allowing us to make a
linear approximation:

g(m+ δm) ≈ g(m) + Jg(m)δm, (6)
with Jg = Jg(m) the Jacobian matrix of the left inverse function, g. The condition number is then:

χ := lim
ε→0+

sup
||δm||≤ε

||δp||/||p||
||δm|| =

||Jg||op
||p|| , (7)

and it quantifies the sensitivity of the predicted gas composition to small perturbations in the mea-
surements of mass adsorbed in each MOF comprising the sensor array. The supremum in eqn. 7 is
needed because, generally, ||δp|| depends on not only the magnitude of δm, but on its direction as
well. The equality on the right of eqn. 6, with || · ||op the operator norm, follows from the definition
of the operator norm of Jg .
The condition numberχ in eqn. 7 has a geometric interpretation. Under the linear approximation in
eqn. 6, the perturbation in the gas composition is a linear transformation of the (small) perturbation
of the measured masses, δp ≈ Jg(m)δm. The operator norm of the Jacobian matrix, ||Jg||op , isthe maximum factor by which the vector δm can be stretched by transforming it with Jg . For a well-conditioned inverse problem, we wish ||Jg||op to be small to minimize the stretching of δm when it
is transformed into δp.
N.b. the condition number χ generally depends onm, i.e., χ = χ(m), because Jg = Jg(m). We
may also say that χ depends on the gas composition to which the sensor array is exposed, since
χ(m) = χ(f (p)).
Finally, we link the conditioning of the inverse problem directly to the properties of the adsorption
model, f , using the inverse function theorem. The Jacobian matrix of g evaluated atm is equal to
the matrix inverse of the Jacobian of f evaluated at p = g(m), giving χ viewed as a function of p:

χ = χ(p) =
||[Jf (p)]−1||op.

||p|| . (8)
Because (i) the operator norm of a matrix is equal to its largest singular value and (ii) the singular
values of the inverse of a matrix, if it exists, are obtained by inverting the singular values of the
matrix [78], χ is equal to the inverse of the smallest singular value of Jf (p) divided by ||p||. Of
course, the ordering of the MOFs/gases in the vectorsm/p is immaterial, since the singular values
of Jf (p) are invariant to permutations of the rows and columns.

2.7 Evaluating the fitness of a gas sensor array

The condition number,χ in eqn. 7, quantifies the fitness of a proposed combination ofMOFs to com-
pose a gas sensor array. It describes the sensitivity of the predicted gas composition to errors in the
measurements of the mass of gas adsorbed in the MOFs. We can determine χ from the adsorption
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model, f (p), that governs gas adsorption in the proposed combination of MOFs via eqns. 4 and 8.
Because χ = χ(m) = χ(f (p)), the fitness of a sensor array depends upon the gas composition to
which it is exposed.

2.8 Remark on absolute versus relative errors

We can define four condition numbers based on combinations of the relative and absolute error
in the input and output of g [60]. We opted to define the condition number in eqn. 7 using the
relative error in the gas composition, ||δp||/||p|| and the absolute error in the measured masses,
||δm||. To justify ||δp||/||p||, e.g., ||δp|| = 0.01 bar may be acceptable if the partial pressures are
on the order of 100 bar, but unacceptable if on the order of 0.1 bar. The suitability of using absolute
error inm depends upon the noise/error characteristics of the (QCM or SAW) device that measures
the mass of adsorbed gas in the MOFs. If the typical error ||δm|| scales with ||m||, relative error is
more appropriate. Our work can easily be adapted to work with relative errors in ||m||. N.b., when
using a condition number to compare the fitness of two sensor arrays operating in the same gas
composition, defining the conditioning in terms of absolute or relative error inp produces equivalent
rankings.

3 Examples of the analysis of conditioning of the inverse prob-
lem

We framed the problem of predicting gas composition from observation of the adsorbed masses
of gas in an array of MOFs as an applied inverse problem. Now, we illustrate how this framework
allows us to quantify and rank the fitness of combinations of MOFs for gas sensor arrays. For case
studies, we consider single-MOF methane sensing and double-MOF methane/carbon dioxide sens-
ing. The two candidate materials are canonical MOFs, HKUST-1 [79] and IRMOF-1 [80], in which we
have experimentally measured, pure-CH4 and pure-CO2 adsorption data at 298 K [64,81]. See Fig. 4.Note that we use g/g units form, assuming an equivalent mass of each MOF is used in the array.
In the determined inverse problems we analyze below, the number of (distinct) MOFs in the array nmis equal to the number of components of the gas ng , and each observation of amass of gas adsorbed
in a MOF of the array restricts one degree of freedom in the gas composition.
The code anddata to reproduce all plots in this article are available atgithub.com/SimonEnsemble/
nonlinear_sensing.

3.1 A single-MOF sensor array

A single-MOF (nm = 1) sensor for a pure gas (ng = 1) is an instructive starting point. Consider eitherHKUST-1 or IRMOF-1 in thermodynamic equilibrium with a bath of pure methane gas at temperature
T and pressure p.

9
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Figure 4: Experimental methane and carbon dioxide adsorption data in IRMOF-1 and HKUST-1 to
illustrate analysis of the conditioning of the inverse problem associated with the gas sensor array
depicted in Fig. 1. (a, b) Crystal structures of HKUST-1 [79] and IRMOF-1 [80]. (c, d) Experimentally
measured, pure-component, equilibrium methane [64] and carbon dioxide [81] uptake at 298 K in
HKUST-1 and IRMOF-1. Note difference in scales on the axes.
The adsorptionmodel. We use the Langmuir adsorption model [65] to describe the adsorption of
methane in each MOF, at fixed temperature, as a function of pressure:

m = f (p;T ) = m∞
Kp

1 +Kp
, (9)

where m∞ = limp→∞ f (p) is the saturation loading and K = K(T ) is the Langmuir parameter
that describes the affinity of gas for the MOF (p = K−1 =⇒ m = m∞/2). We identify the
parameters K and m∞ for both HKUST-1 and IRMOF-1 by least-squares fitting to the experimental
methane adsorption isotherm data at T = 298 K. Fig. 5a displays the (good) Langmuir model fits
to the data. The domain and image of f in eqn. 9 are P ≡ [0,∞) andM′ ≡ f (P) = [0, m∞),respectively. Note that f (p) is injective, but not surjective sincem ≤ m∞.
The forward problem. The (isothermal) forward problem is to predict the methane uptake in the
MOF, m, at a given pressure, p. The solution to the forward problem is trivial: compute m = f (p)
from eqn. 9 with the identified model parametersK andm∞.
The inverse problem. Weencounter the (isothermal) inverse problem inmethane gas sensing: the
task is to, given the mass of methane adsorbed in the MOF,m, predict the pressure of the methane
gas, p, in which theMOF is immersed. While perhaps an academic problem to use aMOF tomeasure
the pressure of a pure gas, this nm = ng = 1 sensing problem reveals useful insights.
The left inverse of the adsorption model. To find a solution to the inverse problem for input
m ∈M′, we find a closed-form expression for the left inverse of f in eqn. 9:

p = g(m) := f −1(m) =
1

K

m/m∞
1−m/m∞

. (10)
The domain of the inverse function g : m 7→ p isM′ = [0, m∞) and its image is P = [0,∞). The
left inverse g(m) is shown for HKUST-1 and IRMOF-1 in Fig. 5b.
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Figure 5: Methane sensing using a single-MOF sensor, either IRMOF-1 or HKUST-1. (a) The Langmuir
adsorption isothermmodel f (p) in eqn. 9 (lines) for methane adsorption in HKUST-1 and IRMOF-1 at
298 K,whosemodel parametersK andm∞were identified by fitting to experimental adsorption data
(points) from Ref. [64]. (b) Experimental methane adsorption data (points) and left inverse functions
g(m) = f −1(m) given in eqn. 10 (green and blue lines) for HKUST-1 and IRMOF-1. Under the scenario
that p = 60 bar (solid, horizontal gray line), the red arrows and gray shaded regions show how a
perturbation in the measured adsorbed mass, δm, the same for both MOFs, perturbs the prediction
of the gas pressure by δp, which is larger in magnitude for HKUST-1.

Notably, measurement error δm could push m + δm outside the image of f so that the inverse
problem has no solution. e.g., ifm+ δm > m∞, then there does not exist a gas composition p ≥ 0
such that f (p) = m + δm.
The conditioning of the inverse problem. We now study the conditioning of the inverse problem,
which is solved form ∈M′ by computing g(m) in eqn. 10.
Fig. 5b geometrically illustrates how an error in the measuredmass of gas, δm, propagates onto and
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corrupts the predicted gas composition by δp. In this scenario, each MOF is immersed in a bath of
pure methane gas at 60 bar and 298 K. More methane is adsorbed in IRMOF-1 than in HKUST-1. The
measurement error δm is equal for both single-MOF sensors. Comparing the resulting perturbation
in the predicted gas composition, δp, between HKUST-1 and IRMOF-1:
� The δp for HKUST-1 is larger than the δp for IRMOF-1; hence, IRMOF-1 has a higher fitness for

gas sensing at p = 60 bar and 298 K than HKUST-1 because the predicted gas composition is
less sensitive to the measurement error.

� The magnitude of δp depends upon the direction of δm in addition to its magnitude.
� In the limit of small ||δm||, δp is large if g′(m) is large, since then a small perturbation in m

results in a large perturbation in p.
� The magnitude of δp depends on p. At lower pressures, the ranking of the MOFs switches,

and HKUST-1 has a higher fitness for methane sensing than IRMOF-1.
The geometric picture in Fig. 5b reinforces the concept of conditioning and how analysis of condi-
tioning provides a means to juxtapose the fitness of two MOFs for a gas sensor array.
The condition number in eqn. 7, which pertains to small ||δm||, becomes the logarithmic derivative
of g for a single-MOF sensor,

χ = χ(m) =
g′(m)

g(m)
=

1

m(1−m/m∞)
, (11)

and for the left inverse function in eqn. 10. The condition number [units: 1/(g/g)] quantifies the per-
turbation of the predicted pressure of the methane gas that results from small perturbations in the
measured adsorbed mass of gas in the MOF. The condition number is more useful when viewed as
a function of p, since we aim to compare IRMOF-1 and HKUST-1 for sensing at a particular p:

χ = χ(p) =
(1 +Kp)2

m∞Kp
. (12)

Eqn. 12 reveals that the inverse problem is ill-conditioned (large χ) at the two extremes of:
� low pressures ((Kp) → 0 =⇒ m → 0), because the relative (not absolute) error in the

predicted gas composition becomes very large at low pressures. Thus, eqn. 12 recovers the
notion of a lower limit of detection.

� high pressures ((Kp) → ∞ =⇒ m → m∞), because the pores of the MOF saturate with
gas, and the mass of gas adsorbed in the MOF becomes insensitive to changes in gas com-
position, thereby making the predicted gas composition sensitive to errors in the measured
adsorbed mass. Thus, eqn. 12 recovers the notion of an upper limit of detection.

Fig. 6 displays the condition numberχ for both IRMOF-1 and HKUST-1, viewed as a function ofm and
of p separately. Indeed, the condition number grows unboundedly at high and low pressures for
both MOFs. Moreover, the inverse problem is better-conditioned for IRMOF-1 than for HKUST-1 at
pressures above ca. 12.5 bar, whereas, below 12.5 bar, HKUST-1 has a lower condition number than
IRMOF-1. Fig. 6 therefore illustrates that the condition numberχ provides ameans to rank the fitness
of MOFs for gas sensing at different conditions, given the objective is to choose a MOF that yields a
prediction of the gas composition that is insensitive to measurement error.
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Figure 6: The condition number, χ, of the inverse problem for methane sensing using the observed
mass of adsorbed gas in either HKUST-1 or IRMOF-1. The upper-left panel shows the inverse function
g(m) (line) and experimental data (points) for both HKUST-1 and IRMOF-1. The bottom and right
panels show the condition numberχ as a function ofm and p, respectively, for the two MOFs, given
in eqn. 11 and 12. At low (high) pressures, HKUST-1 (IRMOF-1) has a higher fitness for gas sensing
because χ is smaller, hence the predicted pressure of methane is less sensitive to measurement
error inm.

Finally, we link the condition number, viewed as a function of pressure, directly to the adsorption
model f (p) through eqn. 8:

χ = χ(p) =
1

pf ′(p)
. (13)

This more generally reinforces the conclusions we drew from eqn. 12: (1) as the pressure diminishes,
χ grows unboundedly because the relative error in the pressure blows up while the Henry coeffi-
cient, limp→0 f ′(p) remains finite and (2) if the slope of the adsorption isotherm, f ′(p), is small, the
condition number is large. The latter inevitably occurs at higher pressures when the pores of the
MOF saturate with gas.
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3.2 A two-MOF sensor array

Wenow consider a gas sensor array of nm = 2MOFs, IRMOF-1 andHKUST-1, taskedwith determining
the partial pressures of the ng = 2 components in a methane/carbon dioxide mixture.
Consider HKUST-1 and IRMOF-1 in thermodynamic equilibrium with a CH4/CO2 mixture at tempera-
ture T with partial pressures p = [pCO2, pCH4] ∈ R2. Letm = [mHKUST-1, mIRMOF-1] ∈ R2 be the totalmass adsorbed in each MOF, comprised of both CO2 and CH4 gas.
The adsorptionmodel. As amixed-gas (CH4/CO2) adsorptionmodel for eachMOF, we invoke Ideal
Adsorbed Solution Theory (IAST) [73–75], a thermodynamic framework for predicting mixed-gas ad-
sorption from pure-component (pure CH4 and CO2) adsorption isotherms. As input, IAST requires
a mathematical model for the pure-component adsorption isotherms in Figs. 4c and 4d. For the
pure-CH4 adsorption isotherms, we use the fitted Langmuir models (see eqn. 9) shown in Fig. 5a. We
also use a fitted Langmuir model for the pure-CO2 adsorption isotherm in HKUST-1. However, we
resort to linear interpolation of the pure-CO2 adsorption data in IRMOF-1, since the Langmuir model
cannot capture the inflection in the data. Fig. S1 shows all four pure-component adsorption isotherm
models on top of the experimental data. The IAST framework, together with the pure-component
adsorption models, provide our mixed-gas adsorption model,m = f (p;T ), though not explicitly.
The forward problem. The (isothermal) forward problem is to predict the total mass of gas ad-
sorbed, comprised of both CO2 and CH4, in each MOF, m, given the partial pressures of CO2 andCH4 in the gas phase, p.
We find the solution to the forward problem through IAST calculations, implemented in pyIAST [74].
i.e., pyIAST provides a numerical implementation of the functionm = f (p).
We visualize the IAST-based adsorption model as a mapping f : p 7→ m in Fig. 7a [50,82]. The thick,
black boundary shows how the square in gas composition space (left) is non-linearly transformed
into the more complicated shape in sensor response space (right). Moreover, the vertical/horizontal
lines in composition space are transformed into the same-colored vertical-ish/horizontal-ish lines in
response space. The images of the vertical lines in composition space have a smaller arc length in
response space than the images of the horizontal lines. This indicates that themass of gas adsorbed
in the MOFs is less sensitive to changes in the partial pressure of CH4 than to changes in the partialpressure of CO2; generally CO2 has a higher affinity for MOFs than CH4 owing to its polar bonds. We
also can see how the small square regions in composition space, formed by the lines, are mapped
into response space. As the partial pressures of the components increase, either together or inde-
pendently, the images of the (same size) squares in composition space occupy less area in response
space. This is because, as the pores of the MOF fill with gas, the mass of gas adsorbed in the MOF
becomes less sensitive to charges in the partial pressure.
The inverse problem. We encounter the (isothermal) inverse problem in CO2/CH4 gas sensing:the task is to, given the total mass of adsorbed gas in each MOF,m, predict the partial pressures of
the two components, p, in the gas phase in which the MOFs are immersed.
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Figure 7: Visualizing the maps f : p 7→ m and g : m 7→ p for the two-MOF [HKUST-1, IRMOF-1]
sensor array immersed in a CO2/CH4 gas mixture at 298 K. (a) The mapping of composition space
into sensor response space by the mixed-gas adsorption model m = f (p), provided by IAST in
conjunction with pure-CO2 and pure-CH4 adsorption isotherm models in Fig. S1. (b) The mapping
of sensor response space into gas composition space by the left inverse of the adsorption model,
p = g(m), implemented numerically by a root finding algorithm on the function f (p) − m. For
both (a) and (b): The thick, black boundaries gives a global view of how the regions of the domain
are transformed by f and g into regions in the codomain. The vertical and horizontal lines of a given
color are mapped to the vertical-ish and horizontal-ish lines of the same color. Points outside the
gray region in sensor response space are outside the (a) image of f and (b) domain of g.

The left inverse of the adsorptionmodel. To implement the left inverse of the adsorptionmodel,
g(m) = p, which produces the solution to the inverse problem (if a solution exists), we resort to a
numerical root finding algorithm (in SciPy [83]):

p = g(m) = search for p such that m− f (p) = 0. (14)
N.b., sensor array responses that fall outside the gray region in Fig. 7a are outside the image of f ; in
that case, a solution to the inverse problem does not exist.
We visualize the mapping g : m 7→ p in Fig. 7b in a similar manner as in Fig. 7a. The most important
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feature of the mapping is that the (same size) squares in response space are stretched into larger
regions in composition space by g as the MOFs adsorb more gas. As a consequence, the inverse
problemwill be ill-conditionedwhen the pores of theMOF are nearly saturatedwith gas; small errors
in the measured masses will be stretched into large errors in composition space. Fig 8a illustrates
this consequence more clearly.
Fig 8a shows how circles in response space are mapped into composition space. In response space,
the x’s represent pristine measurements ofm, and the circles around the x’s represent perturbed
measurements, contaminated by errors δm of the same magnitude. In gas composition space, the
same-colored x represents the true gas composition, with the surrounding oval outline represent-
ing the corrupted predictions of the gas composition from using the observationsm+ δm to solve
the inverse problem. Each colored region in response space represents an uncertainty zone associ-
ated with the marked x: owing to measurement errors, we are unable to confidently distinguish the
response m marked with x from all responses that fall in its uncertainty zone. As a result, we can
at best confidently conclude that the gas composition falls somewhere within the cognate, colored
zone in composition space. Fig 8a reveals, as a result of measurement errors of fixed magnitude
||δm||, the perturbation of the predicted gas composition, δp,
� depending on the direction of δm, could have a much larger component in the direction of
pCH4 , since the mass of gas adsorbed is less sensitive to changes in pCH4 , compared to pCO2 .Consequently, the condition number χ in eqn. 7 has a dominant contribution from the error
in the predicted pCH4 .

� tends to increase in magnitude as the partial pressures of the gases increase (together or
separately). This is a result of the pores of the MOF saturating with gas, causing adsorption to
be less sensitive to charges in partial pressure.

The conditioning of the inverse problem. Fig. 8b displays the condition number associated with
the inverse problem, given in eqn. 8 and viewed as a function of gas composition, i.e., χ = χ(p).
We computed χ(p) via (i) numerical differentiation of f to obtain the Jacobian Jf (p), (ii) compu-
tation of the smallest singular value of Jf (p), σ2, and then (iii) computation of the operator norm
||[Jf (p)]−1||op = σ−12 . As in the 1D case, the inverse problem is ill-conditioned at low partial pres-
sures (representing the lower limits of detection) and at higher partial pressures of CO2, when the
pores of the MOFs saturate with gas. The latter reinforces our observations in Fig. 8a, which shows
thatmeasurement errors δm can be stretched into large δpwhen the partial pressure of CO2 is high.
Gas sensor arrays cope with cross-sensitivity. In gas sensing using QCMs or SAWs, only the total
mass of gas is adsorbed, which, for cross-sensitiveMOFs, has a contribution fromeach component of
the gas phase. With an adsorptionmodel, however, we have the luxury of showing the adsorption of
each component of the gas. Fig. S2 shows themass of each component, CH4 and CO2, of the CH4/CO2mixture adsorbed in each HKUST-1 and IRMOF-1, as a function of the gas composition, according to
IAST. Indeed, HKUST-1 and IRMOF-1 are cross-sensitive MOFs; when exposed to a CH4/CO2 mixture,
each appreciably adsorb both components of the gas. Therefore, observation of the totalmass of gas
adsorbed in either HKUST-1 or IRMOF-1 in isolation is insufficient to predict the composition of the
CO2/CH4mixture because e.g., ameasurement of 0.05 g/g could be due tomostly CO2 ormostly CH4.
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Figure 8: Conditioning of the inverse problem associated with the double-MOF (HKUST-1, IRMOF-1)
CO2/CH4 sensing array. (a) The circles in sensor response space, all of the same radius, are mapped
into the same-colored oval shapes in gas composition space by the left inverse, g(m). This indicates
how measurement errors in sensor response space are stretched into composition space. Points
outside the gray region in sensor response space are outside the domain of g. (b) The condition
number χ = χ(p) of the inverse problem associated with the two-MOF sensor array [IRMOF-1,
HKUST-1] immersed in a CO2/CH4 mixture.

The total mass of gas adsorbed in both HKUST-1 and IRMOF-1 together,m, however, is sufficient to
arrive at a unique prediction of the gas composition, as Fig. 7b shows. This underscores the necessity
for gas sensor arrays in practical gas sensing applications, where the gas composition has multiple
degrees of freedom. Sensor arrays allow us to overcome cross-sensitivity of any individual MOF by
allowing each MOF to constrain one degree of freedom in the gas phase; collectively, the collection
of responses in the MOFs pinpoint the gas composition.

4 Discussion

We framed quantitative gas sensor arrays, where measurements of the mass of gas adsorbed in an
array of adsorbents is used to infer the composition of a gas, as a mathematical inverse problem.
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The fitness of a proposed combination of adsorbents for quantitative gas sensing is determined by
the conditioning of its inverse problem, which is the robustness/insensitivity of the predicted gas
composition to errors in the measurements of the adsorbed masses of gas. We demonstrated how
the condition number allows us to evaluate and compare the fitness of combinations of adsorbents
for gas sensor arrays using a single- and double-MOF sensor array for CO2/CH4 sensing. The con-ditioning of the inverse problem depends not only on the adsorption properties of the adsorbents
composing the array, but also on the gas composition. In general, the inverse problem becomes
ill-conditioned (i, low detection limit) at low pressures because the relative error in the predicted gas
composition blows up, and (ii, high detection limit) at high pressures, when the pores of the adsor-
bent become saturated with gas, causing the mass of gas adsorbed in the MOF to be insensitive to
changes in gas composition.
In addition to the mass of adsorbed gas, other measureable properties of MOFs that depend on gas
composition can be exploited for gas sensing, e.g., changes in luminescence [25], mechanical strain
[26,27], or conductivity [28]. The ideas in this article, namely quantifying the fitness of a combination
of MOFs for a gas sensor array based on the condition number χ, also apply to these other sensing
mechanisms, provided that one can construct amodel analogous to eqn. 3 that relates themeasured
property of the MOF (the analogy tom) to the gas composition. Exploiting the physical phenomena
that “the adsorbed mass of gas in a MOF depends upon the gas composition” to construct a gas
sensor is attractive from a computational standpoint because we can, using molecular models and
simulations, predict the amount of gas adsorbed in a MOF as a function of gas composition and
temperature [58]. This opens the possibility to conduct high-throughout computational screenings
of MOF-based electronic noses that exploit the adsorbed mass of gas in the MOFs [54].
Computationally ranking combinations of MOFs for gas sensor arrays is an emerging research area
[50,54–57]. At this juncture, we highlight shortcomings of our work and provide new directions.
Our gas sensing framework requires a priori knowledge of what constituents are possibly present in
the gas phase. If gas speciesX is present in the gas phase and adsorbs appreciably in the MOF, but
is not accounted for in the adsorption model f (p) in eqn. 3, the prediction of the gas composition
using the adsorption model is invalid. Fundamentally, we cannot foresee how to circumvent this,
except to, for all gas species that could be present with reasonable probability, incorporate them
into the adsorption model.
We studied how measurement error corrupts the prediction of the gas composition, but we ignored
model error that emanates from the simplifying assumptions to arrive at the equilibrium gas adsorp-
tion model m = f (p). For example, in this work, we took (i) CH4 adsorption to perfectly follow a
Langmuir model with the identifiedK andm∞ and (ii) mixed CO2/CH4 adsorption to follow Ideal Ad-
sorbed Solution Theory. One way to quantify model error is to study the sensitivity of the predicted
gas composition to the model parameters [50].
While we took isothermal conditions in our article, we can adapt our modeling framework to handle
varying temperatures by constructing a temperature-dependent adsorption model f (p;T ) as in
eqn. 3, then either: (i) input the measured temperature of the gas, identified by an independent
measurement, into the adsorption model or (ii) include the temperature as an additional variable to
be determined in the inverse problem.
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We defined the condition number χ in eqn. 7 using the absolute error in the measurement, but
the expected magnitude of the measurement error could be dependent on the magnitude of the
measurement. The noise characteristics of the mass measurement device (QCM or SAW) should be
further characterized before sensor design and deployment. For future work, we aim to specify a
probabilistic distribution for the errors in themeasuredmasses, δm, then determine the distribution
of the error in the predicted gas composition, δp, that results when solving the inverse problem.
Finally, we aim to study ill-posed inverse problems for futurework. In the underdetermined problem,
e.g., when there are fewer MOF sensors than gases (nm < ng), the sensor response is insufficient to
fully constrain the gas composition, but (i) it could still provide useful, though incomplete, informa-
tion about gas composition and (ii) introducing regularization or incorporating a prior belief would
alter the inverse problem and give it a unique solution. In the overdetermined problem, when there
are more MOF sensors than gases (nm > ng), we can cast the inverse problem as a least squares
problem, as in Ref. [50], giving it a unique solution.
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