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Abstract

Functionalized supramolecular cages are of growing importance in biology and biochem-

istry. They have recently been proposed as efficient auxiliaries to obtain high-resolution co-

crystallized proteins. Here, we propose a molecular dynamics investigation of the supramolec-

ular association of sulfonated calix-[8]-arenes to cytochrome c starting from initially distant

protein and ligands. We characterize two main binding sites for the sulfonated calixarene on

the cytochrome c surface which are in perfect agreement with the previous experiments with

regard to the structure (comparison with the X-ray structure PDB 6GD8) and the bind-

ing free energies (comparison between the molecular mechanics Poisson-Boltzmann surface
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area (MM-PBSA) analysis and the isothermal titration calorimetry (ITC) measurements).

The per-residue decomposition of the interaction energies reveals the detailed picture of this

electrostatically-driven association and notably the role of the arginine R13 as a bridging

residue between the two main anchoring sites. In addition, the analysis of the residue behav-

ior by means of a supervised machine learning protocol unveils the formation of an hydrogen

bond network far from the binding sites, increasing the rigidity of the protein. This study

paves the way towards an automated procedure to predict the supramolecular protein–cages

association, with the possibility of a computational screening of new promising derivatives

for controlled protein assembly and protein surface recognition processes.

Introduction

The regulation of protein assembly and disassembly mediated by soluble derivatives and

based on rational supramolecular approaches has known a growing interest the last decades.1,2

Indeed, these molecular glues, such as lanthanide coordination complex3,4, polyoxometalate

clusters5,6 or organic supramolecular compounds,7–11 favor protein/additive/protein adduct

to create protein material12 or induce protein crystallization.13 In that realm, functionalized

calixarenes, notably para-sulfonato-calix-[n]-arenes have demonstrated their high potential

in biochemistry thanks to their abilities to bind positively charged protein surface to form

protein oligomers.14–17 They offer tremendous perspective in the field of high-resolution X-ray

of unfolded protein loops18 or small cationic proteins19,20.

Crowley and coworkers have realized an extended study of the interaction of different

sulfonato-calix-[n]-arenes (n=4,8)9,10,22,23 with the well-known cytochrome c (Cytc) heme

protein.24 The obtained crystallographic structures underline the role of positively charged

surface residues (lysines and arginines) in the calixarenes binding.10 Other residues, prone to

more opportunistic non-covalent interactions, may also contribute to the recognition process,
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Figure 1: Interaction of the sulfonated calix-[8]-arene (sclx8, top), with the cytochrome
c (Cytc, down, PDB ID 6GD8)10. The important residues are colored according to their
corresponding binding site: Site 1 in green, Site 2 in red, site 3 in grey. All picture were
rendered using VMD21.

which suggests that the driving force of this supramolecular complex is not governed by

electrostatic interaction only. For instance, the host-guest complexation between the flexible

sulfonato-calix-[8]-arene (sclx8) (see Figure 1) and Cytc leads to the formation of three

different crystal packings in space group P31, H3 and P43212 with various degrees of protein

surface coverage by the ligands (see Figure 1 and Figure S1 in ESI).

In addition, recent isothermal titration calorimetry (ITC) measurements by Crowley and

coworkers25 provided free energy data for the binding of a first sclx8 and a second ligand

on the Cytc surface. They explain the formation of a sclx8-Cytc oligomer in solution us-

ing a relatively simple model involving four protein states. However, such experimental
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measurements for protein–ligand association remain challenging26 and must be associated

with structural characterization to provide an exhaustive insight of the binding sites. Com-

putational approaches can offer a fast and suitable alternative to experiments in order to

characterize the thermodynamic of the regulation of the protein assembly via supramolecu-

lar compounds, as well as the key residues involved in the ligand fixation. They present a

potential predictive power for investigations of new protein–cage associations if they fulfill

these requirements:

• a good estimation of the binding free energy between the ligands and the protein

• an evaluation of the individual contribution for amino acids binding the ligand, which

would provide a cartography of hotspots for protein/molecular glues interaction.

Molecular docking approaches are now available to investigate the binding of small-size or-

ganic ligands to proteins27. Some are adapted to a daily routine use28 while other rely on

more advanced methods29, potentially bridged to MD simulations30,31. Successful docking

approaches have been reported for small size calixarenes, such as calix-[4]-arenes32–34, in the

context of design of drug carriers35, transport phenomena36 or protein inhibitors32,33. Yet

larger calixarenes prone to a higher flexibility may need the use of MD simulations, as recog-

nized since the seminal paper by Gutsche and coworkers37. Such supramolecular auxiliaries

for protein crystallization can present more versatile and flexible interactions patterns38.

For instance, sclx8 can approach from its upper or lower rims, and its conformation can

change depending on the protein environment, from a double cone to a extended pleated

conformation39. For these complex molecules, molecular dynamics (MD) simulations offer

an alternative way to evaluate binding free energies, with the key possibility of per-residue

decomposition to dissect the overall binding free energy and pinpoint crucial residues or

cooperative networks.

In this manuscript, we challenge the computational description of the association of sclx8
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with Cytc, a choice motivated by available X-ray10 and ITC data25 which finely characterize

the association equilibria of the protein with one or two sclx8 P + L → PL and PL + L

→ PL2. This protein presents many positively-charges residues (16 lysines and 3 arginines),

mostly on its surface, and is therefore a legitimate target to probe the competition between

the different binding sites of sclx8 along our MD simulations. Our goal is to hone a robust

methodology with a descriptive and predictive potential for protein assembly triggered by

molecular glues. We first show that the association of the sulfato-calix-[8]-arene with Cytc can

be captured by all-atom MD simulations. We then report binding free energies estimated

with the Molecular Mechanics/Poisson-Boltzmann Surface Area approach (MM-PBSA)40,

for both the first and second associations. These results are found to lie in very good agree-

ment with ITC measurements for the Cytc-sclx8 system25, which constitutes a validation of

our computational approach for the determination of binding sites and corresponding free

energies. Finally, we provide a per-residue analysis of the protein–cage association by means

of MM-PBSA calculations and a supervised machine learning algorithm.

Methods

Force field parameters and MD simulations

Classical all-atom molecular dynamics (MD) simulations have been performed using the

Amber package41and the Ambertools suite. A single Cytc protein structure was used (108

residues), taken from the H3 form of the sclx8-Cytc complex (Saccharomyces cerevisae cy-

tochrome c C102T, PDB ID 6GD610,25). The heme group42 was connected to the H18 and

M80 residues through the use of ”Metal Center Parameter Builder” (MCPB) Ambertool43.

The atomic charges for the heme were obtained using the RESP method44 on a geometry

optimized at the DFT-B3LYP/6-31G(d) level of theory. A Stuttgart-Dresden SDD pseu-

dopotential was used for the iron center. All DFT calculations were performed using the
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Gaussian 16 revision B.01 series of programs45. Force field parameters for the sclx8 ligand

were taken from GAFF246 while the protein was described with the AMBER/ff14SB47 force

field. The atomic charges for sclx8were assessed from the RESP procedure44 at the DFT-

B3LYP/6-31+G(d,p) level with D3BJ dispersion correction48 for the sulfonato-calix[4]arene

optimized structure in its extended conformation.

The simulation TIP3P water49 boxes with the Cytc protein from PDB 6GD6 plus one

(Cytc-sclx8) or two (Cytc-2 sclx8) solvated sclx8ligands were created with the Amber suite

of programs41. Potassium counterions were added to neutralize the system total charge.

Long-range electrostatic interactions were computed using Particle Mesh Ewald (PME) al-

gorithm50,51. An exhaustive description of the protocol adopted to build the simulation boxes

for the first and second Cytc-sclx8 associations and to perform equilibration and production

runs is given in ESI. The last 10 ns of each production run in the NPT ensemble at 300K

and 1 atm. have been analyzed through the MM-PBSA energy analysis52–54.

Multilayer Perceptrons

Machine learning (ML) methods have gained enormous amount of attention in recent years.

Their power for finding important information out of large amount of data has been embraced

by the biochemistry community, many interesting applications have been showcased in the

literature55–60. Recently, ML methods have been applied to learn ensemble properties from

molecular simulations and to provide easily interpretable metrics of important features. In

this study, we have performed an analysis of our trajectories with Multilayer Perceptrons

(MLP) by utilizing the demystifying package from Fleetwood et al.61. The MLP is a fully

connected artificial neural network (ANN) with one input layer, one output layer and at least

one hidden layer. After tests, the architecture of the MLP was chosen to contain a single

layer of 200 neurons to provide good accuracy. The rectified linear unit function (ReLU)62

was used for the activation of neurons, and the Adam algorithm63 was used for optimization.
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The inverse of the distances between the geometric centers of the residues were used as the

input features for the multilayer perceptrons (MLP) NN, due to better overall performance

over Cartesian coordinates, according to Fleetwood et al. These internal coordinates were

computed for all residue pairs and all frames. Each frame of the trajectories was labelled

as either 1 or 0 according to whether the distance between the calixarene and the protein is

smaller than 10 Å (bonded) or not (non-bonded). These sets of input features and labels were

fed to the MLP classifier for training. Upon completion of the training, layerwise relevance

propagation (LRP)64 was performed to find out the important features for calixarene-protein

interaction.

Results and Discussion

At the beginning of our simulation, the sclx8 ligand was placed at a distance of ca. 50 Å far

from the protein center of mass (see Table S2 in ESI), as we sought to capture the association

sclx8-Cytc avoiding the bias of starting from a X-ray structure of the complex. Indeed, the

sclx8 binding hot spots for a protein in solution can differ from the regular, symmetry-

driven macromolecular ensemble observed in the crystal.10 To simulate the binding of the

second ligand, another set of starting points was generated, with two solvated ligands or one

bound/one solvated ligand (see Figure S2 and Table S3).

The sclx8 positions sampled along the MD simulations with one ligand on the protein

surface, represented in Figure 2 A, clearly covers the key interacting lysines identified in the

X-ray structure: K4, K5, K11 at Site 1, (in green in Figure 1), K72 and K73 at Site 2 (in

red in Figure 1)10. In addition to lysine, arginine is a well-known candidate for electrostatic

interactions with anionic calixarenes22,65. R13 (in black in Figure 2), stands between the

two sites and can interact with sclx8 regardless its binding site. After the addition of a

second sclx8 (see Figure 2 B), R13 can bridge the two sites, even it shows a preference for
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Figure 2: A. Representative cartoon of superimposed conformations of different runs (see
Table S2 for details) for the Cytc-1sclx8 system. The covered conformations and the sampled
protein surface, along four trajectories of 200 ns, are reported with colored lines. B. Sites
visited along the 12 different trajectories for the Cytc-2sclx8 system.

the interaction with the ligand on Site 1. The first occupied site can be 1 or 2 alike, without

any impact on the Cytc-2sclx8 final complex. At the end of all simulations, the two sclx8

are anchored on the protein surface, on Sites 1-2 or on Site 1-3 (in gray in Figure 2 B; site 3

is observed in only one MD simulation but also described in 6GD9 structure10 - see Figure
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S1).

More quantitatively, we estimated the binding free energies using the MM-PBSA post-

processing, which offers a direct comparison with the isothermal titration calorimetry (ITC)

measurements25. The first 1:1 equilibrium (∆G1) between Cytc and sclx8 was assessed by

ITC to -10.8±0.9 kcal.mol−1, which is in good agreement with the value we obtained from MD

simulations with the MM-PBSA approach: -13.5±6.4 kcal.mol−1 (Figure 3). The error bar

from the MD simulations is rather important, which is inherent to the MM-PBSA approach.

Likewise, the estimated binding free energy is overestimated compared to the experimental

value, due to the sampling at short times with no binding–unbinding events. The overall

free energy for the equilibrium PL + L → PL2 (∆G2) is also well reproduced: -7.8±0.9 vs.

-8.2±7.0 kcal.mol−1 (Figure 3). This value is lowered by 3.0 kcal.mol−1 in the experiments

and 5.3 kcal.mol−1 in MD simulations compared to the first association, probably because

of a smaller accessible protein surface area25. Our results confirm the performance of MM-

PBSA to evaluate the binding free energies66–69, and validate in turn our computational

approach for the characterization of the protein-molecular glue association.

The contributions summed over positively (lysines and arginines) or negatively (gluta-

mates and aspartates) charged residues are also represented in Figure 3, alongside with the

total binding free energies. For both associations, the additive decomposition per type of

residues reveals that the Cytc-sclx8 binding cannot be viewed as a lysine–only problem.

Indeed the contribution from all lysines for the first and the second associations is 8 and

16 kcal.mol−1 higher than the respective overall binding free energy (see Figure 3). Then,

whereas arginines attractive contribution is smaller than the lysine one ('5 kcal.mol−1),

consistently with the ratio lysine/arginine of 16/3, the overall binding energy is in turn

moderated by negatively-charged residues, namely glutamate and aspartate, which contri-

butions in disfavoring the binding process are nearly equivalent (ca. 5 kcal.mol−1 each).

During the second association, the repulsion between the two anionic sclx8 can also coun-
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Figure 3: A. Experimental ITC vs. computed binding free energies ∆G in kcal.mol−1 for
the first (Equilibrium 1) and second associations (Equilibrium 2). B. Binding free energy
∆G in kcal.mol−1 for the first and second associations and their decomposition over charged
residues (lysine, arginine, glutamate and aspartate).

terbalance the attractive contribution from positively-charged residues and explain the large

difference between this latter and the total binding free energy.

In order to further dissect the main interactions between sclx8 and Cytc, we decompose

the overall interaction energy into contributions deriving from single specific residues of the

protein (see Table 1 and Figure 4). This systematic per-residue inventory confirms and

quantifies the key role of lysines, notably K4, K5, K11, K72, K73, K79, K86, K87 and

K100, six of which being present as ”tweezers”: for instance, K86 contributes to -3.7 ± 2.8

10



Figure 4: Color map of per-residue decomposition ∆∆G1 (left panel) or ∆∆G2 (right
panel). The color scale is defined by dividing each contribution by the maximal absolute
one (∆∆G1(R13)) and using the color code: blue for attractive interactions, and red for
repulsive interactions. The two calixarenes are colored according to their binding sites.

kcal.mol−1 to ∆G1, while K87 role is nearly halved, -2.1 ± 1.4 kcal.mol−1; on the contrary,

their contributions to ∆G2 are nearly equal. One can propose a linear dependence between

the strength of the interaction and the distance between the center of mass of the lysine

NH+
3 group and the most proximal sclx8 SO−

3 sulfate group (see Figure S4). When one

sclx8 is present in the simulation, four lysines from Site 2 (namely K72, K79, K86, K87)

define the hot spots for anchoring the ligand, in addition to R13. This residue, reported in

Table 1 as part of Site 1, can also take part to the binding on Site 2. This central position

explains its large contribution of 4.4±2.6 kcal.mol−1 to ∆G1 (Table 1). The interaction

landscape is modified when two sclx8 are bounded to the protein, with a more diluted

attractive interaction, distributed on more residues from both sites (K4, K5, K11, R13, K73

and K87 for an individual contribution between 2 and 3 kcal.mol−1). Figure 4 highlights

this difference with a concentration of bright blue residues (i.e. with a strongly attractive

interaction with sclx8) around Site 2 for the 1sclx8 system whereas the blue surface area

for the 2sclx8 system is wider but lighter.

Crowley and coworkers have also defined interacting residues in terms of their importance

on the basis of the X-Ray structures for the different crystal packings10. Focusing on the

participation of each residue to the Cytc-sclx8 interface area (Aburied, see eq. 4 of ESI),
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Table 1: Interacting residues defining three different binding sites of sclx8 on Cytc Site 1
(in green), Site 2 (in red) and Site 3 (in gray), and their contribution to the association free
energy of the first sclx8 (∆∆G1), the second sclx8 (∆∆G2), to the experimental interface
area (Int. Area), and the theoretical difference in solvent accessible surface area between free
or complex Cytc in the presence of two sclx8 (∆SASA). Residues identified in the experi-
mental crystal structure are boldfaced10. R13, here reported as part of in Site 1, can interact
simultaneously with two sclx8 molecules present in Sites 1 and 2, hence acting as a bridge
residue.

RES ∆∆G1 ∆∆G2 Int. Area ∆SASA

(kcal.mol−1) (kcal.mol−1) (Å2) (Å2)

Site 1 K4 -0.9 ± 0.7 -2.8 ± 1.0 > 100 62.5±1.7
K5 -1.1 ± 0.6 -2.3 ± 0.9 50-100 52.2±2.0
T8 -0.4±0.7 -0.9 ± 0.2 50-100 39.1±7.0

K11 -1.7 ± 1.2 -2.2 ± 0.3 50-100 49.3±2.6
R13 -4.4 ± 2.6 -2.6 ± 0.7 - 32.6±11.4
L15 -0.4 ± 0.5 -0.6 ± 0.4 50-100 15.8±4.0
Q16 -1.4 ± 0.8 -0.8 ± 0.6 > 100 30.5±5.2

Site 2 K72 -2.5 ± 2.2 -1.7 ± 0.4 50-100 50.4 ± 7.6
K73 -1.4 ± 1.4 -2.4 ± 0.8 50-100 48.5±14.7
K79 -2.6 ± 2.4 -0.8 ± 0.2 - –
K86 -3.7 ± 2.8 -1.8 ± 0.2 > 100 51.9±9.6
K87 -2.1 ± 1.4 -2.0 ± 0.4 - –

Site 3 K-2 -0.5 ± 0.1 -1.4 ± 0.4 - 52.3 ± 10.0
K100 -0.5 ± 0.1 -1.3 ± 0.1 > 100 36.7±24.3

Sum. lysines -7.6 -11.4 - -
Sites 1+2 -17.9 -23.6 - -

Total All -13.5 ± 6.4 -8.2 ± 7.0 515 407 ± 57

they describe master residues, that contribute more than ' 100 Å2 to the total Cytc-sclx8

interface, and key residues that contribute 50-100 Å2 to the total interface (see Table 1). To

compare these results with our simulations, we determine the values of ∆i
SASA (see ESI for

details), where i indicates the i-th residue, are reported in Table 1. These computational
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values correspond to the surface of a residue which is covered by the calixarene. Although

they cannot be quantitatively compared with the participation to the total interface from

crystallographic structure, one can expect that they will follow the same tendency and

describe similar residues as ”key” or ”master” ones. For some residues, our results are

in agreement with the classification proposed by Crowley and coworkers: most of the lysines

pointed out for their important interface area belong to the binding hot spots described in

the simulations. The others belong to sites that are not encountered during our simulations

or little visited, for instance site 3. Likewise, L15 and Q16 were considered as key and master

residues respectively but their contribution appear minimal compared to lysines. Indeed, in

our simulations, the site involving these two residues is not visited. We observe conformations

which are closer to the P31 geometry than to the P43212 packing where the L15-Q16 site is

occupied (see Figure S1). Otherwise, our simulations reveal the important role of K79, K87

and R13, which were not stressed by the interaction area from X-Ray analysis10.

Association of sclx8 to Cytc has a local impact on the flexibility of the residues involving in

the binding site but, because of the tertiary structure of protein, this effect can be propagated

on a large distance. To identify the possible allosteric effects upon sclx8 we took advantage

of a supervised machine-learning protocol recently proposed by Fleetwood and coworkers61

to monitor the structural changes of the cytochrome upon binding of sclx8. Important

residues known to interact with sclx8 correspond to sites 1, 2 and 3 are denoted in Figure

5 with stars and the respective site color (green, red and gray). The maximum importance

corresponds to the bridging R13, supporting our previous conclusions about the central role

of this arginine. Besides, the ML analysis reveals a reorganization of a series of residues

(26, 38 and 44, as pink triangles below) which belong to a flexible loop of the protein, away

from the binding sites, with formation of salt bridges and hydrogen bonds subsequent to

the association with sclx8. The rigidification of this loop probably contributes to a surface

entropy reduction. In addition, the importance associated to a leucine, which is close to the
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heme, suggests that the sclx8 binding may also slightly impact the heme pocket.

Figure 5: A. Important residues of upon sclx8 binding revealed by our supervised machine-
learning protocol. In addition to the residues previously characterized in the different sites
(labelled with colored stars), ML analysis highlights different residues far from the binding
sites (pink triangles). B. Representation of the different residues denoted by the pink trian-
gles in A. Encountered hydrogen bonds are depicted with black dashed lines.

Conclusions

In this study, we have relied on molecular dynamics simulations to capture the interaction

between sclx8 ligands and Cytc. Our simulations support the predominance in solution of

two binding sites which are similar as thus described in the P31 crystal structure (PDB
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6GD8). The corresponding MM-PBSA binding free energies are in good agreement with the

ITC measurement in solution. A further step would be to test the assembly of four Cytc using

these sites as protein/additive/protein contact region and compare them to the SAXS data

obtained for the protein oligomer in solution10. Thanks to the computational decomposition

of the binding energy in terms of solvation, van der Waals or electrostatic interactions for the

whole system or each residue, our approach draws an association mechanism mainly driven

by the affinity between cationic lysine and anionic calixarene. It also highlights the role of

arginine R13 that bridges the two sites and can counterbalance the electrostatic repulsion

between the two sclx8 ligands. The direct attractive contribution from other residues is

minimal but a machine learning analysis reveals the formation of a hydrogen bond network

concomitant with the sclx8 binding that can help the stiffening of the protein and a better

structural resolution. Taken together, our results confirm the ability of our computational

protocol to finely investigate the molecular glue/protein surface interaction and its high

potential as a predictive tool for screening purposes and design of new efficient auxiliaries.
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