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Progress towards quantum technologies continues to provide essential new insights on the 

microscopic dynamics of systems in phase space. This highlights coherence effects whether 

these are due to ultrafast lasers whose energy width spans several states all the way to the 

output of quantum computing. Surprisal analysis has provided seminal insights on the 

probability distributions of quantum systems from elementary particle and also nuclear physics, 

through molecular reaction dynamics to system biology. It is therefore necessary to extend 

surprisal analysis to the full quantum regime where it characterizes not only the probabilities 

of states but also their coherence. In principle this can be done by the maximal entropy 

formalism but in the full quantum regime its application is far from trivial [E.g., S. Dagan and 

Y. Dothan, Phys Rev D 26, 248 1982] because an exponential function of not commuting 

operators is not easily accommodated. Starting from an exact dynamical approach we develop 

a description of the dynamics where the quantum mechanical surprisal, a linear combination 

of operators, plays a central role. We provide an explicit route to the Lagrange multipliers of 

the system and identify those operators that act as the dominant constraints. 

 

I. INTRODUCTION 

Quantum technologies are receiving increasing attention. This fast growing field and the 

outstanding experimental progress stimulates the developments of theoretical methodologies 

that provide a quantum approach to nano systems. In particular, experimental techniques that 
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can pump and probe coherence effects such as 2 dimensional electronic spectroscopy have 

provided considerable stimulus.1, 2 We here highlight an information theory motivated3-5 

quantum dynamical approach which we implement in a numerically accurate way. We further 

discuss those special cases where a compact representation of the dynamics can be established.6 

Information theoretical description of systems not in equilibrium has been examined all the 

way from elementary particle7 and nuclear heavy ion physics8 through chemical reaction 

dynamics9 to gene expression levels10, 11 and cell-cell dynamics.12 In all these implementations, 

large or small systems, the surprisal offers an approximate but quite compact representation.  

In this paper we discuss a quantum dynamical framework for the time evolution of the 

surprisal where coherence effects can be prominent. Our two examples are drawn from ultrafast 

(few fs’s) excitation and non-adiabatic transfer processes between a pair of electronic states. 

The theory as we develop it here is limited to a unitary time evolution so that realistically it 

can only cover a finite time interval. A coupling of the system to its environment can also be 

described by the Lie algebraic technique that we use13 but such an application of the surprisal 

as an exact numerical tool remain to be implemented in detail. 

We develop an approach where the time-evolution of a quantum system is provided through 

the surprisal of the density matrix, . The propagation of the surprisal in time is 

described by the same evolution operator as the propagation of the density matrix. We also 

seek to make a bridge to empirical surprisal analysis. In these practical applications 

approximate compact representations of the surprisal were usefully applied to characterize 

dominant behavior patterns in complex systems.9, 14 

The characterization of a system using the logarithm of its probability distribution was 

pioneered already by Gibbs and Boltzmann. The statistical notion of entropy was introduced 

by Boltzmann as a logarithmic measure of the number of states with significant probability of 

being occupied. Gibbs described the properties of the canonical ensemble showing that it is 

characterized by the minimum of ‘- entropy’. The quantum mechanical foundations of these 

thermodynamic ideas are given in detail in chapter V of Ref. 15 and are discussed critically by 

Kemble.16 

Already in the Boltzmann’s “method of the most probable distribution” one can identify the 

main idea that accompanied surprisal along its historical path – the idea of asking only 

questions about properties of the system that are reproducible in many experimental 

replications. The connection to information theory can be made by special reference to the first 

coding theorem of Shannon.17 The quantum mechanical analog of the coding theorem is by 

ˆ ˆI lnr= -
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Schumacher.18 It provides a basis for the quantum mechanical applications of information 

theory.  

How can one determine the state of the system leading to events that are most probable and 

therefore reproducible by repeated experiments? The maximal entropy approach seeks to 

reconstruct the density matrix of the system in its most probable state in a situation of 

incomplete knowledge, when only partial information about the system is available.3, 4, 19-21 

The commonly discussed scenario is when we know N mean values for a set of operators 

typically called the constraints. In general this set of expectation values is not sufficient to 

uniquely determine the state. Among all density operators that are consistent with the given 

mean values of the constraints we select the one (unique) density of whose entropy is maximal. 

This density operator is represented as an exponential function of those operators whose mean 

values are given. For this density matrix, the surprisal is a linear function of the operators that 

are the constraints with coefficients that are the Lagrange multipliers that arise in seeking a 

maximum of the entropy subject to constraints. The linearity of the surprisal as a function of 

the constraints is especially convenient when the operators do not commute and an exponential 

form in the operators calls for special handling, e.g., Ref. 22. 

An established route for the computation of the dynamical evolution of the surprisal is via 

an algebraic procedure for the dynamics of the constraints in the Heisenberg picture. The 

equations of motion for the constraints are derived using their commutation relation with the 

Hamiltonian and can be solved analytically if the set of constraints is closed. This exact 

approach needs tracking as many constraints as the number of operators needed in a set that is 

closed upon the commutation with the Hamiltonian. However often in the cases important for 

dynamical processes that set appears not to be finite and therefore the algebraic route does not 

provide a simple and compact representation of the surprisal as the dynamics unfold. We here 

examine a direct way to compute the time-evolution of the surprisal by explicit propagation on 

a finite, possibly large, basis set. This approach in general provides access to the time-

dependent surprisal. It can be seen as an alternative way of computing the time-evolution of a 

quantum mechanical system, and as such it may point the way to approximate treatment of the 

quantum dynamics.  

In this digital age, a numerical implementation of quantum mechanics often implies working 

with a finite, albeit possibly large, basis set. So we often formulate our results below in a finite 

dimensional space. We point it out when we do it particularly so because when the basis set is 

finite one can show that there is a large yet finite set of constraints that allow for an exact 

representation of the surprisal within that space. A general finite basis approach is to implement 
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the computation of the dynamics of the wave function defined on a grid.23-25 For a pure state it 

means propagating a wave packet, the simplest case being a Gaussian.26 A moving wave packet 

can describe a reactive collision when the packet initiates in the reactants region. The packet 

proceeds to the products region while some of it is reflected back to the reactants, e.g., Ref. 25. 

Such a localized wave packet does not have a sharp energy. A state where several electronic 

states are coherently excited by an ultrafast pulse is equally not a state of sharp energy.  

To represent the change of the surprisal in time we first discuss the time rate of change of 

the constraints. But in those cases when the algebra of time-independent constraints is closed, 

there is a complementary view, using a set of time-dependent coefficients, the Lagrange 

multipliers. There is a multiplier associated with each constraint and in this point of view it is 

the multiplier that is changing with time, but the constraint operators are time independent, see 

below sections II.C-II.D for the details. Thereby we can describe the evolution of the state by 

a vector of these Lagrange multipliers defined on a map of the finite set of time-independent 

constraints (Fig. 1).  

 
FIG. 1. Surprisal based quantum dynamics. Decomposition of the surprisal , in a 

finite set of time-independent constraints  is shown as a palette of primary colors, with 
respective intensity of each color defined by its time-dependent Lagrange multiplier . 
 

If we keep the same algebraic structure of the dynamics, the map of the constraints stays the 

same and different dynamical problems can be characterized by the respective vectors of the 

Lagrange multipliers. This is analogous to the color palette structure: red, green and blue 

primary colors of each pixel are the same, but their intensity variation enables to create all 

kinds of images. We discuss examples of the evolution of the Lagrange multipliers computed 

for the nuclear quantum dynamics unfolding on several electronic states coupled either by a 

short ultrafast pulse or by a longer lasting diabatic coupling. We extend the Lagrange 

ln ˆ( )tr

Âk
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multipliers formalism also for the cases when we solve numerically for the time propagation 

of the surprisal. In particular we identify leading or ‘dominant’ constraints. This approximate 

treatment follows the spirit of the information theory approach – description of the density 

matrix using only a partial but essential knowledge about the system. 

To discuss systems with more than a few degrees of freedom a large basis is needed for 

numerical convergence. So exact propagation of the surprisal on a finite basis will be 

computationally demanding. However, the dynamics of the Lagrange multipliers of the 

dominant constraints may be sufficient for most purposes. This opens a different way of 

approximating the quantum dynamics in many-body systems, a subject for future research. 

In section II we show that if the initial state of a system is described as a state of maximal 

entropy, a finite set of time-dependent constraints is sufficient to reproduce the surprisal at all 

subsequent times. During a unitary time-evolution the rank of the density matrix is conserved 

so the number of the time-dependent constraints is the same as the number of constraints on 

the initial state. In section II we further describe the special circumstances where an 

algebraically delineated finite set of time-independent constraints is sufficient to describe the 

dynamics. The algebraic procedure to convert the dynamics of the surprisal to a compact 

evolution of the Lagrange multipliers is introduced. Section III discusses the proposed 

computational scheme for an exact dynamical evolution of the surprisal in a finite dimensional 

space. The computation of the time evolution in such a space is exact because we show that 

there is always a large but finite set of time-independent constraints that is closed under 

commutation with the Hamiltonian. There is however a truncation error associated with the use 

of a space of finite dimensions and one should verify convergence meaning that the number of 

basis states is large enough. In section III we also seek to identify a much smaller set of 

‘dominant‘ constraints that allow a good approximation for the state. The procedures for the 

computation of the surprisal and of the Lagrange multipliers are implemented in section IV. 

We discuss three cases. The simplest is where we are able to generate a set of operators that is 

closed under commutation with the Hamiltonian. We next examine a case of more realistic 

Hamiltonian where we are not able to close a set. We take a commutator of an operator in the 

set with the Hamiltonian and it can be shown that a new operator not yet in the set emerges, 

and so on. In this case we can propagate the surprisal on a finite basis and numerically 

determine the Lagrange multipliers for operators of interest. This allows us to get an 

approximate description of the surprisal as a function of a finite set of operators also when their 

algebra is not closed. The third case we discuss is non-adiabatic transfer from an excited 
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electronic state to a lower manifold. Here too the algebra is not closed but a realistic 

approximation for the surprisal in a limited set of constraints can be generated. 

 

II. THE DENSITY MATRIX AND THE SURPRISAL: A GENERAL OVERVIEW 

A. Finite matrix representation for the density operator and its surprisal 

A simple and familiar state of maximal entropy is the density operator of a thermal state 

 for a model Hamiltonian, , with a known basis set so that one can 

represent  the density and the surprisal,  using a finite number, N, of states: 

   (1) 

where  are the eigenvalues and eigenvectors of the Hamiltonian , is the 

inverse temperature and  is the partition function. The truncation to a 

finite basis assumes that the eigenvalues of the Hamiltonian are ordered so that from a certain 

value of N and on it is the case that . As is well known, a finite spectral expansion is 

the best approximation for the density matrix in the sense of a minimal norm of the error 

squared 27. For such values of the temperature that  the numerical rank of the 

density matrix is lower than N. At a sufficiently high , low temperature, and assuming a finite 

gap between a non-degenerate ground and lowest excited state, one can reduce the numerical 

rank towards unity. In this limit the density tends to that of a pure (ground) state. At a low rank 

it is numerically not practical to go from the density to its surprisal. The other direction, to 

determine the density from its surprisal, is possible at all temperatures. 

The eigenstates that diagonalize the density matrix will also diagonalize the matrix of the 

surprisal. This enables a simple transformation of the time-dependent surprisal to the density 

matrix. When it is a thermal initial state the eigenstates at the initial time correspond to the 

eigenstates of the unperturbed Hamiltonian . As the dynamics unfolds the eigenstates need 

to be determined by diagonalization of the surprisal.  In this paper we assume that the system 

is isolated in the sense that it is not interacting with its environment. The time evolution of the 

density is then unitary, its rank is preserved in time and using the time-evolution operator U 

the evolution of the density can be described by the evolution of each eigenstate: 

  ρ̂ = Z−1exp{−β Ĥ0}   Ĥ0

Î

  

ρ̂ = Z−1 exp(−βεs ) s ss = 0
N∑

Î = − ln ρ̂ == ln Z + β εs s ss = 0
N∑

  
εs , s{ }   Ĥ0

1( )kTb -=

  Z = exp(−βεs )s = 0
N∑

1N >>be

  βεs >>1, s< N

b

  Ĥ0
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   (2) 

The higher the numerical rank of the initial state, the more eigenstates need to be computed for 

such an expansion. Therefore an eigenstate propagation is numerically not an optimal approach 

for an initial density that represents a highly mixed state.  

Several key features of the representation of the density matrix in Eq. (2) are in fact much 

more general that the derivation based on a thermal-like initial density would suggest. The 

detailed discussion is the subject of section III where we will suggest that in a finite basis, as 

in Eq. (1), the most general form of the density matrix is:  

   (3) 

where the eigenvalues of the surprisal   are time-independent with values determined by the 

initial state . The partition function Z is, as in Eq. (1), . The 

eigenstates in Eq. (3) are, like in Eq. (2), obtained by the time-dependent propagation of 

the eigenvectors of the initial density. In a thermodynamic analogy28 the chemical potential of 

state s is  and the more negative it is, the higher is the occupancy of the state. 

 

B. Expansion of the surprisal via a finite set of constraints 

We discuss three different motivations for representing the density as an exponential 

function of a sum of operators and determine a condition under which the three representations 

are equivalent and when they are dynamically exact. The simplest to state is an inference of 

the density matrix at time t by the maximum entropy formalism.3, 4, 21 We seek the density that 

is of maximal entropy given the constraint that the density is normalized and is consistent with 

the mean values  of Hermitian observables  indexed by k. It is 

convenient to include a k = 0 term as the condition of normalization,  or . 

In the specific example of a thermal state, the mean energy of the system, , plays a role 

of the only constraint, besides normalization. Motivated by the empirical results of surprisal 

analysis9, 14 we want to describe a more general case which leads to the expression for the 

density of maximal entropy at the time t for which the mean values are given. 

( ) )(† 1 †
0 0

1
0

ˆ ˆ ˆ ˆˆ ˆ( ) exp( )

exp( ) ( ) ( )

N
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N
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r r be
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=
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=
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N∑
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   (4) 

The coefficients  are the Lagrange multipliers that arise in seeking the 

maximum of the entropy of the density subject to the imposed constraints. The Lagrange 

multipliers are time-dependent if the mean values  assume different values for different 

times.  

We next consider two other derivations of a density matrix that also are of an exponential 

form like Eq. (4) but where the motivation is tightly connected to the dynamics. In a theoretical 

or computational discussion, one often initiates the dynamics from a pure state. But in reality, 

the initial state is often a mixture and then it makes sense to start from an initial density of 

maximal entropy subject to those constraints that govern the yet unperturbed state,  

. For such an initial state we now show that the exact time 

evolution of the density or of the surprisal is described with a finite number of time-dependent 

constraints with time independent Lagrange multipliers. The proof requires the unitarity of the 

time evolution operator   and a series expansion of the exponential: 

   (5) 

The time-dependent constraints are the terms in the curly brackets,  and there 

are as many time-dependent constraints as the number of constraints in the initial state. In 

section III we discuss how to compute directly the surprisal: 

   (6) 

The method of computing the surprisal can also be applied should we wish to obtain explicit 

expressions for the individual time-dependent constraints. 

We next come to a simpler but more specialized result. It is valid for the special case when 

the dynamics of the constraints are closed under commutation relation with the Hamiltonian. 

In such a limiting situation the exact time evolution can be described with a finite number of 

time-independent constraints but with time dependent Lagrange multipliers with known 

equations of motion. This third example of an exponential form for the density is the most 

straightforward of all three and deserves its own subsection, next. This approach that is exact, 

0
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is also the basis for more approximate but numerically accurate approximations that we will 

present. 

 

C. Expansion of the surprisal via a finite set of constraints: a closed algebra 

We here examine the special case when the exact time-evolution of the surprisal can be 

written as: 

   (7) 

with time independent operators and time-dependent Lagrange multipliers. For a unitary time-

evolution the equation of motion of any function of the state  is to be computed via the 

Liouville equations of motion. In particular for the surprisal written as above: 

   (8) 

where  is the Hamiltonian that defines the unitary time-evolution, .  

The special case when the algebra is closed under commutation with the Hamiltonian is defined 

by the relation: 

   (9) 

The commutation on a right-hand side of the Eq. (8) results in a linear combination of operators 

that constitute our closed set of constraints. The numerical coefficients  are determined by 

the algebra of the particular system with several examples worked out in section IV. Several 

other, different, examples were recently published29 in connection with quantum computing. 

For earlier and simpler examples see Ref. 6. By combining Eqs. (8) and (9) we have two 

expressions for  the equation of motion of the surprisal, where either is linear in the constraints:  

  (10) 
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Ĥ
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The  is the coefficient of the operator  in the commutator , following 

Eq. (9). In Eq. (10) the unknowns are the functions of time, the Lagrange multipliers . 

  

D. Equations of motion for the Lagrange multipliers 

To derive the equations of motion for the Lagrange multipliers that are associated with N 

constraints, we impose an orthogonality of the constraints in the finite basis 

representation. In order to solve Eq. (10) in general we define the orthogonality of the operators 

from the set via the Hilbert-Schmidt inner product:30 

   (11) 

Note that no information about the density of the system is involved here and therefore these 

inner products need to be computed only once for a selected set of time-independent 

constraints,  so it can be done ahead of time. Knowing the matrix representation of each 

constraint in the chosen finite basis we evaluate these traces for all pairs of operators in the set. 

We next form an ‘overlap’ matrix for the set of the constraints, see Eq. (11) and the detailed 

discussion in section S1 of the Supplemental Material (SM). To obtain an orthogonal set of 

operators, as discussed in details in section S1 of the SM, we diagonalize this overlap matrix 

and transform to a new set of constraints that satisfies the orthogonality condition:  

   (12) 

Here  is an eigenvalue of the overlap matrix. Note this orthogonalization is time-

independent and will be valid all the times of the dynamics.  

The transformation matrix computed from the diagonalization allows us to rewrite the 

initial set of constraints using the orthogonal set : 

   (13) 

As the transformation (13) is linear it cannot affect the closure of the algebra, therefore we can 

describe the surprisal using this orthogonal set of constraints following the same development 

as in Eqs. (7)-(10) of the previous section II.C: 
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  (14) 

Here the coefficients  are obtained by considering the commutation relations 

. By multiplying both sides of Eq. (14) from the left by the 

operator , computing the trace and dividing by the respective  we get:  

   (15) 

   (16) 

Equations of motion (16) allow propagating the set of Lagrange multipliers and therefore 

convert the information about the time-evolution of the N+1 by N+1 surprisal matrix to an 

equation of motion of a vector of at most N+1 components, the time-dependent Lagrange 

multipliers. As shown above, this reduction is only possible subject to a set of constraints and 

Hamiltonian that satisfy the closure relation, Eq. (9). It is often the case that to have a closed 

set one needs to augment the set of constraints that specify the initial state. As a practical aspect 

this means that when solving the equation of motion (16), the Lagrange multipliers for those 

constraints that are not needed to specify the initial state have the initial condition 

. In section III we discuss a more general solution valid for any initial state and unitary 

dynamics while keeping the limitations that we work in a finite dimensional space. 

 

III. EXACT QUANTUM DYNAMICS OF THE SURPRISAL IN A MATRIX FORM 

A. The matrix time-dependent surprisal 

This section establishes a general computational procedure for determining the time 

evolution of the surprisal and, if needed, of the Lagrange multipliers also for such cases when 

the set of constraints is not an algebra closed under commutation with the Hamiltonian. The 

promise of the direct surprisal propagation as opposed to the propagation of wave functions in 

a finite representation is primarily connected to the possibility of compressing the information 

about the system into a vector of Lagrange multipliers of significantly lower dimensionality.  
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This compaction is most advantageous for a mixed initial state when, in a wave function 

approach, one will need to time propagate as many different wave functions as the rank of the 

initial state. 

1. Initial conditions 

For an initial state of maximal entropy an analytical expression of the surprisal as a 

function of a finite set of operators enables evaluation of the matrix representation of the 

surprisal of the initial state in any suitable finite basis: 

   (17) 

here  is the ij-matrix element of the constraint operator  in the chosen basis. 

When it is the initial density matrix that is given one can get the initial form of the surprisal 

matrix, limited to the numerical rank of the initial density matrix. 

2. Equations of motion 

Given the representation of the surprisal as an N by N matrix in a finite basis: 

   (18) 

the time-dependence of the matrix elements  can be computed from the closed set of N 

by N first order linear equations of motion for the surprisal: 

   (19) 

Here  are matrix elements of the Hamiltonian  in the finite basis. In a matrix form Eq. 

(19) is simply the commutation of the surprisal and the Hamiltonian matrices: 

   (20) 

Using the matrix of the surprisal at each time step of the dynamics one can determine and 

analyze the density.  

As a practical matter and in the examples discussed in section IV, we define the density 

by first diagonalizing the surprisal and then using the spectral representation 

   (21) 
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Here  are the time-dependent eigenvectors with the respective time-independent 

eigenvalues . The decomposition of the eigenvectors of the surprisal in terms of the states 

of the finite basis, , enables the computation of those mean values of 

interest using the trace of the respective operator with the density: 

   (22) 

3. The Gelfand Basis 

A basis set for the operators represented as N by N matrices is the, so called, Gelfand 

matrices,31, 32 where each is a matrix of zeros except for the entry 1 at the intersection of 

row n and column m. For the N by N surprisal matrix we can write an exact expansion in the 

N2 matrices of the Gelfand basis . This is the matrix form of Eq. (18)

.  One can regard this necessarily exact expression in an N by N basis as a result of maximal 

entropy subject to the N2 constraints   with the   as their conjugate Lagrange 

multipliers. Of course, speaking from a parsimonious point of view, this can be many more 

constraints than are strictly needed but maximal entropy subject to more than the minimal 

number of valid constraints does yield correct results.  

The representation of the surprisal matrix  uses, as in other 

examples above, time-independent constraints and their time-dependent Lagrange multipliers. 

The set of constraints is closed because the Gelfand states are closed under commutation 

amongst themselves,  and any N by N matrix, including the 

Hamiltonian, can be written as a linear combination of the Gelfand basis matrices. What are 

the basis states is a matter of convenience. It can be a set of zero order wavefunctions or it can 

be points in a discrete grid. The essential point is that the basis needs to be large enough that 

the initial states and its subsequent evolution can be numerically closely approximated. 

4. A pure state 

A closed algebra of the constraints is defined by Eq. (9). Taking the expectation value of 

both sides leads to a closed set of equations of motion for the mean values of the constraints: 

   (23) 
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The structure of this equation is the same whether the expectation value is taken over a pure or 

a mixed state. The essential difference is that for a mixed state this can be an equation for a set 

of mean values that is sufficient to fully specify the state. For a pure state these expectation 

values are not necessarily sufficient. There can be density matrices of finite entropy that are 

consistent with the given expectation values. It then takes additional expectation values to 

reduce the maximal value of the entropy towards zero. But as a practical matter these finite 

number of equations can be sufficient for an excellent numerical approximation. This will be 

particularly so when the operators and the density are expressed as matrices in a finite but 

sufficiently large basis. When we work in a finite basis in the limiting case of a pure state a 

diagonalized surprisal matrix will have only one eigenvector with an eigenvalue close to zero, 

and the other eigenvalues being larger negative numbers. The density matrix, cf. Eq. (21), will 

then have a one dominant eigenvector with an eigenvalue rather close to unity up to the desired 

numerical precision with other eigenvectors having exponentially smaller eigenvalues. 

 

B. The general procedure to determine the Lagrange multipliers 

The values of the Lagrange multipliers can be determined from the matrix representation 

of the surprisal following similar procedure as in Eq. (15): 

   (24) 

Here we used the orthogonality of the constraints  as described by Eq. (12). The finite 

basis representation is not arbitrary, it should be the same as the representation of the surprisal. 

Eq. (24) is our central result for computing the Lagrange multiplier conjugate to any operator. 

The condition on the operator to have a non-zero Lagrange multiplier is that it is not orthogonal, 

in the sense of a Hilbert –Schmidt norm, to the surprisal at that point in time.  

Empirically one finds in surprisal analysis that a few constraints are dominant in magnitude 

while others are small and often are within the experimental noise level. Here the entropy 

provides a natural measure of the importance of a constraint. The constraint  contributes 

to the entropy the term . The constraint  is a dominant one when its 

contribution to the total is large. In our experience11 different constraints can be dominant in 

different time intervals. 
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 In summary, by working in a finite basis of N states one can compute the surprisal as 

an N by N Hermitian matrix that is a function of time. The one (fairly weak) requirement is that 

the surprisal of the initial state can be well approximated as a matrix in this basis. It requires 

that the initial state has a numerical rank of N or less. There is no assumption needed that we 

know the constraints on the initial state. If the initial state can be represented as a state of 

maximal entropy we have the clear advantage that we can then determine the constraints as a 

function of time. Note that this does not require a closed algebra. The matrix representation is 

readily adapted to describing the time dependent constraints, , Eq. (5). The matrix 

representation of each one of these operators satisfies an equation like Eq. (20). The  matrix 

that generates the motion in time is the same for all these operators. 

We validate the implementation of the propagation of the surprisal in the matrix 

representation Eq. (19) and Lagrange multipliers defined by Eq. (24) via comparison with the 

surprisal obtained using propagation of the equations of motion for the Lagrange multipliers, 

Eq. (16). As we start with a pure initial state we perform also an additional benchmark by 

comparison of the resulting densities and the time-dependent mean values with those calculated 

from the propagation of the wave function on a grid of the nuclear coordinates. 

 

C. Summary of computational approaches 

Given the matrix of the surprisal as a function of time one computes the Lagrange multiplier 

conjugate to the constraint by Eq. (24). Here  is the Hilbert 

Schmidt norm of the constraint , Eq. (12) computed in the same, time-independent basis, 

used to represent the surprisal as a matrix . In the special case that a closed algebra is known 

one can propagate the Lagrange multipliers directly in time as in Eq. (16) without the need to 

generate the surprisal. In this special case the surprisal is given in terms of the Lagrange 

multipliers, Eq. (14), . Diagonalizing the matrix of the surprisal also 

enables a diagonal matrix representation of the density matrix and thereby the computation of 

mean values of other operators of interest. 
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IV. RESULTS AND DISCUSSION 

In this section we examine numerically the dynamics for a case of two coupled electronic 

states. The potential for the nuclear motion in either electronic state is harmonic. We discuss 

three cases for the coupling. (i) A short laser pulse with a constant transition dipole moment, 

independent of the displacement of the nuclei in the electronic states. We chose this simple 

case because one can readily close an algebra. (ii) The same short laser pulse with a transition 

dipole moment that varies linearly with the displacement of the vibrations from their 

equilibrium position. Here an algebra is not closed but the closed algebra of case (i) is 

dominant. (iii) The two electronic states are diabatically coupled and we monitor the population 

exchange between the two states in time. This system is a simplified model of a radiationless 

transition and we use potentials and couplings adapted from a study of pyrazine.33 In the 

examples the surprisal is propagated according to Eq. (19) starting from an initially non-

stationary state. We use the finite basis of zero-order states – vibrational eigenstates of the 

harmonic potentials. The basis used is large enough that the computation is numerically 

accurate as shown by comparison with benchmark results of the wave function propagation on 

a dense grid in the nuclear coordinate. This surprisal propagation provides the ‘exact’ 

reference. The expression for the surprisal is transformed to the expression for the density via 

Eq. (21), thereby expectation values of observables, such as evolution of the population, 

coherence and other mean values can be computed. We benchmark the computational scheme 

for the evaluation of the Lagrange multipliers, Eq. (24), by comparison with the surprisal 

obtained from its expansion in terms of time independent constraints, . In 

case (i) the algebra of the constraints is closed and we propagate ’s directly using the 

equations of motion, Eq. (16). When the algebra is not closed we determine the time 

dependence of the Lagrange multipliers from the general result, Eq. (24). Different 

approximations to the surprisal are then obtained depending on which operators  are kept 

in the expansion . We show results for the smallest possible closed set of 

operators where already one obtains physically realistic results, the next larger algebra where 

the results are accurate to graph plotting accuracy and an even larger algebra where the 

convergence is rather acceptable. 

We examine the accuracy of the presented approach on the effects of the coherence 

between the vibrational and electronic states for two qualitatively different initial pure states: 

  
Î(t) = λp(t)B̂pp∑

pl

  
B̂p

  
Î(t) = λp(t)B̂pp∑
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(a) a coherent superposition of a very few vibrational states with the main population in the 

 state, and (b) a coherent superposition of a larger number of excited vibrational states 

centered about . In the section IV.A we present also the second set of computations, 

where we use the same two initial vibrational states but for a case when the transition dipole 

varies with the nuclear displacement. This represents the case when the algebra is not closed. 

Even so we can identify a few dominant constraints. In section IV.B we discuss the dynamics 

of ongoing population exchange between two electronic states that are diabatically coupled 

using a potential that varies linearly with the displacement from equilibrium. The algebra is 

not closed and yet the dominant constraints capture the dynamics in a quite realistic manner. 

 

A. Field induced vibronic dynamics for two electronic states 

1. Closed algebra for electron-nuclear dynamics 

The simple case of a closed algebra is mostly to introduce ideas and notation. That there need 

to be prefect agreement between the exact computation and the finite sum representation of the 

surprisal, , is guaranteed. So the full discussion is presented in the 

supplemental material section S3. Here is only an outline. 

Hamiltonian. We work in a direct product Hilbert space for electron and nuclear degrees 

of freedom. The Hamiltonian, including the interaction with a laser pulse , for the two 

electronic states can be written as follows (in atomic units, ): 

   (25) 

Here the operators  and are identity operators defined on the electron and nuclear 

subspaces respectively. The nuclear subspace is represented using the algebra of the creation 

and annihilation operators, , which gives a simple Hamiltonian matrix on a 

finite basis of vibrational eigenstates of , Eq. (25). Both potentials have the common 

frequency  and equilibrium position centered at . The gap between the electronic 

states,V0, is reflected by the operator and the dipole coupling to the field   is 
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described by where  are the standard Pauli matrices used to describe the 

electronic subspace. The transition dipole moment  is here a constant but in case (ii) it will 

be allowed to depend linearly on the displacement, , in which case the 

algebra is not closed. In the bra-ket notation for the electronic states the Hamiltonian can be 

written as follows: 

   (26) 

where  and  are the electronic wave functions for the ground and excited state 

respectively  

Initial conditions. We start from the initial state of maximal entropy. As we discussed above 

the most simple example of such a state is the thermal state of the unperturbed Hamiltonian, 

Eq. (1). This is a stationary state of the Hamiltonian . In order to have more interesting 

features in the dynamics we introduce a non-stationary initial state by shifting the initial wave 

packet to the extent  from the equilibrium position while keeping the mean momentum at 

zero. Also for such a shifted initial state the algebra remains closed. For technical details see 

section S3 of the SM.  

The initial surprisal is given for the closed set of constraints by: 

  (27) 

here  is an initial value of the Lagrange multiplier of the k-th constraint  defined 

in the direct product of the electron and nuclear subspaces and listed in Table I.  

Time-evolution of the constraints is given by the commutation relations with the 

Hamiltonian. These are evaluated in section S3.1 of the SM. It shows that the equations of 

motion involve only the operators from the set, Table I, so that the algebra is closed. 

        Orthogonalization of the constraints. To determine how the Lagrange multipliers change 

with time as the dynamics unfold it is convenient to orthogonalize the operators from the set, 

Table I, in the sense of Eq. (12). The electronic subspace is initially orthogonal, but we need 

to specifically discuss the nuclear subspace. For this set of operators, the vibrational basis of 
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+λ0
22(0) 2 I!N 2 + λ1

22(0) 2 â 2 + λ2
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the eigenstates of  is most useful: the number operator  is diagonal, while the creation 

and annihilation operators are off-diagonal in this basis, so they are orthogonal to each other, 

see section S1 of the SM for the details. The identity operator  is also diagonal, and hence 

it will not be orthogonal to the number operator. We handle this aspect as discussed in section 

S1 of the SM.  

 
TABLE I. Full set of operators and notation for their conjugate Lagrange multipliers for the surprisal 
defined for the case of a closed algebra in the direct product space considered in section IV.A. The 

Surprisal needs to be Hermitian so that, for example, the real parts of  must be equal, 

while the imaginary parts must have an opposite sign.  At the time t = 0, only operators diagonal in the 
electronic index have non-zero Lagrange multipliers.  

      

      

     

     

     

  

Coupled electron-nuclear dynamics. The Hamiltonian, Eq. (25), admits of a closed algebra 

for the operators listed in table I. One can therefore compute numerically exact dynamics using 

either route and results for the excitation induced by a fast laser pulse are shown in section S3.2 

of the SM.  

The algebra identified in table I is closed for the Hamiltonian of Eq. (25) including the 

pulsed laser excitation. It follows that Eq. (27) for the initial state remains valid also at later 

times with the simple modification that the Lagrange multipliers are time-dependent. Figures 

2 and 3 show time-dependent Lagrange multipliers, including for example the one for the 

coherence between the two electronic states  that is zero in the initial state.  

0Ĥ
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FIG. 2. Dynamics of the Lagrange multipliers for the electronic states computed from the analytical 
equations of motion (dashed lines) and direct propagation of the surprisal (solid lines) in a basis of 

vibrational states using Eq. 19. (a). Contrast the difference between the initial values of and  
that serves to make the initial state essentially a pure state on the ground electronic state. As the light 
pulse acts and some population moves to the excited state, this difference closes. (b) the multiplier for 

the coherence  between the two electronic states. Initially the upper electronic state is empty. 

After the pulse the coherence oscillates in time with a frequency that is the difference in the energy  

of the two states.  
 

 
FIG 3. Dynamics of the Lagrange multipliers for the vibrational states computed from the analytical 
equations of motion (dashed lines) and direct propagation of the surprisal (solid lines). The initial state 

is displaced to a left turning point of the vibrational motion so it has no momentum, . The 

initial displacement,  is (a) small and (b) large. 

 

Matrix representation of the surprisal for a closed algebra. The concept of a closed algebra 

is nicely illustrated in terms of the matrix representation of the surprisal in a basis of the 

eigenstates of a harmonic oscillator, Fig. 4. For ease of drawing we show the matrix for a 

nuclear subspace only. The complete surprisal matrix is a direct product of this matrix for a 

nuclear subspace and a two by two matrix for the electronic subspace. In terms of this complete 

matrix we are looking at one block of it. 
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As shown in Fig. 4, the matrix elements of the number operator  are along the diagonal. 

The matrix elements of the  and  are below and above the diagonal. This tridiagonal 

surprisal matrix is already sufficient when the algebra is closed. When the algebra is not closed 

other operators may contribute based on the equations of motion for the constraints. For 

example, one would want to add matrix elements twice removed down and up from the 

diagonal. These are matrix elements of the operators . The penta-diagonal matrix 

as shown in Fig. 4 will be found in the open algebra case of section IV.B to be a reasonably 

accurate approximation for the surprisal. Indeed, successive iterations of the equations of 

motion for the Lagrange multipliers will systematically generate elements further removed 

from the diagonal. 

 

FIG. 4. Decomposition of the matrix of the surprisal  for the nuclear subspace only using a zero-
order vibrational basis. Results are shown for a set of time-independent constraints with time-dependent 
Lagrange multipliers, not including identity operator. The algebra of the creation and annihilation 
operators provide a very transparent view: each operator describes a specific diagonal in the matrix of 
the surprisal as highlighted with the color. The Lagrange multipliers of the Hermitian conjugates, for 
example  and , are related as  to keep the Hermitian property of the surprisal.  

 

2. Beyond a closed algebra 

In section IV.A.1, a set of four operators  , see table I, 

were sufficient to describe the vibrational dynamics in the ground electronic state and its total 

population. Similarly, for the excited state plus an additional operator describing the coherence 
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between the two electronic states, . We break this ideal situation by allowing the 

electronic transition dipole between the two electronic states to depend on the nuclear 

displacement. Physically this is a common situation because the ground and more often the 

excited states change their electronic configuration as the bond displacement is changing. This 

results in a stronger correlation between the electronic and nuclear dynamics because, on a fast 

time scale, the motion of the nuclear wave packets modulates the strength of the electronic 

coupling. In a stationary picture this results in a broad distribution of the Franck-Condon 

factors. An illustration of this effect for the Hamiltonian used in section IV.A.1, Eq. (26), is 

shown in Fig. 5. We use the two initial vibrational states as in section IV.A.1 (Fig. S1 of the 

SM). In one case, a.u., the initial wave packet is hardly displaced from the equilibrium. 

In the second case,  a.u., the initial wave packet is quite displaced from equilibrium such 

that the most probable initial vibrational state is v =5.   

 
FIG. 5. Time-dependence of the effective coupling to the field due to nuclear motion of the wave packet 
on the ground electronic state. Shown is the field times dipole coupling term, computed at the mean 
value of the time-dependent ground electronic state wave packet.  
 
 The dipole is defined to be a linear function of the nuclear coordinate, 

 with the specific choice  and . The small initial shift 

of the ground state wave packet of 0.1 a.u. (Fig. S1(a) of the SM) induces oscillation of the 

mean value	〈𝑅〉 in the range from -0.1 to 0.1, therefore the dipole varies from 0.52 to 1.08. The 

larger initial shift, 0.3 a.u. (Fig. S1(b) of the SM), results in the dipole oscillation from -0.04 to 

1.6, giving rise to an effectively dark state at the time when the field is at its maximum (red 

curve in Fig. 5). 
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Equations of motion when the algebra is not closed.  Section S3.1 of the SM shows the 

systematic results for the equations of motion for the initial set of constraints for the 

Hamiltonian we use in section IV, Eq. (25), when the transition dipole moment depends 

linearly on the bond displacement R,  where we express the bond 

displacement in terms of creation and annihilation operators in the algebra. When  the 

algebra is closed. When   the closure is broken in a very systematic way. The full details 

are in section S3.1 of the SM. Here we exhibit the rate of change of the population in, say, the 

ground electronic state. The explicit result is: 

 

 (28) 

When  the dynamics of the electronic constraint, , is coupled only to the 

electronic constraints,  and . The population rate of change is determined 

only by the electronic coherences. When  the four electronic basis states , , 

 and form a closed electronic sub-algebra but this is broken when . The 

same structure is maintained for, say, the rate of change of the displacement of the wave packet 

on the ground electronic state, : 

  (29) 

In Eq. (28) we see that when  the electronic constraint is affected by the nuclear 

constraints, for example . In turn the rate of change of the mean position, Eq. (29), will 

have contribution of the operators that are quadratic in the creation or annihilation operators. 

This is already not in the algebra . The rate of change in the vibrational energy 

in the ground electronic state  when  has terms of operators that are 

cubic in the creation or annihilation operators and so on.  
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The matrix representation of the surprisal when the algebra is not closed. We consider the 

surprisal as a matrix in a basis of vibrational states. Let us compare to the case when the algebra 

is closed as in section IV.A. In this basis the matrix elements of  are along the diagonal. 

The matrix elements of  are above and below the diagonal. So for the cases discussed 

in section IV.A.1 the exact surprisal matrix is strictly tridiagonal. Now, in this section the 

algebra is not closed. One could expect however that a tridiagonal matrix can be a good 

approximation and we show below that this is indeed the case for the initial state that is shifted 

on a small extent. To stay at the same level of accuracy for the initial state that is larger shifted 

we need to add more constraints. These correspond to matrix elements of of the 

nuclear sub-space leading to a penta-diagonal matrix, as shown in Fig. 4. This will turn out to 

be an acceptable approximation for both initial states. A general way to describe the 

contribution of each of the operators is by computing their Lagrange multipliers via Eq. (24). 

Strictly speaking one can go on, symmetrically adding terms further above and below the 

diagonal just so that the matrix will remain Hermitian. The error when keeping terms up to the 

fourth power in  is shown in Fig. S4 of the SM. As is clear this ennea-diagonal surprisal 

matrix is about as off-diagonal as is warranted to extend towards an acceptably small, say 

below 1 pmil, numerical error. 

Electronic dynamics. Fig. 6 shows the electronic population and coherence for the two 

dipoles shown in Fig. 5. This is a case for which the algebra is not closed.  The approximate 

computation of the surprisal keeps off diagonal terms in the oscillator basis up to the fourth 

rank off the diagonal. Note that this level is sufficient to reproduce the time evolution of the 

electronic populations in the case of the highly shifted initial state up to a high level of 

numerical accuracy. As shown in Fig. 5 for this case at early times of the interaction with a 

pulse, around 20-25 fs, the transition is almost dark and it takes some time for the wave packet 

to move out of the region in the displacement where the dipole is small. This is reflected in 

both exact and approximate treatments of the surprisal, see Fig. 6 (c, d). 

†ˆ ˆa a
† nˆ a ˆd a a

†2 2anˆ d ˆa a

†ˆ ˆor a a



25 
 

 
FIG. 6. Electron dynamics for an initial state that is (a, b) only slightly displaced from vibrational 
equilibrium, = 0.1 a.u.; and (c, d) displaced on a larger extent ( =0.3 a.u.). Comparison of 

the mean values calculated from the surprisal propagated on a finite basis of 20 vibrational states (black 
solid lines) vs. an ennea-diagonal surprisal matrix reconstructed from the Lagrange multipliers for the 

set of constraints: . (a, c) Dynamics of the population in the ground (GS) 

and excited (ES) electronic states; (b, d) time-evolution of the coherence between the two electronic 
states. The algebra is not closed and the error in the approximate computation, below 1pmil after the 
initial times, is finite but small as shown in Fig. S4 of the SM. 
 
The nine observables that are kept in the surprisal computation in Fig. 6 suffice equally to 

reproduce even the fine details of the vibrational state distribution as shown in Fig. S5 of the 

SM. The highly vibrationally displaced initial state and the resulting almost dark transition, 

Fig. 5, is a severe test for an approximate surprisal. Fig. 6 shows that one can obtain quite 

acceptable accuracy by keeping enough terms. Fig. 7 shows that there is an even smaller but 

dominant set of constraints. For the initial state with only few vibrational states in the 

superposition, this is the set , the set that is the closed algebra when the dipole 

is not R-dependent. It corresponds to a tridiagonal surprisal matrix. This set is sufficient for the 

vibrational distribution on the excited electronic state, e.g., Fig. 7(b) but not fully during the 

pulse, for the ground state, Fig. 7(a). For the highly vibrationally excited initial state, panels 
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(c) and (d) it is necessary to use the larger set of a penta-diagonal surprisal, 

 set of dominant constraints. 

 
FIG. 7. Approximation of the surprisal (dashed lines) vs. exact surprisal computation (solid lines): (a-

b) for the small shift of the initial state and using only the dominant constraints ; (c-

d) for the large shift of the initial state using the five constraints . Compare 

(c, d) to (c, d) in Fig. 6 where nine constraints are used. Shown in the plots are the population of the 
different vibrational levels in the ground (a, c) and excited (b, d) electronic states. The profile of the 
field is shown as a pink trace. 
 

The Lagrange multipliers. Even when the algebra is not closed one can determine the value 

of the Lagrange multiplier that is conjugate to a given operator. This corresponds to seeking a 

density matrix of maximal entropy subject to a given expectation value of this operator.  An 

accurate representation of the density will often require imposing the mean values of several 

constraints as shown for example in Fig. 7. Defining the numerical value of the Lagrange 

multiplier by the condition that the density reproduces the mean value of the conjugate 

observable leads to an implicit, transcendental, equation. Solving this equation is not fully 

trivial even in the classical limit when the observables commute.34 When the observables do 

not commute handling an exponent that is a linear sum of observables adds at least one 

additional layer of complexity. The advantage of proceeding via the surprisal route is that it 
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deals with the linear sum rather than with the exponent thereof. A Lagrange multiplier can 

thereby be determined directly from the surprisal as discussed in section III.B. A simple 

summary of the key result, Eq. (24) , is to take the Hilbert-Schmidt scalar product of the 

operator of interest with the surprisal. 

Under ordinary circumstances one thinks of the Lagrange multiplier conjugate to the 

number operator, , as the temperature. The multiplier for the oscillator in the case of 

an open algebra is shown in Fig. 8. When the transition dipole does not depend on the nuclear 

displacement the Franck-Condon factors allow only vertical transitions, therefore the Lagrange 

multipliers for  and  operators are constant and there is no contribution of the 

off-diagonal constraint   to the density. In this sub-section, when the dipole is changing 

with the displacement, the situation, as shown, is more complex.  

 
FIG. 8. Lagrange multipliers for the number operator . The operators diagonal in electronic 
state index have real-valued Lagrange multipliers. The superscripts on the Lagrange multipliers 
designate the two electronic states and the subscript is an index of the operator, see table I and S3.1 of 
the SM. In contrast to the closed algebra case, the Lagrange multiplier of the number operator is 
changing in time, and in opposite way for the ground and excited electronic states (black and green line, 
respectively). The off-diagonal in electronic state index number operator has a much smaller Lagrange 
multiplier that beats with the frequency of the energy gap between the two electronic states. As the two 
potentials are the same the gap does not depend on the nuclear coordinate, therefore there is only a 
constant beating frequency. These Lagrange multipliers are the same for the two initial states 
considered. 
 

The Lagrange multipliers are conjugate to the observables. This means that in principle they 

can be used to describe the state of the system in a manner complementary to that of the 

expectation values of the observables. A clear example is provided in panel (a) of Fig. 8. At 

the peak of the short pulse there is significant depletion of the ground state but as the pulse 

weakens some states that were electronically excited during the pulse revert back to the ground 
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electronic state.  The vibrational temperature in the excited state goes down to a finite lower 

value. Eventually the pulse does induce a net population transfer but not as much as during the 

pulse. The Lagrange multipliers for the electronic energy transfer are shown in Fig. S6 of the 

SM. As is evident it is not very different from Fig. 4 that shows these multipliers for the case 

of a closed algebra. 

  Not only the electronic coherence but also the coherence between different vibrational 

states on the same electronic state is well reproduced. Fig. 9 shows results both for the 

vibrations on the excited electronic state, states that are not populated before the pulse and for 

the vibrations on the ground electronic state. The solid line are computations of a numerically 

exact surprisal using a basis of 20 vibrational states on each electronic state. The two panels on 

the left are for an initial vibrational states that is not very displaced. For this case the smallest 

set of operators for the vibrations,  is sufficient for an acceptable accuracy, see 

dashed lines in Fig. 9(a). This is consistent with our earlier results for the closed algebra. When 

the initial state is more displaced so that higher vibrational states are accessed we need a bigger 

set, , see dashed lines in Fig. 9(b). The coherence oscillates with the 

frequency difference between the two vibrational states. When the initial state is more 

displaced we show the coherence between states with a larger difference in their vibrational 

quantum numbers to emphasize the accuracy of the approximation. 

 
FIG. 9. Exact coherence of vibrational states and its approximation using a dominant set of 

constraints. Left panels: the smallest possible set, a set that is closed if the dipole is constant, which is 

not the case here. Right panels: an initial state that is peaked at the fifth vibrational state, see Fig. S1 of 
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the SM. Here higher vibrational states can be accessed, see Fig. 7, and a bigger set of nuclear constraints, 

, is needed for a fully realistic approximation. 

 

 Counteracting the migration of matrix elements of the surprisal away from the diagonal is 

the decline in the value of the conjugate Lagrange multipliers. Fig. 10 shows the computed 

multipliers for three successive powers, . The successive values decline by two 

orders of magnitude per increasing power. To a limited extent this is compensated by 

successive mean value being somewhat higher but the overall tendency is that the terms that 

originate in the failure of the algebra to close do not contribute significantly. The dominant 

constraints in the surprisal are the trio   that generate the tridiagonal structure of 

the surprisal matrix. This set of constraints is sufficient when the algebra is closed. Adding 

 as constraints leads to a penta-diagonal surprisal and, as discussed above, is a 

sufficiently accurate approximation. 

 
FIG. 10. Lagrange multipliers for three successive powers of the creation operator as indicated on the 
plots. Black curves correspond to the ground electronic state operators, green curves – to the excited 
state operators.  
 

As dynamics unfolds on several electronic states and the coherence effects are prominent 

(the rate of change of the populations is determined by the coherences see Eq. (S3.8) in section 

S3.1 of the SM) it needs several dominant constraints in each electronic state. However, it is 

still much less, as compared to the universal finite basis representation (or the Gelfand basis, 

), see table II. The benefit is already seen for the small basis of vibrational states, 400 vs. 

16 constraints in the Gelfand and representation respectively. 

Increasing the number of vibrational basis functions needed for an accurate representation of 
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the initial state requires 24 dominant constraints out of 1600 in the more universal Gelfand 

representation.  

The entries under dominant constraints in table II assume that all the four electronic 

constraints are important. As we discuss in section IV.B, this need not be the case. For example, 

in the smallest dominant case already the set  is 

essential for a fully realistic description. This cuts it down from 16 to 12 operators but it is not 

a significant reduction compared to the reduction from the 400 that one needs to keep in the 

fully accurate Gelfand representation. 
 

TABLE II. The number of the constraints needed to represent the surprisal and the density matrix. 

The finite basis representation, the Gelfand basis, is universal but not compact. Also shown are the 

dominant constraints that describe almost the same amount of information but with a fewer number of 

operators.  

 
 
B. A toy model for an internal conversion in pyrazine 

In section IV.A we discussed the dynamics when two electronic states are coupled by a fast 

transient pulse. Here we describe the dynamics when two electronic states are coupled by 

diabatic coupling that is acting throughout. Our model is a toy version of the model of two 

electronic states and three vibrational modes used by Schneider and Domcke33, 35  to simulate 

internal conversion in pyrazine. We use only the  coupling mode that couples the two 

diabatic electronic states with a coupling that is a linear function of nuclear distance, 

. From the algebraic point of view it is the analogue of the dipole moment that 

linearly depends on the displacement of section IV.A but here the coupling is acting 

throughout. In either case the algebra is not closed and for the same reason. The parameters of 

the two potentials are shown in Table S6 in section S2.1 of the SM. It is case of Fig. 2(b) of 
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Ref. 33. There is a low barrier at the equilibrium position in the adiabatic picture and this will 

be reflected in the shape of the wave packet as it moves on the ground state potential. 

1. Non-adiabatic dynamics 

     We initiate the dynamics on the excited electronic state with an initial vibrational state 

slightly shifted to the right of the equilibrium posint. The surprisal is propagated on a basis of 

20 vibrational functions per electronic state and in addition we compute two  approximations 

where the surprisal is expanded using only a dominant set of constraints. The approximate 

computations use a minimal and a slightly larger basis of operators as identified in table II. We 

process the time-dependent surprisal to determine the population in each electronic state as a 

function of time and nuclear coordinate, Fig. 11. The diabatic coupling induces rather fast 

exchange of the population between the two states. Even just the minimal set of three 

vibrational constraints, dashed red curve, provides a fully realistic approximation that deviates 

only when the wave packet is near its outer turning point on the ground state. It is worthwhile 

to point out that the minimal set of dominant constraints means that the 4 blocks of the surprisal 

matrix (each one for the different electronic constraint) when written in the finite basis are 

tridiagonal. It is as minimally coherent as can be, yet it offers a fully realistic view of the 

dynamics. The larger basis of constraints, blue dashed curve, is exact to graph reading 

accuracy. This somewhat larger basis, table II, consists of adding just two vibrational 

constraints,  to the minimal basis. 

 

FIG. 11. Population exchange between the two electronic states due to diabatic coupling, 
. Computed by the time propagation of the surprisal to high numerical accuracy on a finite vibrational 
basis. The wavepacket density on the upper electronic state is plotted in light green, and in  dark grey 
on the lower electronic state. The panels (a)-(f) are computed for increasing time values as indicated. 
Shown also are two approximate computations where the surprisal is expanded in a minimal basis of 
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dominant constraints , red dotted curve, and in the extended set 

, blue dashed curve.  

 

 The considerable insight offered by the dominant constraints is also seen in the 

computed population and coherences integrated over the nuclear coordinate, Fig. 12. Already 

the minimal basis set of constraints, while somewhat deviant near the turning points, see Fig. 

11,  

 
FIG. 12. Population of the excited electronic state (a) and the coherence of the excited and ground state 

(b). Solid black curve, numrically accurate computations of the time-dependent surprisal propagated on 

a finite vibrational basis. Red dots: A minimal set of dominant constraints is used to expand the 

surprisal. Blue dashed curve: the slightly augmented minimal set of constraints is used. The fast 

oscillations are due to the electronic energy difference of about 7260 cm-1 or almost 8 times faster than 

a vibrational period. 

 

captures such subtle features as the oscillation of the electronic coherence due to the slow 

vibrational motion, period of 35 fs, Fig. 12(b). The out of phase motion of the population of 

the excited state and the coherence is to be expected because the maximal coherence is when 

the population of the excited state is maximally depleted. 

 

2. A minimal set for the electronic degrees of freedom 

Throughout we have taken note that many operators on the vibrational states, e.g., , do 

not have a significant weight as measured by their conjugate Lagrange multiplier (or, strictly 

speaking by their contribution to lowering the entropy, meaning their conjugate Lagrange 

multiplier times their expectation value). The same is actually the case also for the operators in 
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electronic sub-space. In the minimal set  we find that for our toy model the 

operators  have Lagrange multipliers that can be neglected as shown in Fig. 

13. This is unlike the operators  that are quite dominant. The difference is 

due to that the electronic transition is accompanied by a gain or loss of one vibrational quantum 

as can be seen from the oscillation frequency of the Lagrange multiplier for the  

constraint, . It is higher from the electronic gap  by one quantum of vibration 

and corresponds to the period of 4 fs. Consistent with this selectivity, the Lagrange multipliers 

for the pair  are again negligible. The vibrational selectivity is rather 

likely a reflection of the linearity in the nuclear dispacement of the coupling between the two 

electronic states. Indeed, the mean values for the population and coherence for this even smaller 

set of constraints is as accurate as the  minimal set 

representation, see Fig. S7 in section S3.3 of the SM.  

 
FIG. 13. Electronic Lagrange multipliers for a radiationless transition. Shown are results for the two 

dominant bases discussed in table II. Both have the same electronic part,  The blue 

curve, for the slightly larger vibrational set is already quite accurate, see for example, Fig. 12. The red 
dashed curve  is the minimal vibrational set. In some panels the two curves agree so well that they 
cannot be easily resolved by eye. Comparing panels (a) and (d) one sees that the electronic multiplier 
for the operator can be neglected. Similarly by comparing panels (c) and (f) the electronic 
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multiplier for the operator can almost be neglected. Yet comparing panels (b) and (e),  

 can definitely not be neglected.  

V. CONCLUDING REMARKS 

Surprisal analysis of experimental distributions in physics, chemistry and biology can often be 

characterized even by a single dominant constraint. A very recent example is the analysis of 

COVID19 patient gene expression samples to identify a single constraint, a gene module, that 

strongly aligns with disease severity.36 In the present work we develop an approach that allows 

to extract the dominant constraints for different scenarios of the coherent quantum dynamics 

on multiple electronic states. We show that such an approximate but compact treatment of the 

density provides good accuracy for both electronic and vibrational population and coherence 

dynamics. 

A density operator that is an exponential function of the constraints is a central result of 

the maximal entropy formalism. It follows that the surprisal, the logarithm of the density, is 

then a linear function of the operators of the constraints. The linearity allows a ready analysis 

of the importance of each constraint in the description of the density, in contrast to the density 

operator which is an exponential function of the not necessarily commuting constraints. In 

practice the expansion of the surprisal is analogous to the computation of the coefficients of 

the linear expansion of a function in an orthonormal basis set, with the key difference that here 

instead of the functions in Hilbert space we use operators as basis vectors in Liouville space.  

By direct propagation of the surprisal we obtain the matrix of the surprisal at different 

times of the dynamics. It is a general procedure and allows describing dynamics for any type 

of the potential and interstate coupling. We then evaluate the Lagrange multipliers – the 

coefficients of the chosen set of constraints, using the orthogonality relations established for 

this set of operators. We discuss both the cases when the algebra is closed, the finite set of 

constraints is giving an exact expression of the density, and when the algebra of the constraints 

is not closed, therefore the finite set of constraints provides only an approximation to the 

density. Our results confirm, that in the latter case a finite set of constraints have coefficients 

orders of magnitude higher than the other constraints. The density built up using only these 

dominant constraints is accurate enough to describe the effects of the vibrational and electronic 

coherences. 
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SUPPLEMENTARY MATERIAL 

The supplementary material contains details regarding various technical aspects of the 

computation of the surprisal on a finite basis and its analysis. We focus on the time evolution 

of the surprisal in a direct product Hilbert space of electronic and vibrational degrees of 

freedom of a molecule. The well-known basis of harmonic oscillator states and the algebra of 

the creation/annihilation operators is used throughout. In general a similar method can be 

applied to any finite basis suitable for the description of the problem of interest. In the first 

section we discuss the orthogonalization procedure that is used to generate a specific set of 

operators in a finite basis. Thereby a unique set of Lagrange multipliers can be determined 

from the matrix of the surprisal computed in this finite basis. The details of the computation of 

the surprisal matrix are specified. Then, the computational details are given for the three cases 

of the dynamics as discussed in section IV of the main text. In the last section the equations of 

motion for the constraints are given as well as the analytical equations of motion for the 

Lagrange multipliers that are rigorous only in the case of a closed algebra. 
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