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Unusual Norrish Type I and Type II Nitro-Acyl Migration Transition State in 

the Photo-uncaging of 1-Acyl-7-nitroindolines Revealed by Computations. 

Pierpaolo Morgante, Charitha Guruge, Yannick P. Ouedraogo, Nasri Nesnas*, Roberto Peverati* 

 

Abstract. The 7-nitroindolinyl family of caging chromophores has received a lot of attention 

in the past two decades. However, it is not clear if they undergo cyclization or migration upon 

photo-uncaging to release the active compound. In this study, we performed state-of-the-art density 

functional theory calculations to fully understand the photo-uncaging mechanism and we compared 

the probabilities of all plausible pathways. We found that the key transition state in the lowest-

-energy pathway involves an acyl migration. It possesses the characteristics of a combined Norrish 

Type I and a 1,6-nitro-acyl variation of a Norrish Type II mechanism, which has not been previously 

reported. We also introduced a new computational procedure that allows the estimation of 

intersystem crossing rate constants useful to compare the relative quantum yield of substituted 

cages. This procedure may pave the way for improved cage designs that possess higher quantum 

yields and more efficient agonist release. 
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The ability to deliver or activate a compound to a specific site with precise timing is of 

extreme value.  This is widely referred to as spatio-temporal control.1–4 Techniques that possess a 

spatio-temporal power have found numerous applications ranging from medicinal chemistry fields 

with photo-targeted therapeutics,1,3 such as cancer treatments,5–8 to the neuroscience where it 

becomes critical to activate selected neurons to study specific pathways1,9–12 and photo-initiated 

catalysis.8 In the latter, emerging field of optogenetics, light sensitive channel rhodopsin receptors 

are genetically engineered in selected neurons rendering them light responsive.3,11,13–21 Additional 

methods of firing specific neurons employed a diverse array of photo-cleavable protecting groups 

attached to critically active sites of agonists.22–25 These photo-cleavable protecting group acquired the 

term photocages, or simply cages, as their attachment to an agonist necessarily incapacitates it, much 

like caging a ferocious animal. 

Caged molecules are inert, and they need an external agent—such as a physical, chemical or 

mechanical force—8,26–29 to induce the release of the biologically active compound they are 

protecting. Light represents the most advantageous activator because it offers the ability to control 

the precise time and the location of the release.1–4 Although there are numerous classes of photo-

cleavable groups, they share a common feature of absorbing light of specific wavelengths that leads 

to excitation from the ground state (S0) to (S1,2,3…) followed by an intersystem crossing (ISC) to the 

triplet state (T1).23,24,30–32 This leads to cleavage of the protecting group at the most labile bond which 

is critically positioned for such release (as shown in red for MDNI-Glu in Scheme 1 below). These 

mechanisms depend on the class of protecting groups employed, but some are not clearly 

understood, as mechanisms in excited states may not resemble the familiar mechanistic pathways 

commonly accepted for ground states.23,33 

7-Nitroindolinyl cages have gained popularity at the turn of the century due to their optimal 

quantum yields and efficient release of agonists.34–36 Improvements of such cage systems led to the 
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installation of a second nitro group at the 5 position that resulted in improved quantum yields.37,38 

Although the second nitro at the C-5 is not directly participating in the mechanism, as we will show 

later, its presence results in an improved quantum yield by at least 5 fold according to experimental 

data.39–41 The mechanisms of uncaging for the 7-indolinyl system was studied by at least three groups 

using kinetic, fast pulse IR, and computation.37,42,43 However, the most recently reported 

computational mechanisms of uncaging do not explain the difference in quantum yield, which is an 

important parameter especially for consideration in future improved designs. We herein report a 

novel computational method that highlights the relative quantum yields of nitroindolinyl systems 

and also clarifies the mechanism with respect to the traditionally accepted formation of a cyclic 

intermediate.  

The first mechanism for the light-initiated uncaging of MDNI-Glu (1) has been proposed by 

Ellis-Davies and coworkers in 2005,38 and is based on kinetic data collected by Morrison et al.44 for 

another member of the 7-nitroindoline family. For simplicity, we will refer to this mechanism as the 

cyclization pathway (CP) from here on. According to their proposed mechanism, after irradiation, 

the reaction proceeds on the triplet surface via a cyclic intermediate (5). Subsequently, the system is 

deprotonated (3), and finally it delivers the free glutamate (7) to the reaction medium. According to 

the CP mechanism, the increased reactivity of MDNI is due to the influence of the nitro group in 

position 5 on the overall electronic structure of the indoline scaffold.38 A subsequent computational 

study by Pálfi et al. (the migration pathway, MP),43 however, did not report any cyclic intermediate, 

and attributed the increased reactivity of MDNI to a smaller difference in the enthalpy of activation 

of the rate-determining step (∆∆HRDS) of the uncaging reaction on the triplet surface. The most 

notable difference between the proposed CP mechanism and the MP mechanism is the formation of 

the cyclic intermediate 5 (see Scheme 1), and to which extent the substituents of the indoline 

scaffold affect each pathway.  
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Scheme 1 Different proposed mechanisms for the uncaging of MDNI-Glu 
(R=CH2CH2CH(NH2)COOH): Migration Pathway (MP) – computational mechanism reported by 
Pálfi et al.;43 Cyclization Pathway (CP) – mechanism presumed by Ellis-Davies and coworkers,38  
based on Morrison’s experimental data.44 

 

In this work, we aim to redeem the controversy by performing state-of-the-art density 

functional theory (DFT) calculations of the full reaction mechanism with the M1145 exchange-

correlation functional approximation and the def2-TZVP basis set46 on top of geometries optimized 

at the B3LYP-D3(BJ)/def2-SVPD level of theory.46–52 We calculate and report also for the first time 

the Gibbs free energy profile—including both enthalpic and entropic corrections—of the reaction, 

in contrast to Pálfi et al. who reported only enthalpic contributions. Our results confirm that the 

cyclic intermediate does not form, but also show that the different substituents do not affect the 

mechanism of the reaction on the triplet surface as first reported by Pálfi et al. A novel 

computational protocol was therefore necessary to correlate the influence of the substituents with 

the sensitivity of the molecule towards light absorption. Our new protocol is based on the 

estimation of the rate constants of intersystem crossing (which has never been done previously for 

this class of compounds). Validation of the new protocol on external data shows promising results 
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for its application for the prediction of quantum yields of molecules that have not been previously 

synthesized. 

The reaction from MDNI-Ac (10) to 4-methoxy-5-nitro-7-nitrosoindole (8) and acetic acid is 

very favored from the thermodynamic point of view, having a calculated ΔG of –38.7 kcal/mol (see 

Scheme 2 below). According to the CP mechanism, the cyclic intermediate 9 (Figure 1) is the key 

structure in the reaction mechanisms of MNI and MDNI, regardless of the leaving group. In fact, 

close inspection of its structure reveals that there are at least four bonds (labelled A, B, C or D in 

Figure 1) that can potentially break, leading to four different routes depending on which of these 

four bonds breaks first. We will label these routes according to the bond that breaks first.  

 
Figure 1 The cyclic intermediate for MDNI-Ac. 
This structure is similar to structure 5 in 
Scheme 1, but instead of glutamate it is bound 
to acetate. 

 

Breaking the bond between carbon and oxygen (bond A in Figure 1) reverts the cyclic 

intermediate back to the reactant, and therefore does not lead to uncaging. Breaking bond B resulted 

in an unstable intermediate that reverted back to the cyclic structure itself during geometry 

optimization. For this reason, we did not explore this pathway (Cyclization Pathway–B, or CP–B) 

any further. The original CP mechanism involves breaking bond C first, followed by a concerted 

process, initiated by the deprotonation that leads to the reaction products, as seen in Scheme 1. Our 
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calculations show that bond C can indeed be broken, but there is no deprotonation of the resulting 

intermediate. Instead, once the nitronic anhydride is formed, the leaving group departs, and then 

deprotonation occurs before the spent cage decays back to the singlet state (we termed this 

mechanism CP–C, see Scheme S1 in the Supplementary Information for more details). Last, we 

found the process starting from breaking bond D, followed by the collapse of the cyclic intermediate 

is also possible, but energetically disfavored compared to the other pathways described above 

(breaking bond D, which corresponds to an hydrogen atom abstraction, requires 21.6 kcal/mol for 

MDNI-Ac, see Scheme S2 in the Supplementary Information for the CP–D mechanism).  

 

Scheme 2 Schematics of the main reaction pathways for MDNI-Ac: Migration Pathway (MP) – 
mechanism of Pálfi et al., verified by our improved computational results; CP–C – Cyclization 
Pathway–C (CP–C) mechanism via cyclic intermediate (see text for detailed explanation of the 
pathways). The hydrolysis pathway on the singlet surface is also shown. The structures of the relevant 
transition states are reported in a box, while those of significant intermediates and products are 
reported without a box. 
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The MP mechanism involves a migration process that occurs before the formation of the 

cyclic intermediate. According to our results, the energy required for the migration is lower than the 

energy required for cyclization, as seen in Scheme 2. This is consistent with the experimental 

observations, since it yields the same intermediate—the nitronic anhydride—identified by Morrison 

et al. in their kinetic study,44 and by Cohen et al. in their fast IR spectroscopy study.42 Our 

computational results indicate that the MP is lower in energy than any of the CP ones discussed 

above, which should not be too surprising considering that the cyclic intermediate necessitates the 

deplanarization of the amide bond to place the available unoccupied orbital of the carbonyl in the 

accessible position for the oxygen radical to form the bond (Figure 2).   

 

  

Figure 2 Key electronic effects for the cyclization pathway (CP). The oxygen radical in a is not 
positioned at the ideal Bürgi–Dunitz angle of 107º relative to the plane of the molecule, and it is far 
away from the unoccupied orbital of the carbonyl group. The CP necessitates deplanarization of the 
amide bond via a rotation (b) in either sense, leading to two enantiomers (only one shown; see SI for 
more details). This leads to a higher energy pathway than the migration pathway (MP). 

 

Furthermore, the migration of the acyl unit is facilitated by the inherent formation of the 

stabilized acyl radical, typically formed with classical Norrish53 type I alpha cleavages of excited 

carbonyl of ketones (Figure 3, part a).54–57 The 1,6-acyl migration effectively embodies 
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characteristics of both type I and type II Norrish reactions in which the acyl undergoes an a-

cleavage as it transfers to the O radical of the nitro unit similar to the g-H abstraction by triplet 

carbonyl in Norrish type II positioned at a 1,6-relationship (Figure 3, part b).53,57 In order to better 

understand this migration pathway, we computed the energy for an ethyl group migration (in place 

of the acetyl) and noted that it was higher in energy (21.7 kcal/mol, Figure 3 part c), despite being 

positioned in a 1,6-relationship to the nitro oxygen radical.  This clearly reflects the stabilizing effect 

of an acyl radical in the transition state of the 1,6-migration.  Therefore, based on the expected 

accuracy of our calculations (~±0.5 kcal/mol),58–62 we can conclude that the reaction does not 

proceed through the cyclic structure (9) neither in the triplet nor in the singlet state.  
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Figure 3 Schematics of the Norrish Type reactions (a). The MP pathway combines both Type I and 
Type II characteristics (b). Breaking the Z–R bond (Z = N, R = COCH3) results in a Norrish Type I 
reaction, while the adjacent Z–O bond is in a 1,6-relationship (Norrish Type II) and facilitates the 
cleavage of Z–R. Panel c shows the key migration transition state. If R = CH2CH3, the reaction loses 
the Norrish Type I characteristic, and it is higher in energy by about 16 kcal mol–1.   

 

Using the same computational strategy, we found that the modification of the substitution 

pattern on 7-nitroindoline is not as important as initially thought. Since the cyclic structure does not 

form, there is little influence of the substituents on the other steps of the reaction. In fact, the 

reported energy difference of ∆∆HRDS = 2.0 kcal/mol (calculated with B3LYP/6-31G*,47–52,63–65 

which has an estimated error bar of ~±1 kcal/mol) between the MNI-Glu and MDNI-Glu 

pathways reported by Pálfi et al. reduces to only ∆∆GRDS = 0.1 kcal/mol when the computational 

method is improved and the entropic corrections are appropriately included. This energy difference 

is too small to justify the experimentally observed difference in the quantum yields of the two 

systems. In addition, the results of Pálfi et al. show that the RDS of the reaction between MNI-Glu 

and MDNI-Glu is different than the one for α-MNI-Glu and α-MDNI-Glu. The only difference 

between these two classes of compounds is in the linking point of the cage, as also noted in ref. 41. 

In the first case, it is bound to the ω-substituent of the glutamate chain, while in the second case the 

cage is bound to the carbon in the α-position, hence the α-M(D)NI notation. In ref. 43 the two α-

structures are called MNI-Ulg and MDNI-Ulg respectively. However, according to their reported 

data (see Table 1 in ref. 43), the enthalpy difference in the RDS for the α-case is ∆∆HRDS = 2.3 

kcal/mol, a value that is well within the accuracy of the method from the Glu case. For this reason, 

it is safe to assume that the effect of the substituents on the α-mechanism will be similarly 

inconsequential, while the origin of the different quantum yields has to be searched somewhere else. 

Another major notable difference between the MP mechanism and our new results is that we did 

not find any reaction occurring on the singlet ground state. Pálfi et al. claim that hydrolysis and other 
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side-reactions are problematic, as they can readily occur in the singlet ground state.43 This is in 

contradiction with both the experimental findings of Cohen et al.42 and our exploration with the 

improved computational method. Our results show that the direct hydrolysis of MDNI-Ac has an 

activation energy of 43.0 kcal/mol, which makes the reaction highly disfavored at room temperature 

(see Scheme S3 in the Supplementary Information). The other processes explored in ref. 43 that 

lead to the hydrolysis side-product have a barrier of at least 33.0 kcal/mol. These barriers are high 

enough to make any side-reaction on the singlet surface negligible. It is noteworthy that if hydrolysis 

occurred, then the cage would lead to the uncontrolled release of the active compound, invalidating 

its application as caging agent as a whole, and would have been experimentally observed by Cohen 

et al. and in our laboratory. Last, we want to point out that the hydrolysis product (15) and the 

uncaging product (8) are different in that the former retains the nitro group while the photo-

uncaging leads to the nitroso.  However, both processes result in the release of acetic acid (from 10 

and 13 respectively). 

 In summary, our improved results on the uncaging mechanism show that the lowest energy 

path proceeds as follow: After irradiation, the first step is the migration of the acetyl group from the 

nitrogen atom of indoline to one of the oxygen atoms of the neighboring nitro group. The 

corresponding transition structure (structure 11 in Scheme 3) is only 5.7 kcal/mol higher than the 

reactant, and it is fairly accessible at room temperature. As a comparison, the formation of the cyclic 

intermediate from the same reactant requires 12.6 kcal/mol (structure 12 in Scheme 2). In other 

words, the cyclization requires twice as much energy as the migration pathway, making it less 

favored despite having a non-prohibitive activation energy. After the first intermediate forms 

(structure 13), the subsequent step (18) has a barrier of 11.4 kcal/mol, and thus it represents the rate-

determining step of the reaction. After the leaving group (acetate in this case) is released (18), a 

charged nitroso intermediate then forms (14), which readily deprotonates and then dis-excites, going 
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back to the singlet surface as a spent cage (19). This is also consistent with the fact that molecules 

including an aromatic ring are more acidic in the excited state than in the ground state.66–69 

Subsequently, the non-aromatic five-membered ring in 19 spontaneously tautomerizes to the fully 

aromatic indole system of 4-methoxy-5-nitro-7-nitrosoindole (8). The reaction mechanism for 

MDNI-Ac is outlined in Scheme 3. 

 

Scheme 3 The reaction mechanism for the uncaging of MDNI-Ac. The singlet surface is indicated in blue, 
while the triplet surface is indicated in green. All numerical values are in kcal/mol. All structures have been 
obtained at the B3LYP-D3(BJ)/def2-SVPD level of theory,46–52 while thermodynamic quantities have been 
computed at the M11/def2-TZVP level.45,46 

 

Having excluded the uncaging mechanism on the triple surface as explanation of the 

quantum yield, the most probable steps that can affect the behavior of this family of molecules are 

the response towards the incident light and how readily the triplet state is populated. In fact, the true 
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reactant is the molecule in the triplet state. We contend that controlling the amount of reactant in 

the triplet state is the key to achieve high quantum yields. In order to verify our claim, we performed 

time dependent density functional theory (TD-DFT) calculations using M11/def2-TZVP45,46 with 

B3LYP-D3(BJ)/def2-SVPD46–52 geometries in order to get access to the excited states of the 

molecules and therefore to the kinetic constant of intersystem crossing (vide infra). A singlet-triplet 

transition is strictly forbidden in non-relativistic quantum mechanics, but in practice, it can happen 

because of intersystem crossing (ISC). In general, a higher measured quantum yield for the entire 

process corresponds to a higher rate of ISC, as established for example for the boron-

dipyrromethene (BODIPY) family of cages.25,70 However, there is no current methodology for the 

computational investigation of ISC for MNI and MDNI cages.  

Borrowing from the work of Russo, Chiodo, Thiel and coworkers,71–73 we introduce here a 

novel computational strategy for the calculation of ISC of MNI and MDNI cages. As starting point, 

we estimate the rate constant for the ISC process, kISC as:74,75 

𝑘!"# =
4π$

h	
SOC%&$

1
√4π	λRT

exp 2−
(ΔE + λ)$	
4	λ	RT

9		 (1) 

  
where λ represents the vertical excitation energy between the singlet ground state and the n-th 

singlet excited state as calculated with TD-DFT, while ∆E is the energy difference between the n-th 

singlet excited state and the m-th triplet state. R is the universal gas constant (equal to 8.314 J mol–1 

K–1), T is 298.15 K, and h is Planck’s constant. SOCnm indicates the magnitude of spin-orbit 

coupling (SOC) between states n and m.76 We calculate the magnitude of SOC for both MNI-Ac and 

MDNI-Ac, more specifically between the first singlet excited state and the first triplet excited state 

for MNI-Ac and between the second singlet excited state and the third triplet excited state for 

MDNI-Ac. The numerical results are reported in Table 1. According to previous work,23,38,40 the 

quantum yield of MDNI-Glu is about five times the quantum yield of MNI-Glu. By comparing the 
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two ISC rate constants we calculated, we can estimate the relative quantum yield of the reaction of 

MDNI-Ac to be 3.75 times that of MNI-Ac, in good agreement with the experimental data. As a 

further validation of our methodology, we calculated also the quantum yield of CDNI-Ac. The 

experimental quantum yield of CDNI is 4 to 5 times higher than the quantum yield of MNI,38,39,41 

and it is about the same magnitude as the quantum yield of MDNI. We are pleased to notice that 

our calculated results are also in very good agreement with this experimental result.    

Since our procedure is successful in predicting the ISC rate for MNI-Ac, MDNI-Ac, and 

CDNI-Ac, we extended it to include 5-chloro-4-methoxy-7-nitroindolinyl acetate (Cl-MNI-Ac) and 

5-bromo-4-methoxy-7-nitroindolinyl acetate (Br-MNI-Ac), which have never been synthesized 

before. We expect the rate of ISC to be higher for Cl-MNI-Ac and Br-MNI-Ac due to the presence 

of an heavy atom (“heavy atom effect”),77–79 similarly to what happens for BODIPY.25 Our protocol 

predicts the chlorinated compound to be as reactive as MDNI, while the brominate compound to be 

more reactive than anything else (albeit by a thin margin), as we were expecting. 

Table 1 Spin-orbit coupling (SOC) values, vertical excitation energies (λ), singlet-triplet energy 
differences (∆E), and Intersystem Crossing rate constants (kISC) for selected molecules. Only the 
highest kISC is reported. 

Molecule SOCa  States (n,m) λb ∆Eb kISC
c 

Relative 
Quantum 

Yieldd 
MNI 115.9 S1, T1 87.4 –17.7 4.87x1023 1.00 

MDNI 619.8 S2, T3 88.4 –15.3 1.83x1024 3.75 
CDNI 585.7 S2, T3 88.4 –15.6 1.96x1024 4.03 

Cl-MNI-Ac 124.8 S2, T1 87.8 –19.7 1.84x1024 3.78 
Br-MNI-Ac 145.3 S2, T1 87.8 –19.4 2.10x1024 4.31 

       
a units are in J mol–1; b units are in kcal mol–1; c units are in s–1 mol–1; d calculated with respect to MNI 
 

In conclusion, we presented a detailed description of the reaction mechanism of 4-methoxy-

5,7-dinitroindolinyl acetate (MDNI-Ac) and 4-methoxy-7-nitroindolinyl acetate (MNI-Ac). We 

showed that the mechanism proceeds without formation of a cyclic intermediate in the triplet state, 



 14 

in contrast to previous beliefs. Instead, the reaction proceeds in the triplet state via an Norrish type I 

and II 1,6-acyl migration to the nitro group, which subsequently releases the leaving group of the 

nitronic ester, while the spent cage is recovered in the singlet ground state. The reason behind the 

success of MDNI as better caging group does not lie on lower activation energies, but rather on a 

better sensitivity towards light due to an increased rate of intersystem crossing, estimated using a 

procedure based on TD-DFT and spin-orbit coupling calculations, which we applied to 7-

nitroindolinyl-based cages for the first time. Our new computational protocol allowed for 

predictions about the reactivity of unexplored molecules, and guidance for their future synthesis. 

 

Methods. 

Computational methods and models.  

All calculations were performed with the Gaussian1680 program. For geometry 

optimizations, the B3LYP-D3(BJ) functional47–52 and the def2-SVPD basis set46,81–83 were used. The 

nature of all structures has been characterized through frequency analysis with the M1145 functional 

and the def2-TZVP46 basis set. In all cases, a Lebedev integration grid of 99 radial and 590 angular 

points —abbreviated as (99,590)— has been used. All calculations have been performed in water 

using the Conductor-Like Polarizable Continuum Model (C-PCM)84,85 framework. In addition, TD-

DFT calculations at the M11/def2-TZVP level have been performed. We used the pySOC 

program,72,73 which is based on TD-DFT output files obtained with Gaussian, to calculate the spin-

orbit coupling terms needed to estimate the ISC rate constants. More details about the 

computational procedure and sample input files can be found in the Supplementary Information.  
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