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Abstract  

Improving the heat–moisture–light stability of organic-inorganic perovskites, a widely studied 

semiconductor material class, is a critical challenge. Compositional search within multinary 

perovskites employing brute force synthesis followed by environmental tests are prohibitively 

expensive in large chemical spaces. To identify the most stable multi-cation lead iodide 

perovskites containing Cs, formamidinium (FA) and methylammonium (MA), we fuse results from 

density functional theory (DFT) calculations and in situ thin-film degradation test within an end-to-

end machine learning (ML) algorithm to inform the compositional optimization of CsxMAyFA1-x-

yPbI3. We integrate phase thermodynamics modelling as a probabilistic constraint in a Bayesian 

optimization (BO) loop, which effectively guides the experimental search while considering both 

structural and environmental stability. After three optimization rounds and only sampling 1.8% of 

the compositional space, we identify thin-film compositions centred at Cs0.17MA0.03FA0.80PbI3 that 

achieve a 3x delay in macroscopic degradation onset under elevated temperature, humidity, and 

light compared with the more complex state-of-the-art Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3. We 

find up to 8% of MA can be incorporated into the perovskite structure before stability is significantly 

compromised. Cs is beneficial at low concentrations, however, beyond 17% is found to contribute 

to reduced stability. Synchrotron-based grazing-incidence wide-angle X-ray scattering (GIWAXS) 

further validates that the interplay of chemical decomposition and phase separation governs the 

non-linear instability landscape of this compositional space. We reveal the detrimental role of the 

ẟ-CsPbI3 minority phase in accelerating degradation and it can be kinetically suppressed by co-

optimising Cs and MA content, providing insights into simplifying perovskite compositions for 

further environmental stability enhancement. Our approach realizes the effectiveness of ML-

enabled data fusion in achieving a holistic, efficient, and physics-informed experimentation for 

multinary systems, potentially generalisable to materials search in the vast structural and alloyed 

spaces beyond halide perovskites. 

Keywords: compositional materials search, perovskite stability, machine learning, Bayesian 

optimization. 

 



Main 

The environmental instability of halide perovskite materials limits their usage in real-world 

applications such as solar cells, light emitters, lasers, and photodetectors.1 Compositional 

engineering is to date one of the most effective methods to improve perovskites’ stability in the 

presence of heat, humidity and light without sacrificing optoelectronic performance.2 This fact has 

led to intensive research within the combinatorial space of AxByC1-x-yPb(IzBr1-z)3.3 However, only a 

fraction of this total compositional space has been experimentally explored, in part due to the 

large state space (an estimated 5 x 105 compositions, with 1% compositional steps). The paucity 

of resulting degradation data inhibits generalisation of mechanisms across this state space, 

requiring each compositional search to start their experimental investigations ab initio.4 This 

challenge is similar to those faced by other materials communities, including heterogeneous 

catalysts, alloyed battery electrodes, and high-entropy metal alloys for structural and magnetic 

materials.5–7 The halide perovskite field and several others require new tools to experimentally 

navigate these vast composition spaces efficiently to locate optima and to extract generalisable 

design principles.8–10 

Recent in situ experiments and first-principle calculations independently reveal two 

thermodynamic origins of instability in CsxMAyFA1-x-yPbI3 multi-cation perovskites.11,12 The first 

relates to the chemical instability of organic cations, in particular the more volatile MA cations, 

which promotes decomposition into PbI2 with multiple degradation pathways activated in the 

presence of water, oxygen or light.11,13 The second arises from the phase instability of multi-cation 

α-perovskites relative to their single-cation perovskite constituents. The resultant phase 

separation is reported detrimental to device performance when the black FA- and Cs-based α-

perovskites transform to their non-photoactive but more stable polymorphs, ẟ-APbI3 (A = FA or 

Cs).14 A-site cations play an important role in determining the environmental stability of halide 

perovskites.15 There is a widespread need to understand the fundamental composition-dependent 

behaviour under elevated temperature, humidity, and illumination, however, merging 

computational and experimental insights on selective compositions into a generalizable 

optimisation policy over the entire chemical space remains a challenge.16 State-of-the-art two-

step approaches of directly combining theoretical screening prior to shortlisted synthesis as a 

hard constraint are limited by the inefficiencies from: 1) high-performing theoretical calculations 

for organic–inorganic systems are often too sparse to guide experimentation, and 2) the 

discrepancies between the calculation assumptions and the experiments at non-thermodynamic 

equilibria decreases search accuracy.17–19 The lack of physics-informed and iterative materials 

search hinders the ultimate goal of designing perovskite compositions for enhanced 

environmental stability.   

Here, we introduce a data fusion approach to combine the DFT-modelled Gibbs free energy of 
mixing (∆𝐺𝑚𝑖𝑥) in this study and from literature,12 and the experimentally quantified time-resolved 
degradation into a closed-loop machine learning (ML) framework. We apply this framework to 
optimise state-of-the-art solution-processed thin films suffering from severe heat and 
moisture-induced degradation within the quasi-ternary space of CsxMAyFA1-x-yPbI3.3 Under 
accelerated environmental stress tests with elevated temperature, humidity in air, we identify 
compositions overperforming the MAPbI3 starting-point by 17x and our state-of-the-art reference 
composition of Cs0.05MA0.17FA0.83Pb(I0.83Br0.17)3 by 3x within three optimisation rounds. The data 
fusion approach allows us to interpret both compositional and phase contributions in multi-cation 
perovskites to their environmental (in)stability. DFT here serves as principled guidance in the 
search algorithm to reduce experiments on compositions forming stable minority phases rather 



than the desired multi-cation α-perovskites. With synchrotron-based GIWAXS, we further identify 
the competing role of MA and Cs in two degradation mechanisms, as MA accelerates chemical 
decomposition and suppresses phase separation, whereas Cs suppresses the former mechanism 
but accelerates the latter. In optimised compositions, phase separation which take places over a 
longer timeframe than chemical decomposition. The observed composition- and time-dependent 
nature of the two degradation mechanisms explains the non-linearity in the instability landscape 
and validates the importance of achieving a holistic view of the full compositional space. Our 
findings highlight the detrimental effects of ẟ-CsPbI3 minority phase leading to accelerated 
degradation of α-phase perovskites, which shed light on degradation control of multinary 
perovskites through a machine-learning driven simultaneous optimization of the three A-site 
cations. 

Closed-loop Experimentation Platform Directed by Physics-informed Bayesian 

Optimization. 

 



Figure 1 Each optimisation round consists of three steps of ‘composition selection’, ‘film synthesis’, and 

‘instability quantification’ and a fourth step of theoretical incorporation into the closed-loop workflow by a 

data fusion approach. a-b. Composition selection: the selection of nominal compositions of multi-cation 

perovskites is driven by machine learning algorithms with DFT-modelled ∆𝐺𝑚𝑖𝑥 incorporated by data fusion. 

c. Film synthesis: tuning A-site cations in lead iodide perovskites forms CsxMAyFA1-x-yPbI3, a space of 5151 

compositions (estimated experimental resolution 1%). Thin-film samples are spin-coated in series using 

precursor solutions of nominal compositions. d. Instability quantification: we perform accelerated 

degradation tests with in situ optical monitoring, enabling 28 thin-film samples being degraded in parallel. 

Near-black photoactive perovskite films turn yellow over time due to the emergence of high-bandgap 

degradation products. Quantified optical changes over time, recorded in R (red), G (green), and B (blue) 

channels, are used as a proxy to evaluate the chemical instability of the samples under 85% relative 

humidity (RH), 85°C sample temperature, and 0.15 Sun visible only illumination. Two representative sample 

photographs and curves of the total (R + G + B) area-averaged value as a function of time is illustrated in 

d. 

To direct the compositional search in a CsxMAyFA1-x-yPbI3 five-element space, we construct a 
physics-informed batch Bayesian optimization (BO) framework through data fusion (Fig. 1). BO 
explores efficiently vast variable spaces in a ‘closed-loop’ fashion, whereby the outcome of one 
experimental round informs the next without human intervention.20 BO is an established ML 
method21 that recently successfully directed experimentation in several materials systems 
including the self-driving deposition of organic hole-transport layers for solar cells5 and the search 
for inorganic oxide perovskites for piezoelectrics.6 As a key algorithm contribution, we fuse ∆𝐺𝑚𝑖𝑥 
as a probabilistic constraint of the BO acquisition function in the ‘composition selection’ step, 
providing additional information on phase stability to effectively identify the composition 
suggestions of multi-cation perovskites that are thermodynamically stable relative to their single-
cation counterparts (Fig. 1a-b). In this study, we define a figure of merit for optimising stability that 
we call the ‘Instability Index (𝐼𝑐)’. The goal of each optimization round, which consists of three 
steps of ‘composition selection’, ‘film synthesis’ and ‘instability quantification’, is to minimise this 
value. Our batch BO algorithm makes use of a surrogate ML model, Gaussian process regression 
(GP), to estimate the value and uncertainty of 𝐼𝑐 in non-explored regions of the compositional 

space.22 An ‘acquisition function’, expected improvement 𝐸𝐼(Θ)  (see algorithm details in 
supplementary information), takes the estimated mean and uncertainty and suggests promising 
compositions for the next experimental round, balancing the exploitation of the most stable 
regions minimising mean 𝐼𝑐 ,  and the exploration of high-uncertainty regions within the 
compositional space. Within each experimentation round (one batch), 28 spin-coated thin-film 
samples (Fig. 1c) are examined in situ in parallel using an environmental chamber under 85 RH% 
and 85°C in air (chamber schematics see Fig. S1).  

Photoactive α-perovskite phases within CsxMAyFA1-x-yPbI3 exhibit a bandgap of ~1.5 eV, whereas 
their main degradation products under hot and humid conditions, PbI2 (2.27 eV),

23
 δ-CsPbI3 (2.82 

eV)24 or δ-FAPbI3 (2.43 eV)25 show deteriorated photophysical properties (Fig. S2).26–28 We hence 
employ a colour-based metric as a proxy to capture the macroscopic evolution of the high-
bandgap, non-perovskite phases through the optical change of the near-black perovskite 
films.29 0.15 Sun visible only illumination is applied to enable automatic image capture by an RGB 
camera (~200 µm resolution). We define Instability Index (𝐼𝑐) (Eq. 1) as the integrated colour 
change of an unencapsulated perovskite film under severe environmental stresses measured 
every five minutes throughout a 7000-minute (116 hours 40 mins) stability test (Fig. 1d)30,31: 

𝐼𝑐  (𝛩) = ∑ ∫ |𝑐(𝑡, 𝛩) − 𝑐(0,𝛩)| 𝑑𝑡
𝑡=7000min

𝑡=0𝑐={𝑅,𝐺,𝐵} ,    (1) 

where composition 𝛩 = (𝑥, 𝑦, 1 − 𝑥 − 𝑦), t is time and c are area-averaged, colour-calibrated red, 
green and blue pixel values of the sample (see supplementary information for colour calibration). 



The cut-off time was determined based on the observed divergence between the most and least 
stable compositions (Fig. S3). Our closed-loop and iterative workflow enable the systematic 
optimization of multi-cation perovskites against degradation by varying the nominal compositions, 
𝛩, within CsxMAyFA1-x-yPbI3 (x, y limit to two decimal places) (See Table S1-2 for experimental 
summary). 

Data fusion Approach: Incorporation of Phase Thermodynamics into Iterative 
Composition Selection 

 

Figure 2 a. DFT-modelled Gibbs Free Energy of mixing, ∆𝐺𝑚𝑖𝑥 , of 47 binary compositions of CsMA, CsFA, 

and MAFA α-perovskites relative to end members of δ-CsPbI3, α-MAPbI3, and α-FAPbI3, are presented. We 

regress these phase thermodynamics data using a Gaussian process model with a radial basis function 

kernel, defining a Gibbs free-energy model, ∆𝐺𝑚𝑖𝑥(Θ), where Θ is a composition in the ternary space. 

∆𝐺𝑚𝑖𝑥(Θ) is then transformed into a probabilistic constraint, 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) that models the cumulative 

probability of phase mixing at above 300 K according to ∆𝐺𝑚𝑖𝑥. The data fusion parameter 𝛽𝐷𝐹𝑇
 is calibrated 

according to the estimated uncertainty of DFT calculations. Multiplying the probabilistic constraint model 

with the acquisition function of the batch Bayesian optimization gives a DFT-weighted acquisition function. 

b. Starting from equally-spaced 15 compositions in Round 0, 28 compositions are synthesized and undergo 

degradation tests following the DFT-weighted acquisition function in each optimization round. The 

acquisition functions are indicated in blue. See Fig. S4 for uncertainty landscapes of each round. c. 

Experimentally measured instability indices of 112 samples over 4 experimental rounds. The black boxes 

indicate the mean and standard deviation of each round. The unit of the Instability Index, 𝐼𝑐 is pixels*hours 



(px.h). The dashed line indicating the most stable compositions in each experimental round is for eye 

guidance only.  

Due to the polymorphic nature, identical perovskite compositions crystallised into different phases 

can exhibit diverse degradation behaviours, making it essential to evaluate phase stabilities in 

any perovskite composition optimisation.1 The end members of the compositional space in this 

study consist of the cubic α-FA/MAPbI3 perovskites and the non-perovskite δ-CsPbI3 at the 

synthesis temperature.14 We observe Cs-rich compositions (> 20% Cs) of aimed at α-CsxMAyFA1-

x-yPbI3 contain minority phases of the non-perovskite, but more stable δ-CsPbI3 at the room 

temperature (Fig. S10). Such phase demixing during synthesis leads to minority phases within 

thin-film samples prior to degradation tests and are, therefore, not captured in 𝐼𝑐. Schelhas et al. 

recently demonstrated the use of DFT calculations to predict the phase demixing tendency 

between α-CsxMAyA1-x-yPbI3 (𝐺𝑚𝑖𝑥) and their single-cation perovskite polymorphs APbI3 (A = Cs, 

MA, or FA) (𝐺0) at a given temperature.12 We herein fuse the composition-dependent change in 

Gibbs free energy of mixing ∆𝐺𝑚𝑖𝑥  as a constraint into the experimental optimisation loop (Figs. 

2a,b). This approach allows the α- and δ-phase relative stability to be considered in the 

composition selection, thus enabling us to reduce sampling in regions with high probability of 

minority phase formation. 

Data fusion refers to a set of techniques where ML is used to map two or more datasets coming 
from related but distinct distributions. In our case, we relate the theoretical ∆𝐺𝑚𝑖𝑥(Θ) and the 
experimental 𝐼𝑐  (𝛩) . The two data streams account for distinct mechanisms of modelled 
thermodynamic phase instability and measured macroscopic thermal-moisture instability, 
respectively. Hence, it is inadequate to combine both datasets as equivalent or include DFT 
directly as a prior following state-of-the-art model-free BO.32,33 We herein define a data-fused 
probabilistic constraint approach according to Eq. (2): 

𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) =
1

1 + 𝑒−∆𝐺𝑚𝑖𝑥(Θ)/𝛽𝐷𝐹𝑇
, (2) 

where 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) is a logistic cumulative distribution function (CDF) modelling the phase 
mixing probability. 𝛽𝐷𝐹𝑇 is a data fusion parameter calibrated according to ∆𝐺𝑚𝑖𝑥 calculations to 
control the smoothness of the boundaries from stable to unstable compositions, forming a soft 
compositional boundary presented in Fig. 2a. (See Fig. S6-7 for algorithm details). 

Given the computational cost and complexity of DFT calculations on organic–inorganic hybrid 
systems, Schelhas et al. mostly computed ∆𝐺𝑚𝑖𝑥 around the edges of the α-CsxMAyFA1-x-yPbI3 

phase diagram. To overcome this data-sparsity challenge, we first regress 85 DFT-modelled 
∆𝐺𝑚𝑖𝑥 values on 47 single-cation and binary alloyed compositions (3 single-cation, 29 MAFA and 
CsFA compositions from Schelhas et al.14 12 CsMA compositions computed for the present work 
using the same method) over the quasi-ternary phase space by using an auxiliary GP model that 
defines ∆𝐺𝑚𝑖𝑥(Θ) (Fig. 2a). Figure 2b visualises the probability of phase mixing 
𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) ∈ [0,1]  as defined by Eq. (3), where low values suggest phase instability 

∆𝐺𝑚𝑖𝑥>> 0) and high values suggest phase stability (∆𝐺𝑚𝑖𝑥 << 0). 

Our work is inspired by the unknown constraint BO proposed by Gelbart et al.34 By developing a 
probabilistic constraint model 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) instead of applying a hard-constraint boundary, 
we are able to discount regions predicted by DFT to go through phase demixing rather than 
completely exclude any unfavourable regions. This approach accounts for the inherent 
uncertainty in DFT predictions and chemical accuracy, and data scarcity through the use of the 
soft compositional boundary to model the stability threshold (see supporting information for 𝛽𝐷𝐹𝑇 



calibration). The proposed algorithm allows us to seamlessly adapt DFT into the experimental 
optimizations loop, thereby achieving a physics-informed and sample-efficient search without 
being limited by the unknown exact phase boundaries across a vast compositional space. 

To integrate the probabilistic constraint into the BO formulation, we weigh the acquisition function 
with the value of 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇)  and obtain a DFT-weighted BO acquisition function, 

𝐸𝐼𝐶 (Θ), as illustrated in Fig. 2b. Results of our first experimental round indicate two potential 
optima in Cs-poor and Cs-rich regions, respectively, based on 𝐼𝑐 . The DFT-weighted algorithm 

effectively reduces sampling in energetically unfavourable Cs-rich regions despite low 𝐼𝑐 : the 
subsequent optimization rounds converge to stable nominal compositions with a high probability 
of stable α-perovskite films among Cs-poor regions (Fig. 2a). Comparisons of optimisations with 
and without DFT-weighting using a teacher-student model are shown in Fig. S8-9, which validates 
without data fusion, the model-free BO algorithm continues to suggest sampling in Cs-rich regions 
despite of their phase instability.  

Figures. 2c demonstrates that batch BO sequentially identifies the most stable regions over four 
experimental rounds of synthesis and degradation tests. Fig. 2d reveals a rapid decrease in 
experimentally quantified 𝐼𝑐  from Rounds 0–3. The search converges after three optimization 
rounds (see Fig. S5 for convergence conditions) to an optimal composition region centred at 
Cs0.17MA0.03FA0.80PbI3 and bounded by 8-29% Cs, <14 % MA and 68-92 % FA. The identification 
of the global optimum lying within an FA-rich, Cs and MA-poor region is consistent with the reports 
that FA-rich perovskites show superior environmental stability compared with their MA-rich 
counterparts and the less volatile Cs is expected to enhance the heat and moisture resistance.35 
Interestingly, we found a local optimum near Cs0.26MA0.36FA0.38PbI3, which emerged in Round 1. 
We intentionally sample four additional compositions and verify the existence of local optima in 
Round 3. We define the compositional space as the discretized quasi-ternary phase space 
subdivided by the minimum achievable experimental resolution (1% composition). This yields 
5151 possible singular, binary and ternary cation compositions, 1.8% of which were sampled 
experimentally, converging to the optimal region. Three additional degradation rounds of seven 
representative compositions were performed, to validate the instability trend with structural and 
optical characterisation shown in the supplementary information. (See Table S3 and Fig. S13 for 
bandgap measurements via UV-Vis spectroscopy and Fig. 12 for minority phase identification via 
grazing incidence X-ray diffraction) 

 

 

 

 

 

 

 

 

 

 

 



Composition-dependent and Time-resolved Instability Landscape  

 

Figure 3 a. Evolution of Instability landscape, 𝐼𝑐(Θ): the Gaussian process (GP) regressed the posterior 

mean of experimentally measured Instability Index, 𝐼𝑐, of the algorithm-chosen compositions mapped to the 

full compositional space. The Instability Index is the integrated optical change of an unencapsulated 

perovskite film measured every five minutes under under 85 RH% and 85°C and 0.15 Sun illumination in 

air. The two instability landscape triangles are obtained using degradation profiles of 112 experimentally 

measured samples after 6- and 100-hour degradation tests respectively. Four distinct compositional regions 

are identified at 100 hours within CsxMAyFA01-x-yPbI3: the most stable (i), local optimum (ii), and the least 

stable (iv), as well as the I/Br mixed anion compositional space which is not optimized in this study (iii). 

Regions i – iv are labelled in ascending order of measured 𝐼𝑐. b. Relative optical changes measured as a 

function of degradation time, showing the onset of degradation for representative compositions in regions i 

– iv, Cs0.17MA0.03FA0.80PbI3, Cs0.26MA0.36FA0.38PbI3, Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3, and MAPbI3 

respectively. We reveal the ML-optimized composition in Region iii stay macroscopically stable for 3 times 

longer than Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3. c. Measured 𝐼𝑐  from Round 0 – Round 3 over full 

degradation runs of 7000 mins (116 hours 40 mins) as a function of the proportion of MA in the composition 

nominal tolerance factor, which is the Goldschmidt’s tolerance factor based on nominal compositions, over 

the entire CsxMA1-xFA1-x-yPbI3 space. *Experimental uncertainty of measured 𝐼𝑐 across batches in a control 

composition, MAPbI3, across multiple batches (see Appendix for full sample list). The composition range 

within the dashed line box shows comparable final degradation products after a full degradation run. d. 

Laboratory grazing incidence X-ray diffraction measurements on binary and ternary alloyed compositions 

with fixed Cs proportions to evaluate the effect of MA. Over-stoichiometric precursors with excess PbI2 were 



added following the high-performing perovskite semiconductor recipe in ref.35 CsFA: 15%Cs 85%FA. CsMA: 

15%Cs 85%MA. CsMAFA: 15%Cs 42.5%MA 42.5%FA.  

The overall instability landscape for CsxMA1-xFA1-x-yPbI3 after three optimization rounds on 𝐼𝑐 over 

full degradation rounds of 7000 minutes identify three distinct compositional regions with 

descending 𝐼𝑐 (see Fig. S4 for iterative landscape estimation and uncertainty). Figure 3a presents 

the evolution of GP posterior mean of, 𝐼𝑐 , i.e.  𝐼𝑐  (𝛩) as a function of degradation time. Fast 

degradations of MA-rich compositions are evident after six hours of degradation tests (Region 

(iv),) while two additional regions, representing several compositions in local optima (Region (ii)) 

and the global optima (Region (i)), are sequentially distinctive after 100 hours of degradation tests 

(see Fig. S3 for time-resolved instability landscape and uncertainty). Quantitative optical change 

analysis of representative compositions from the three regions, the ML-optimum 

Cs0.17MA0.03FA0.80PbI3 (i), the ML-local optimum Cs0.26MA0.36FA0.38PbI3 (ii) and MAPbI3 (iv), reveal 

a 17x reduction in 𝐼𝑐  from composition (iv) to (i). To evaluate the stability improvement in this study, 

we further compare the optimised five-element (i) with a six-element reference composition, 

Cs0.05MA0.17FA0.83Pb(I0.83Br0.17)3 (iii), which is outside the design space of this study and has been 

extensively employed in state-of-the-art perovskite devices (see Fig. S14 for morphological 

characterisation).35 We found that (i) yields a 3.5x lower 𝐼𝑐 than (iii). The postponed degradation 

onset is reflected by the 3x delay in the onset of sharp optical change as per Fig. 3b. Our finding 

provides insight into the limitation of more complex alloying methods to improve the environmental 

stability of hybrid perovskites The improvement in stability under severe environmental stresses 

does not scale with the number of elements incorporated into the perovskite structure, where the 

entropic stabilizations through cationic and/or anionic mixing36 can be offset by the multiple 

degradation pathways under long exposure of environmental stress of heat, moisture and 

illumination as seen in this study.  

We found the composition–stability relationships within CsxMAyFA1-x-yPbI3 are non-linear. As we 

increase the Cs content, degradations are first suppressed (up to 26% Cs) and then increased. 

Figure 3c visualises experimentally measured 𝐼𝑐   as a function of Goldschmidt’s tolerance factor 

(TF) based on the average ionic radius of A-site cations of nominal compositions. TF is empirical 

guidance that has been widely applied to estimate the intrinsic structural stability of hybrid 

perovskites.37,38 During optimization Rounds 1–3, an increasing number of compositions within a 

TF of 0.93–0.97 are suggested by BO (Fig. S18), indicating high stability of compositions with a 

TF around 0.95. This value is lower than TF in an ideal cubic structure (TF = 1), attributing to the 

incorporation of small-radius and non-volatile Cs into the α-lattice to improve moisture and heat 

resistance. By achieving this holistic view shown in Fig. 3c over the entire compositional space, 

we should note that tolerance factor optimization alone is a necessary but not sufficient 

requirement for achieving high stability. The observation of limited stability improvement with Cs 

addition can be explained by the observation that more than 20% Cs in nominal compositions 

form minority phases during synthesis (annealing temperature of 403 K) as observed in grazing 

incidence X-ray diffraction (GIXRD) (Fig. S10), Cs crystalised in δ-CsPbI3 does not subsequently 

contribute to the stability improvement of the α-perovskite. 

Interestingly, several MA-containing compositions (up to 8%) show comparable 𝐼𝑐to their CsFA 

binary cation counterparts as per Fig. 3c. In addition to the ML optimum, top-performing 

compositions include Cs0.13MA0.08FA0.79PbI3 and Cs0.13FA0.87PbI3. To understand the distinctive 

role of MA in the degradation dynamics of multi-cation perovskites behind the optimisation results, 

we fix the Cs content (x = 0.15) and compare the structural changes via GIXRD of α-CsMA, CsFA 



and CsMAFA with an equal amount of MA and FA (y = (1-x)/2 = 0.425) after an initial six hours of 

degradation (Fig. 3d). Two composition-dependent degradation mechanisms are observed. While 

all three samples show increased PbI2 content (evident of chemical decomposition to precursors), 

the emergence of δ-CsPbI3 and δ-FAPbI3 in CsFA and CsMAFA films, respectively, indicates 

additional mechanisms of phase separation during degradation tests. Both increases in PbI2 and 

two high-bandgap δ-phases contribute to the overall yellowing of the films throughout the 

degradation run. This finding from empirical observations validates the recent theoretical 

prediction that MA is more effective than Cs in stabilising the α-phase alloyed perovskties, driven 

by lower enthalpy of mixing on addition of MA.12,14 Carefully tuned MA contribute to the 

suppressed degradation by controlling phase separations in hot and humid conditions. 

 

Composition- and Phase-dependent Degradation Kinetics  

 



Figure 4 a. GIWAXS images of the ML optimum, Cs0.17MA0.03FA0.80PbI3 in Region i and 

Cs0.26MA0.36FA0.38PbI3 in Region ii after 0, 6 and 100 hours of degradation tests. b. GIWAXS peak intensity 

ratios of the non-perovskite phases and PbI2 relative to the perovskite phase as an estimate for the extent 

of degradation. From left to right:  Cs0.26MA0.36FA0.38PbI3, Cs0.26FA0.74PbI3, Cs0.13MA0.8FA0.79PbI3, and 

Cs0.17MA0.03FA0.8PbI3.   

  
We seek to determine the structural characteristics that lead to divergences in degradation 
kinetics. As shown in Fig. 4a, ex situ GIWAXS after 0, 6 and 100 hours of degradation reveal that 
the ML-optimum, (i) Cs0.17MA0.03FA0.80PbI3 in the most stable region, Region i, and the ML-local 
optimum, (ii) Cs0.26MA0.36FA0.38PbI3 in the second most stable region, Region ii, show comparable 
lattice parameters of α-perovskites prior to degradation tests, however (ii) contains δ-CsPbI3 
minority phase at 0 hours. Interestingly, only a slightly faster increase in PbI2 is observed in (ii) in 
a 6-hour degradation run. After 100 hours, (ii) exhibits a significantly bigger loss of intensity of α-
perovskites and crystallinity. We also observe lattice shrinkage after 100 hours for both 
compositions, which may due to a higher proportion of the small-radius Cs is left in the α-
perovskites after degradation as the more volatile and larger radii MA and FA leave the cubic 
structure (Fig. S17). 
 
The data fusion approach effectively discounts sampling in the regions with high probabilities of 
minority phase formation. To evaluate the role of δ-minority phases in the degradation kinetics of 
the co-existing α-perovskites of interest, we use the scattering of PbI2(001), δ-CsPbI3(002), 

FAPbI3(001) and α-perovskite (001) as indicators of corresponding phases and the ratios of 
intensity between the peaks to describe the chemical decomposition and phase separation, 
respectively. We found that samples with δ-CsPbI3 minority phase at initial states (Figs. 4b, c) 
undergo faster chemical decomposition over the 100-hour degradation tests compared with 
samples with low Cs content and no pre-(degradation test)-crystalised δ-CsPbI3 (Figs. 4d,e). 
Nevertheless, despite no δ-CsPbI3 seen at 0 hours or 6 hours in Cs0.13MA0.08FA0.79PbI3 (Fig. 4d) 

and the ML-optimum Cs0.17MA0.03FA0.80PbI3 (Fig. 4e), δ-CsPbI3 formed under elevated 
temperature and humidity conditions are visible after 100 hours. These results indicate that in hot 
and humid conditions, δ-phases are both a degradation product of phase separation and an 
accelerator for chemical decomposition. Tuning the MA/Cs ratios is an effective strategy for 
modulating the δ-minority phase formation during degradation. Comparing Figs. 4b and c4, we 
observe unfavourable phase separation of δ-FAPbI3 emerged between 6 -and 100 hours of 
degradation if we completely replace MA with the less volatile FA. GIWAXS images of 
compositions listed in Fig.S15-16 illustrates that phase separation, indicated by additional minority 
phase formation, takes place in a longer time scale compared with chemical decomposition since 
an increase in PbI2 is observed within the initial six hours. Overall, the compositional optimisation 
strategy from Region (ii) to Region (i) can be interpreted as follows: 1) reducing MA for suppressed 
chemical decomposition, 2) reducing Cs for limiting minority phase formation, and 3) balancing 
MA, FA, and Cs for restraining phase separation in hot and humid conditions. 
 
Conclusions  

In summary, we develop a closed-loop optimization strategy for CsxMAyFA1-x-yPbI3 multi-cation 
perovskites against heat and moisture-induced degradation by introducing an iterative and 
physics-informed Bayesian optimization framework. We identify an FA-rich and Cs-poor region 
centred at Cs0.17MA0.03FA0.8PbI3 exhibiting enhanced environmental stability while sampling only 
1.8% of the compositional space, achieving superior search efficiency to brute-force screening. 
Our study demonstrates the power of data fusion to allow material search over vast and sparsely-
sampled compositional spaces, where the DFT-modelled thermodynamics serves as a 
probabilistic constraint and provides principled guidance to experimentation. This approach 



successfully fuses multiple data sources into a single search algorithm and can be utilised to 
include any other experimental or theoretical constraints with non-negligible uncertainty into the 
materials design strategy. 

We apply this physics-informed optimization framework to achieve a holistic understanding of the 
fundamental composition- and phase- dependent alloy behaviour within the quasi-ternary 
CsxMAyFA1-x-yPbI3 space. We perform in situ optical assessment and ex situ synchrotron-based 
GIWAXS, and reveal that the interplay between the minority phase formation led by 
thermodynamic structural instability and the chemical decompositions led by thermo-moisture 
instability govern the overall degradation profile of multi-cation perovskites in the initial 100 hours 
under elevated temperature and high humidity environments. As a consequence of competing 
roles of cations in different degradation mechanisms, a composition window of up to 8% of 
addition of the least chemically stable cation, MA, contributes to kinetically suppressed 
degradation, whereas the most chemically stable cation in this design space, Cs, contributes to 
accelerated degradation even in the most macroscopically-stable candidates of both CsFA and 
CsMAFA compositions, which the potentially limits the benefits of Cs as a perovskite stabilizing 
agent.. This finding highlights the detrimental effects of minority phase formation, which occurs 
over a longer timeframe under the 85°C/85%RH degradation tests than chemical decomposition, 
and hence are easily underestimated during compositional engineering. We further suggest 
several optimized iodide perovskites, including Cs0.13FA0.87PbI3 and Cs0.13MA0.08FA0.79PbI3, that 
show superior stability than the state-of-the-art iodide-bromide mixed bromide perovskite 
(Cs0.05MA0.17FA0.83Pb(I0.83Br0.17)3) under elevated temperature and humidity, providing insights into 
simplifying perovskite compositions for stability.  
 
Our data fusion and probabilistic constraint method can be generalized to a wide range of solid-
state material systems, merging complementary experiments and theory into an end-to-end close-
loop ML framework to identify new materials with a holistic view of the entire design space, as 
well as to achieve simultaneous structural and chemical optimization in a vast compositional 
space. 
 

Data and Code Availability 

The machine learning framework and camera-based in situ degradation monitoring platform 

details are avalible in Supplementary information. The codes and the datasets used for Bayesian 

optimization are available in GitHub repository https://github.com/PV-Lab/SPProC. Lists of 

samples, XRD characterization, and thin-film degradation results are shown in Appendix available 

at https://github.com/PV-Lab/SPProC. 
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1. Synthesis 
 

Perovskite precursor solutions were spin-coated on UV-ozone glass substrates. Glass 

microscope slides (VWR) cut into square pieces were cleaned with sonication in 2% Hellmanex-

DI water mix, DI water, and IPA respectively. We perform perovskite synthesis with over-

stoichiometric PbI2 in the molar ratio of 1.09 (PbI2) to 1 (halide salt of CsI, MAI, and FAI). Lead (II) 

iodide stock solution was prepared in 9:1 N,N-dimethylformamide (Sigma-Aldrich) to dimethyl 

sulfoxide (Sigma-Aldrich) solvent. The perovskite precursor solution was prepared by mixing 

individual stock solutions following the ratios of Cs, FA, and MA suggested by the machine 

learning algorithm. The films were annealed at 403 K for 20 minutes using the central part of a 

hot plate in the glovebox. The spin-coating program follows a 2-step approach: 1000 rpm for 10 

seconds and acceleration of 200 rpm/s, with a subsequent 6000 rpm for 30 seconds and 

acceleration of 2000 rpm/s.  Chlorobenzene (Sigma-Aldrich) antisolvent in the quantity of 150 μL 

was dropped 5 seconds at the beginning of the second step of spin-coating. The annealed 

samples were cooled to room temperature before transferring to the degradation test. In total, 202 

films were synthesised, and 196 of which were degraded in this study over 7 degradation rounds, 

including one repeated round, as shown in the main text. Of the 202 films synthesized across all 

rounds, 99 films were distinctly unique in composition, 95 of which were characterized by 

laboratory grazing incidence X-ray diffraction with 7 compositions were further characterized after 

6 and 100 hours of degradation tests, respectively, using grazing-incidence wide-angle scattering.  

Amongst the final selected seven compositions for advanced characterization, the bromine-

containing composition, Cs0.05(FA0.83MA0.17)0.95Pb(I0.87Br0.13)3, following a different recipe from 

Ref.1 The halide perovskite precursor solutions for the composition were prepared by mixing FAI 

and CsI salts with PbI2 solution, separately, and MAI with PbBr2 solution, using the same method 

and molarity ratios as described above. All prepared precursors solutions were mixed together in 

the volume ratios listed for FA, MA and Cs. 

Full list of samples and synthetic parameters are shown in Appendix Table A1 at (MIT PVLab 

Github repository, https://github.com/PV-Lab/SPProC). 
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Table S 1 Summary of sample synthesis and degradation tests. 

Synthesis 
Round 

No. of 
samples 

synthesized 

No. of 
compositions 

Full or partial 
degradation 

round 

Structure 
Characterization 

Sampling 
strategies 

No. of triple 
cation 

compositions 

No. of 
single or 
double 
cation 

composition 

0 30 15 Full XRD Equal-spaced 
sampling 

3 12 

1 28 21 Full XRD ML suggests 
with DFT 

12 16 

1b 28 28 Full XRD ML suggests 
without DFT  

10 18 

2 28 28 Full XRD ML suggests 
with DFT, 1 
manually 

added (two 
compositions 
are within 1% 
differences) 

18 10 

3 32 32 Full XRD ML suggests 
with DFT, 4 

added 
manually 

(validation of 
local optimum) 

21 11 

4 28 7 Full XRD Selected 7 
representative 
compositions, 

validation 
round 

4 
 

3 

5 14 
 

7 
 

6 hours GIWAXS Samples 
degraded up to 
a time point for 

synchrotron 
measurement. 

 

4 
 

3 

6 14 
 

7 
 

100 hours GIWAXS Samples 
degraded up to 
a time point for 

synchrotron 
measurement. 

4 
 

3 
 

 

Table S2 List of 7 compositions selected for advanced structural, optical and morphological characterization. 

Stability 
Region 

Composition 
ID 

Cs% MA% FA% Ionic 
Radius (Å) 

Tolerance 
Factor 

Reason for in-depth characterization 

I a 13 0 87 241.820  
0.963 

Top binary cations Round 0 -3 

I b 13 8 79 238.940 0.957 Top binary cations Round 0 -3 

Ii c 26 74 0 204.000 0.884 Reference composition with no MA 

Ii d 26 38 36 216.960 0.911 ML local optimum 

I e 17 3 80 237.300 0.954 ML optimum 

iii f 5 17 83 242.886 0.969 Reference composition, state of the 
art 

iv g 0 100 0 206.150 0.891 Reference composition with no FA or 
Cs 



 

2. Degradation Tests  

2.1 The Setup 

In total 196 individual thin-films within 7 experimental rounds were degraded in this study, 

including one initial round, three optimization rounds, and three rounds for validation and 

advanced characterization. Humidity, temperature, and visible light illumination level were 

controlled at 85±2°C, 85±5%, and 0.15±0.01Sun, respectively, within the house-built 

environmental chamber, enabling automated photographing of the samples and tracking of the 

chamber temperature and humidity. Samples were photographed in every 5 min during the aging 

test, and additionally the humidity and temperature of the aging chamber were tracked 

automatically. The illumination conditions remaining stable during the aging tests was confirmed 

by following a printed 28-patch reference colour chart that had been placed into the picture area. 

After the aging test, the samples were stored in a glovebox until further characterization. 

The sample holder was made of graphite for maximum heat transfer, painted with medium grey 

colour for preventing over- or under saturating of the pictures taken, and designed to minimize 

reflections from the samples to the camera. Sample holder was heated from the bottom and its 

temperature was set to 85°C with SOLO 4824 temperature controller. The temperature was 

controlled using a thermocouple wired into the sample holder. 

The chamber was illuminated using Advanced Illumination DL097 LED lamp and Advanced 

Illumination ICS 2.0 LED controller. The lamp provided even visible light only illumination. In this 

study, the illumination acts foremost as a necessary lighting of the samples for the camera, and 

also a degradation factor.Air humidity in the chamber was controlled and monitored using a control 

program running on Arduino, Si7021 humidity sensor, and water evaporation unit utilizing a fan. 

The stability of the humidity sensor during the aging tests was followed and the chamber 

conditions were tracked using EasyLog EL-USB-2 humidity-temperature logger. Both humidity 

sensor and logger were located close to the samples but with distance of centimetres from any 

surface possibly condensing water.  

 



 

Figure S1 Schematics of the environmental chamber with in situ optical monitoring. 

 

2.2 The Camera-based in situ Optical Imaging  

2.2.1 Camera Integration and Colour Calibration  

Samples were photographed using ThorLabs DCC1645C camera (with a removed IR filter to 

maximize data collection bandwidth of the camera) and ThorLabs MVL6WA lens, providing a 3-

band approximation of the colour of the sample. The photographs of the samples were taken in 

BMP format in every 5 minutes using a control program implemented using LabVIEW. The 

photographs were saved automatically directly to Dropbox folder for further analysis. The 

photographs of the samples were automatically sliced into pictures of individual samples and 

colour calibrated to ensure reproducible and repeatable collection of quantitative colour data. 

he data was used for determining the instability index for each sample as shown in the main article. 

The variations in the Instability Index (𝐼𝑐 ) values arise from several sources: the variations 
between the sample replicates, variations in the environmental conditions between the sample 

holder locations, and in how camera sees the colour of the samples (e.g., reflections decrease 

the accuracy of colour determination). Experimental uncertainty is highly dependent on the 

composition and varies between 5000 px*min 225000 px*min. The estimated error for our 

optimized region of interest is 9000 px*min (with mean of approximately 30000 px*min). On 

average 7284 pixels were captured per thin film samples of 2.54 cm x 1.27 cm, leading to an 

estimated resolution of 210 µm. 

Colour calibration by transforming the sample colours to a stable reference colour space ensures 

the colours are comparable even when the pictures are taken under different illumination 

conditions or with different camera-lens setups. This was done utilizing an X-Rite Colour Checker 

Passport with 28 reference colour patches that was photographed at the beginning of each aging 

test in the aging chamber. During the aging tests, camera settings were defined to be as 

illuminated as possible without oversaturating the white colour patch in Xrite colour chart, ensuring 

the colour calibration procedure succeeding without distortions. 



 

The sample colours were transformed into a larger L*a*b colour space and clour warped  by 3D 

thin-plate spline  that has been shown to be among the most accurate colour warping methods 

for colour calibration.2 Distortion between the colours of the reference colour chart in real and 

reference colour spaces is defined as: 

𝐷 = 
[

𝑉
𝑂(4,3)

]

[
𝐾 𝑃
𝑃𝑇 𝑂(4,4)]

, 

where O(n,m) is a zero matrix with shape m x n, V represents the colours of the reference colour 

chart in the reference space (obtained from the colour chart manufacturer), matrix P represents 

the colours of the reference colour chart in the original space, and matrix K is the distortion 

between the colour patches in the reference and real colour spaces . The definitions for these 

matrices are: 

𝑉 = [
1 𝑥1

′ 𝑦1
′ 𝑧1

′

⋮ ⋮ ⋮ ⋮
1 𝑥𝑁

′ 𝑦𝑁
′ 𝑧𝑁

′
], 

𝑃 = [
1 𝑥1 𝑦1 𝑧1

⋮ ⋮ ⋮ ⋮
1 𝑥𝑁 𝑦𝑁 𝑧𝑁

], 

𝐾 = [

0 … 𝑈(𝑟1𝑁)

𝑈(𝑟21) … 𝑈(𝑟2𝑁)
⋮ ⋮ ⋮

𝑈(𝑟𝑁1) … 0

], 

where N is the number of colour patches (in our reference colour chart N=24) and U is defined 

as: 

𝑈(𝑟𝑖𝑗) = 2𝑟𝑖𝑗
2  𝑙𝑜𝑔(𝑟𝑖𝑗 + 10−20) 

(with a constant value added for numerical stability) and the Euclidian distance between the two 

colours is: 

𝑟𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
 

where 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 and 𝑥𝑗, 𝑦𝑗, 𝑧𝑗  are the three colour components of each colour (in this study the 

components are L, a, and b in Lab colour space) in the real colour space and reference colour 

space, respectively. 

Applying the same distortion D to the samples completes the colour warping: 

[
𝑉𝑠

𝑂(4,3)
] = [

𝐾𝑠 𝑃𝑠

𝑃𝑠
𝑇 𝑂(4,4)

]𝐷, 

where matrices Vs and Ps represent the colours of the samples in the reference and original space, 

respectively, and matrix Ks represents the distortion between the colours of the samples and 



reference colour chart. The shape distortion between the colours of the samples and the reference 

colour chart patches in the real space is: 

𝐾𝑠 =

[
 
 
 
 

0 … 𝑈(𝑟𝑠1,𝑐𝑁
)

𝑈(𝑟𝑠2,𝑐1
) … 𝑈(𝑟𝑠2,𝑐𝑁

)

⋮ ⋮ ⋮
𝑈(𝑟𝑠𝑀,𝑐1

) … 0 ]
 
 
 
 

, 

where 𝑠𝑖refer to sample colours, M is the number of samples, and 𝑐𝑖 refer to reference colour 

chart colours. Matrices 𝑉𝑠 and 𝑃𝑠 that represent colours of the samples in the reference and real 

colour spaces, respectively, are: 

𝑉 = [
1 𝑥1

′ 𝑦1
′ 𝑧1

′

⋮ ⋮ ⋮ ⋮
1 𝑥𝑀

′ 𝑦𝑀
′ 𝑧𝑀

′
], 

𝑃 = [
1 𝑥1 𝑦1 𝑧1

⋮ ⋮ ⋮ ⋮
1 𝑥𝑀 𝑦𝑀 𝑧𝑀

]. 

After colour calibration, the sample colours were transformed back to RGB space. 

 

2.2.2 Quantified Colour Change Over Test Duration 

The decomposed and calibrated RGB values were determined for each degrading sample. This 

was evaluated across the film surface, and therefore resulted in a spatial distribution of colouration; 

this was evaluated by determining the mean, 5% threshold, and 95% threshold for each colour 

channel within each film. These colour channels were evaluated separately, and also 

accumulated to yield an instability measure at each time point. This accumulation consisted of 

the sum of the R, G, and B mean values at a time point, normalized by the initial sum at zero 

minutes of degradation such that each sample had an instability measure of zero at the initial time 

recorded. The mean RGB was likewise visually represented as colour bars, relating the 

normalized average colour evaluated as a DI to an absolute recorded average colour over time. 

 



Figure S2 In situ monitored colour evolution of four representative compositions during the degradation test, quantified 
R+G+B colour changes of the compositions are shown in Figure 3b in the main article. 

 

 

Figure S3 Integrated colour change over the first 6h (left column), 100h (middle column), and 7000min (right column) 
of the aging test. 7000min result corresponds to the instability index. The resulting integrated colour changes (first row) 
and standard deviations (second row) are modelled using samples from rounds 0-3 and shown as contours. Each 
sample is shown as a dot with a colour corresponding to its experimentally measured integrated colour change over 

the integration time. 

Figure S3 illustrates the integrated colour changes and the uncertainties over the full 

compositional space using a GP model for three different integration (degradation test) periods. 

The results illustrate that after 6h of degradation samples that do not have FA and have high MA 

content have clearly changed their colour, whereas other samples have gone through small, 

uniform colour changes. By 100h of degradation, the samples have already gone through most 

of the colour change seen at the final stage after 7000min, and the stable regions have separated 

from the rest of the space. The instability landscape derived from the colour change is consistent 

with the bandgap change trends (Fig. S13), degradation products and structural changes 

measured by synchrotron-based GIWAXS at the same timepoints. GIWXAS (Fig. S15) validates 

that mixed-cation perovskites have gone through minor degradation after 6 hours, leading to 

colour changes, and the more stable regions are not distinguishable from less stable ones. After 

100 hours of degradation tests, the differences between the stable regions are visible through 

colour changes. 



The Instability Index (𝐼𝑐) in this study is defined as the integrated colour change over the 7000 

min aging test duration (main article Eq. 1). Full list of samples and measured instability index are 

shown in Appendix Table A2. 

 

3. Machine Learning Framework 

3.1 Physics-constrained Bayesian Optimization (BO) 

Bayesian optimization is used to find Θ∗, the perovskite composition with smallest instability index 

𝐼𝑐 , using few samples as possible, according to:  

Θ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛Θ 𝔼[𝐼𝑐(Θ)]   s. t.  𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) > 0 

where Θ∗ = 𝑎𝑟𝑔Θ𝑚𝑖𝑛 Ε[𝐼𝑐(𝛩)] is a BO framework optimising the 𝐼𝑐, and 𝐼𝑐(Θ) is a noisy, black-box 
function that we evaluate by making samples at different Θ compositions. We propose to use the 
probabilistic constraints from DFT-computations given by 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇). The probabilistic 

constraint models the probability of phase according to Gibbs Free Energy ∆𝐺𝑚𝑖𝑥(Θ) and data-
fusion factor 𝛽𝐷𝐹𝑇 . 

Our chosen acquisition function is expected improvement EI(Θ),  

EI(Θ) = (μ𝑛(Θ) − τ)Φ(
μ𝑛(Θ) − τ

σ𝑛(Θ)
) + σ𝑛(Θ) ϕ(

μ𝑛(Θ) − τ

σ𝑛(Θ)
) 

where Φ is the standard normal cumulative distribution, 𝜇𝑛(Θ) is the mean of the GP model's 

posterior, 𝜏 is an incumbent best point, 𝜎𝑛 is the variance of the GP model's posterior, and 𝜙 is 
the standard normal probability distribution. By maximizing EI(Θ), the most promising location Θ∗ 
for the next experimental round is determined. To suggest more than the one promising 
composition Θ  per round, we employ the local penalization algorithm to resample EI(Θ) , as 
described in 3.  

To include the physical constraints in the Bayesian optimization algorithm, the acquisition function 
is weighted according to the probabilistic model 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) following the method in ref.4: 

EIC(Θ) = EI(Θ) 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) 

These discounts the probability of phase separation coming from DFT, allowing to consider first-
principles calculations into the experimental optimization loop. Figure S4 presents various rounds 
of Bayesian optimization, included the GP models mean and standard deviation, along with the 
DFT-weighted and unweighted acquisition function. The effectiveness of the constraint to reduce 
the search space and avoid non-stable optima.  

In Round 0, a grid of 28 evenly-spaced sample compositions (15 compositions) was aged, and 
𝐼𝑐   was quantified for each composition. In each subsequent round, we use Bayesian optimization 
to efficiently sample compositions and iteratively approach the global optimum. The Bayesian 
optimization algorithm is implemented based on the GPyOpt optimization package.5 In the 
Bayesian optimization setting, a surrogate machine learning model, Gaussian Process (GP) 
regression, is used to approximate the mean and uncertainty of 𝐼𝑐(Θ) in non-sampled regions of 
the compositional space. For our applications, we use a GP model with a Matérn 5/2 kernel, with 
kernel parameters chosen to optimize the maximum likelihood. The model is updated in each 
experimental round. Once the model is fitted, an acquisition function is maximized to suggest 



locations in the compositional space with high chance of leading to an optimum, either due to a 
low expected instability index or a high uncertainty at a certain composition (i.e. more chances to 
produce an optimal composition).  Our Bayesian optimization algorithm uses two convergence 
criteria: the modelled mean stabilized, and the instability index of the most stable compositions 
found reached the experimental uncertainty of our test setup. The convergence of the instability 
index towards the optimum is illustrated in Figure S5 and Figure S6. 

 

 

Figure S4 DFT-weighted acquisition function, posterior mean, and uncertainty landscapes over three optimization 

rounds. 
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Figure S5 Instability index in logarithm scale for each degradation round with mean and standard deviation. 

 

3.2 DFT Calculations, Data Fusion and Probabilistic Constraint 

3.2.1 Gibbs Free Energy Calculations 

Alloy structures are created using the pseudo-cubic as the starting structure for the pure 

compositions (obtained from Ref.6) with random substitution at the A-site. Special quasi-random 

structure (SQS) method,7 as implemented in the ATAT package, 8,9, is used to obtain structures 

for various A-site alloy compositions. Two different supercell sizes 96 and 144-atoms are used 

and for each A-site composition with multiple (two or three) structures, varying in the orientation 

of the MA and FA molecules, are considered. All the DFT relaxed modelled structure files of binary 

and ternary A-site alloys are provided with the supplementary information. 

DFT calculations are performed within the projected augmented wave (PAW) method10 as 

implemented in the VASP code.11 The Perdew Burke Ernzerhof (PBE) exchange correlation 

functional12 is used with GGA and spin-orbit coupling (SOC) is included in the total energy 

calculations. Plane wave cutoff of 340 eV, and a Monkhorst-Pack k-point sampling scheme13 is 

used. All degrees of freedom (cell shape, volume, and ionic positions) are relaxed in DFT 

calculations. Following the relaxations, A-site alloy structures at various compositions are found 

to retain the overall cubic symmetry.  

To model the phase stability of mixed A-site halide perovskites, we compute the Gibbs free energy 

of mixing (ΔGmix = ΔHmix - TΔSmix) of these materials as a function of the A-site composition. The 

modeled ΔGmix has two components, (1) the enthalpy of mixing (ΔHmix), and the entropy of mixing 

(ΔSmix). The enthalpy of mixing is calculated from DFT by taking the difference between the total 

energy of the mixed A-site halide perovskite with respect to the total energy of the constituent, or 

pure, phase. The temperature dependence (TΔSmix) to Gibbs free energy is incorporated by 

considering the entropic contributions associated with the configuration and rotations degrees of 

freedom, as discussed in detail in Ref.10. Further details of thermodynamic modeling can be 



found in the Ref 5. As benchmarked in Ref.14, the reproducibility and precision in our DFT total 

energy calculations is very high. The variability in the computed value of Gibbs free energy at a 

specific composition is between 5 – 20 meV/unit, and it comes from the varying orientation of the 

FA and MA molecules between the multiple structures, considered in our simulations. 

The key sources of uncertainty in this study relating to incorporating DFT calculations into the 

experimental loops consist of three aspects: 1) the intrinsic precision limit of the DFT calculations 

leads to small differences over different computational runs of the same organic-inorganic 

structure ( ~ 0.025 (eV/f. u. )), and 2) the uncertainty of the regression model that map the sparse 

DFT data over a continuous compositional space, and 3) the differences between simulation 

environment and experimental conditions due to kinetic factors. 

3.2.2 Regression Model for Gibbs Free Energy  

Calculating ΔGmix for ternary compounds is computationally expensive and infeasible over the 

whole composition space; therefore, ΔGmix is modelled using an auxiliary GP regression model 

trained on 91 DFT-computed ΔGmix from 47 binary perovskite compositions.  

Based on the DFT data, the ∆𝐺𝑚𝑖𝑥(Θ) is approximated over the ternary composition space, as 

shown in Figure S6. The auxiliary GP model uses a radial basis function (RBF) kernel with 

initialized length scale of 0.003 (eV/f. u. )  and variance of 0.025 (eV/f. u. )2 . The kernel, initial 

length scale and variance values were determined based on grid search, and optimized according 

to maximum likelihood. 

The model was validated using leave-one-out cross validation, which resulted in the mean 

squared error MSE = 0.0004 (eV/f. u. )2. Additionally, the final model was tested against three 

datapoints that are out of the validation dataset (ternary triple cation phase stability calculations 

in Ref.15), resulting in MSE = 0.00015 (eV/f. u. )2. Both MSE values are low in comparison to the 

ΔGmix of the training set, which shows that the model regresses ΔGmix successfully for ternary 

compositions. 

3.2.3 Definition of Phase Stability Constraint 

Once ΔGmix  is modelled, the probabilistic model 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇)  can be computed. The 

inherent bias and precision of DFT calculations justifies the probabilistic treatment of the 

constraint.  

The regressed ∆𝐺𝑚𝑖𝑥(Θ) is integrated as probabilistic constraint according to a probabilistic model 

given by the logistic cumulative distribution function: 

 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇) =
1

1 + 𝑒−∆𝐺𝑚𝑖𝑥(Θ)/𝛽𝐷𝐹𝑇
  

Referring to the constraint value as  𝛷 = 𝑃(∆𝐺𝑚𝑖𝑥(Θ), 𝛽𝐷𝐹𝑇), we formulate the data fusion process 

as maximizing the likelihood ℒ(𝛽𝐷𝐹𝑇;𝛷, ∆𝐺𝑚𝑖𝑥) such that: 

𝛽∗
𝐷𝐹𝑇 = 𝑎𝑟𝑔𝛽𝐷𝐹𝑇

ℒ(𝛽𝐷𝐹𝑇;𝛷, ∆𝐺𝑚𝑖𝑥) 

Using a Bernoulli likelihood, this definition is equivalent to fitting a logistic regression model via 

maximum likelihood, with ∆𝐺𝑚𝑖𝑥 as the independent variable and the probability of phase de-

mixing as the dependent variable. In this sense, one could estimate a certain critical energy 

∆𝐺𝑚𝑖𝑥−𝑐𝑟𝑖𝑡𝑖𝑐  above which the crystalline structure is unstable and will decompose into its 

constituent phases. In the context of convex hull stability calculations, this value is often 



considered to be around -0.025 eV/f.u. We hence choose a cumulative probability of 

𝑃(−0.025𝑒𝑉/𝑓. 𝑢, 𝛽∗
𝐷𝐹𝑇)=0.7 and 𝑃(−0.05𝑒𝑉/𝑓. 𝑢, 𝛽∗

𝐷𝐹𝑇)=0.9. This assumption defines a smooth 

limit for phase stability in the compositional space, taking into account the inherent uncertainty of 

first-principles calculations. Our choice of probabilistic model is common in machine learning 

literature, due to the simplicity and expressivity of logistic models.16 

 

Figure S6  Construction of Gibbs free energy model using DFT-calculated Gibbs free energy of mixing. 

 



3.2.4 Data Fusion Improves Search Effectiveness  

 

Figure S7 DFT-constrained acquisition function with samples of each round shown as black dots (the first row) and 
the resulting modelled instability index (the second row) with standard deviation (the third row) shown for each 
optimization round. 

We use teacher-student model to compare the performance of Bayesian optimization fused with 

DFT data (BO_DFT) and standard Bayesian Optimization (BO_baseline).17 Firstly, we train a GP 

surrogate model as the “ground-truth” model and use it to calculate the instability index (metric) 

of newly suggested experimental conditions from both BO_DFT and BO_baseline. We feed the 

results of the initial run (run 0) to the above two different Bayesian optimization methods and 

suggest new conditions iteratively from run 1 to run 4, in order to simulate our experimental 

optimisation rounds.  The teacher-student model allows comparison of those two methods without 

performing the actual time-consuming degradation experiments.         

Figure S8 shows the loss evolution of the student model with batch size of 28. The median loss 

decreases for both and BO_DFT. BO_baseline has lower instability metric than BO_DFT because 

BO_baseline allocates most of points in the lower right corner of the phase diagram (Figure S9). 

This region has phase separation from the XRD measurement (Figure S11) despite minimal 

colour change of films in this region.  BO_DFT avoids exploring that area with DFT data fusion 

and finds the local minimum at lower left corner of the phase diagram.  

 



 

 

Figure S8 Loss evolution of student model, batch size=28 

  

Figure S9 Suggested points of student model for Round 4, batch size=28 

 

 

 



4. Laboratory Characterization 

4.1  X-ray Diffraction and Phase Analysis  

Grazing incidence X-ray diffraction (incident angle of 1°) were performed on 94 compositions from 

Round 0-3 samples using Rigaku SmartLab with Cu-Kα sources on the as-synthesized thin films 

to understand the crystal structures and to examine the formation of minority phases.  

 

 

 

Figure S10 Crystal structures of the end members of the CsxMAyFA1-x-yPbI3 phase space at room temperature. Minority 
phases are detected via X-ray diffraction measurement on as-synthesized thin film samples. Overstochemetric lead 
iodide was added in the synthesis following reference,1 leading to PbI2 crystallization in as-synthesized films.  

 



 

 
Figure S11 Phase diagrams constructed with as synthesized thin films. No minority phases indicate single-phase α-
perovskite, minority phase  s indicates the existence of δ-CsPbI3, minority phase  A indicates the existence of δ-
FAPbI3 crystalized at 403 K thin-film annealing temperature followed by cooling to 300 K room temperature in N2 
glovebox prior to degradation tests.   

 

 
                                    a – 0 hours                             Degraded (full degradation run) 



 
                                    b – 0 minutes                                        Degraded                   

 
                                    c – 0 minutes                                        Degraded 

 
                                     d – 0 minutes                                         Degraded 

 



 

                                    e – 0 minutes                                         Degraded  

 

                                    f – 0 minutes                                          Degraded 

 

                                    g – 0 minutes                                        Degraded 

Figure S12 X-ray diffraction of 7 distinct compositions (a-g) from Round 4 degradation run, showing structural changes 
before and after a full degradation run.  he labelled minority phases are according to: δ-CsPbI3: ICSD number: 250744; 
α-perovskite: I S : 250735, and δ-FAPbI3: ICSD: 230491 

 
 

 



4.2 UV-Visible Spectroscopy 
The absorptance for the films was calculated based on transmission and reflection measurements 

done using Perkin-Elmer Lambda 950 UV/Vis Spectrophotometer (Perkin-Elmer). Bandgaps were 

calculated using Tauc methods assuming direct bandgaps. 

 

Table S3 Bandgap changes during degradation tests.. 

 Bandgap (eV)* 

Time (hours) a B c d e f g 

0 1.48 1.5 1.48 1.5 1.49 1.58 1.55 

6 1.48 1.5 1.49 1.5 1.51 1.58 2.28 

100 1.61 1.64 2.61 1.67 1.61 2.64 2.6 

*Estimated error of ±0.03 eV. 

 

a                               b                             c 

 

d                              e                               f                           g 

Figure S13 Absorption spectra of composition a-g, dark blue: as synthesized, cyan: after degradation for 6 hours, green: 

after degradation for 100 hours. 

. 

4.3 Scanning Electron Microscopy (SEM) 
The film morphology was investigated using a ZEISS Ultra-55 field-emission scanning electron 

microscope (FESEM, ZEISS), with InLens detector and 3.00 kV EHT gun. The grain sizes were 

counted using ImageJ within the area of ~0.72 μm2. Various compositions show different 

distribution of grain sizes. The grain sizes of composition with high Cs (Cs0.26FA0.74PbI3), with Cs > 

20%, are mostly between 300-500 nm and some of them reach up to 1200 nm, indicating the 

presence of δ-phase. The grain sizes of MAPbI3 are mostly between 200-400 nm, and reach up 



to 1000 nm. The grain sizes of the rest of the compositions, which have low Cs (< 20%) are mostly 

between 200-400 nm. 

 

 

Figure S14 SEM images and grain size count for as-synthesized composition a-g in Round 4. The scale bar is 300 nm. 
Rod-like δ-CsPbI3 minority phases are visible in c and d. 



5. Synchrotron Characterization 

5.1 GIWAXS Measurements 
Grazing-incidence wide-angle x-ray scattering (GIWAXS) measurements were taken at beamline 

11-BM (CMS) at the National Synchrotron Light Source II (NSLS-II) of Brookhaven National 

Laboratory. The x-ray beam with the energy of 13.5 keV shone on the perovskite films in the 

grazing incident geometry. The data presented in the study was taken at incident angle θ = 0.2 

which probes the bulk structure of the films. The scattering spectra were collected with the 

exposure time of 30 seconds by an area detector (DECTRIS Pilatus 800K) placed 257 mm away 

from the sample. The data analysis was performed by using custom-made software 

SciAnalysis.18,19 

 

Table S4 Sample list for GIWAXS examination. The Composition ID follows the ID in Table S1. 

Region Composition ID Cs% MA% FA% Duration of 
Degradation 
(Hours) 

I A 13 0 87 0, 6, 100 

I B 13 8 79 0, 6, 100 

Ii C 26 74 0 0, 6, 100 

Ii D 26 38 36 0, 6, 100 

I E 17 3 80 0, 6, 100 

Iii F 5 17 83 0, 6, 100 

 



 

Figure S15 GIWAXS images with data acquisition at incident angle of θ = 0.2° for composition a, b, c, and f after 0, 6 
(Round 5), and, 100 hours (Round 6) of degradation tests. GIWAXS images of d and e are shown in main text Figure 
4a. 



 

Figure S16 Relative peak insensitive of GIWAXS data (circular average) for composition a and f after 0, 6 (Round 5), 

and, 100 hours (Round 6) of degradation tests. Figures of b-e are shown in main text Figure 4 b-e. 

 

 



5.2  Data Analysis 

 

Figure S17 Integrated peak intensities for compositions a, b, c, d, e, and f after 0 ,6, and 100 hours of degradation tests 
respectively. We observe the emergence of PbI2, δ-CsPbI3 and δ-FAPbI3 during the course of degradation test. We 
observe a lattice shrinkage for all the iodide-based perovskites, including both CsFA, and CsMAFA perovskites.



Table S5 Peak extraction from GIWAXS images  

0 
Hours  Peak Positions (q) and Intensities (I) (Circular Average) Background-subtracted 

 Background Perovskite (001) CsPbI3 (002) FAPbI3 (001) PbI2 (001) CsPbI3 (102) 
Perovskit

e 
CsPbI3 
(002) 

FAPbI3 
(001) 

PbI2 
(001) 

CsPbI3 
(102) 

 I Q I Q I q I Q I q I I I I I I 

A 97.288 
0.98

2 976.143 0.707 102.043 0.840 109.921 0.891 145.630   878.855  12.633 48.342  

B 136.883 
0.99

1 
1170.16

7 0.707 135.709 0.845 147.407 0.895 236.317   1033.284  10.524 99.434  

C 115.909 
0.98

7 759.443 0.707 200.604 0.845 128.772 0.900 163.261 0.932 184.984 643.534 84.695 12.863 47.352 69.075 

D 132.751 
0.99

1 911.080 0.707 209.716 0.849 138.121 0.895 196.309 0.987 204.799 778.329 76.965 5.370 63.558 72.049 

E 128.968 
0.99

1 
1137.79

4 0.707 138.190 0.849 155.693 0.891 284.678   1008.826  26.725 155.709  

F 145.045 
1.00

5 
1102.73

0 0.707 144.083 0.845 154.400 0.895 345.547   957.685  9.355 200.502  
6 

Hours  Peak Positions (q) and Intensities (I) (Circular Average) Background-subtracted 

 Background Perovskite (001) CsPbI3 (002) FAPbI3 (001) PbI2 (001) CsPbI3 (102) 
Perovskit

e 
CsPbI3 
(002) 

FAPbI3 
(001) 

PbI2 
(001) 

CsPbI3 
(102) 

 I q I Q I q I Q I q I I I I I I 

A 152.982 
0.99

6 
1215.83

6 0.707 161.419 0.845 169.747 0.891 346.907   1062.854 8.437 16.765 193.925  

B 132.009 
1.00

1 
1006.77

6 0.707 145.289 0.845 149.510 0.895 484.918   874.767 13.280 17.501 352.909  

C 136.276 
0.99

6 742.240 0.707 232.101 0.845 149.960 0.900 168.679 0.927 206.762 605.963 95.825 13.684 32.403 70.486 

D 132.035 
0.99

6 822.620 0.707 217.400 0.845 145.112 0.900 242.712 0.927 205.790 690.585 85.365 13.077 110.677 73.755 

E 133.970 
0.99

6 
1006.30

3 0.707 141.311 0.845 150.138 0.895 320.102   872.333 7.341 16.168 186.132  

F 149.877 
1.00

5 
1070.75

3 0.707 154.771 0.845 169.093 0.891 587.316   920.876 4.894 19.216 437.439  
100 

Hours  Peak Positions (q) and Intensities (I) (Circular Average) Background-subtracted 

 Background Perovskite (001) CsPbI3 (002) FAPbI3 (001) PbI2 (001) CsPbI3 (102) 
Perovskit

e 
CsPbI3 
(002) 

FAPbI3 
(001) 

PbI2 
(001) 

CsPbI3 
(102) 

 I q I Q I q I Q I q I I I I I I 

A 200.577 
1.01

0 303.289 0.707 211.940 0.845 230.260 0.905 239.050 0.923 231.936 102.712 11.364 29.684 38.473 31.359 

B 197.898 
1.01

0 284.630 0.703 210.813 0.845 229.940 0.881 239.511 0.941 232.187 86.732 12.916 32.042 41.614 34.289 

C 194.306 
1.01

0 227.055 0.707 242.386 0.849 243.216 0.900 220.161 0.927 239.739 32.749 48.080 48.910 25.855 45.433 

E 261.700 
1.01

4 387.500 0.707 344.843 0.849 316.700 0.900 322.400 0.923 366.800 125.800 83.143 55.000 60.700 105.100 

E 179.400 
1.01

4 276.388 0.707 192.784 0.845 206.514 0.881 217.042 0.927 208.668 96.988 13.384 27.114 37.642 29.268 

F 229.370 
0.97

7 274.638 0.707 239.175 0.845 262.505 0.895 273.765 0.927 266.559 45.268 9.806 33.136 44.396 37.189 



Table S6 Peak intensity analysis 

0 Hours Signal/Noise Ratio (If > 1.05 threshold) * Peak Intensity Ratios (if > 0.05 threshold) ** 

 Perovskite (001) CsPbI3 (002) FAPbI3 (001) PbI2 (001) CsPbI3 (102) CsPbI3 (002) FAPbI3 (001) PbI2 (001) CsPbI3 (102) 

 

Relative to 
background 

Relative to 
background 

Relative to 
background 

Relative to 
background 

Relative to 
background 

Relative to 
Perovskite 

Relative to 
Perovskite 

Relative to 
Perovskite 

Relative to 
Perovskite 

A 10.034  1.130 1.497    0.055  

B 8.549  1.077 1.726    0.096  

C 6.552 1.731 1.111 1.409 1.596 0.132  0.074 0.107 

D 6.863 1.580  1.479 1.543 0.099  0.082 0.093 

E 8.822 1.072 1.207 2.207    0.154  

F 7.603  1.064 2.382    0.209  

6 Hours Signal/Noise Ratio (If > 0.05 threshold) Peak Intensity Ratios (if > 0.05 threshold) 

 Perovskite (001) CsPbI3 (002) FAPbI3 (001) PbI2 (001) CsPbI3 (102) CsPbI3 (002) FAPbI3 (001) PbI2 (001) CsPbI3 (102) 

 

Relative to 
background 

Relative to 
background 

Relative to 
background 

Relative to 
background 

Relative to 
background 

Relative to 
Perovskite 

Relative to 
Perovskite 

Relative to 
Perovskite 

Relative to 
Perovskite 

A 7.948 1.055 1.110 2.268    0.182  

B 7.627 1.101 1.133 3.673    0.403  

C 5.447 1.703 1.100 1.238 1.517 0.158  0.053 0.116 

D 6.230 1.647 1.099 1.838 1.559 0.124  0.160 0.107 

E 7.511 1.055 1.121 2.389    0.213  

F 7.144  1.128 3.919    0.475  
100 

Hours Signal/Noise Ratio (If > 0.05 threshold) Peak Intensity Ratios (if > 0.05 threshold) 

 Perovskite (001) CsPbI3 (002) FAPbI3 (001) PbI2 (001) CsPbI3 (102) CsPbI3 (002) FAPbI3 (001) PbI2 (001) CsPbI3 (102) 

 

Relative to 
background 

Relative to 
Perovskite 

Relative to 
Perovskite 

Relative to 
Perovskite 

Relative to 
Perovskite 

Relative to 
Perovskite 

Relative to 
Perovskite 

Relative to 
Perovskite 

Relative to 
Perovskite 

A 1.512 1.057 1.148 1.192 1.156 0.111 0.289 0.375 0.305 

B 1.438 1.065 1.162 1.210 1.173 0.149 0.369 0.480 0.395 

C 1.169 1.247 1.252 1.133 1.234 1.468 1.493 0.789 1.387 

E 1.481 1.318 1.210 1.232 1.402 0.661 0.437 0.483 0.835 

E 1.541 1.075 1.151 1.210 1.163 0.138 0.280 0.388 0.302 

F 1.197  1.144 1.194 1.162  0.732 0.981 0.822 

* Account for systematic error in background subtraction due to amorphous substrates and degradation products (5%) 

** Account for human peak extraction error (5



 

6. Additional Information  

 

Figure S18 Relationships between effective ionic radius and calculated Goldschmidt’s tolerance factor for compositions 
sampled in Round 0 -3.  

 

7. Data Integrity 

The synthesis conditions were calculated using Google Sheets, recorded using a laboratory 

notebook by the experimenter, then transcribed to a summary Google Sheets. Accelerated aging 

test data (camera image time series) were automatically pushed to Dropbox, and the Bayesian 

optimization codes were written using Python and gave the subsequent round ‘s composition 

suggestions saved to a spreadsheet, which were then given to the experimenter, to be fabricated. 

Raw XRD, UV-Vis, SEM and GIWAXS data were processed using their own software packages 

with individual file format, labelling conventions, and stored on different local computers. Most of 

the data analysis was done using Python and MATLAB. Metadata, which linked different files 

containing synthesis conditions, calibrated aging test data, GIWAXS, XRD, and UV-Vis data, were 

created on an ad-hoc basis on the 7 compositions, as samples were deemed of high scientific 

significance. 
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