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Abstract1

We performed 10 ns scale molecular dynamics simulations of 6 SARS-CoV-2 main2

protease/α−ketoamide inhibitor complexes in aqueous solution, in the phase before the3

inhibitor covalently binds to the protease’s catalytic cysteine, using a polarizable multi-4

scale molecular modeling approach. For each simulation, 100 Mpro/inhibitor snapshots5

(about 4 800 atoms) were extracted along the last 2 ns simulation segments. They6

were post processed using a fully quantum mechanical O(N) approach to decompose7

the protease into sets of fragments from which we computed the mean local interaction8

energies between the inhibitors and the different pockets of the protease catalytic do-9

main. Contrary to earlier results, our analysis shows that the protease pocket S2 to be10

a key anchoring site able to lock within the catalytic domain an α−ketoamide inhibitor11

even before covalent bonding to the protease catalytic cysteine occurs. To target that12

pocket our computations suggest to consider hydrophobic groups, like cyclo-propyl or13

cyclo-hexyl.14
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Several new drugs targeting the SARS-CoV-2 main viral protease Mpro (also called15

3CLpro) have been shown to be promising (or promising lead) compounds to develop new16

antiviral treatments for COVID-19.1–5 All of these inhibitors have been built from standard17

docking approaches by inferring the microscopic factors modulating the strength of their in-18

teraction with Mpro from experimental structural data and then selected from experimental19

trial-and-error approaches. To speed up the optimization process or the development of new20

Mpro inhibitors, an information of pivotal importance is the knowledge of reliable data that21

accurately quantify the strength of the microscopic interactions at the origin of the stability22

of Mpro/inhibitor complexes.23

Despite being heavily computationally demanding, Quantum chemical Methods, QM,24

are the most reliable theoretical approaches to investigate microscopic systems. Recently25

one of us proposed an efficient quantum O(N) method based on Daubechies wavelets6,726

allowing one to investigate molecular systems comprising thousands of atoms on modern27

supercomputing systems. An interesting feature of that approach is its ability to decompose28

a molecular system into fragments from which one may compute a map summarizing the29

microscopic local interactions occurring within a molecular complex.8,9 In the present study,30

we combine such a QM approach with a simulation stage based on a multi-scale polarizable31

Molecular Modeling, MM, one10,11 to investigate the Potential Energy Surface, PES, of32

Mpro/inhibitor complexes from Molecular Dynamics, MD, simulations in the aqueous phase.33

A set of complex structures are extracted from the MD trajectories and post processed using34

the QM approach both to assess the reliability of the MM approach and to compute mean35

Mpro/inhibitor complex local interaction maps that account for structural fluctuations.36

Recently, theoretical studies have appeared investigating the stability of Mpro complexes37

with marketed drugs12,13 (from chloroquine to curcumin and including the new peptide-like38

inhibitor ”N3”2), with marine natural product putative inhibitors14 or with hydroyethy-39

lamine analogs15 using standard pairwise force field-based MD approaches or the QM-based40

Fragment Molecular Orbital scheme (applied to the Mpro/N3 complex X-ray crystallographic41
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structure16). Instead we employ here our sequential MM – QM (not to be confused with tra-42

ditional QM/MM methods) scheme to investigate the interaction of Mpro with four strong43

peptidomimetic α−ketoamide inhibitors recently synthesized by the Hilgenfeld’s team1 (i.e.44

inhibitors 13a, 13b, 14b and 11r) as well as two such inhibitors characterized by a weak45

or no inhibitory potency for the main proteases of a large set of coronaviruses17 (inhibitors46

11p and 11f , see Figure 1). Note that the lack of inhibitory potency does not prejudge47

of the ability of an ”inhibitor” to interact with the Mpro catalytic site or to form a stable48

complex.17 In addition to being unlikely toxic, α−ketoamide inhibitors are able to form a49

covalent bond with the Mpro catalytic cysteine residue (based on a reversible mechanism18)50

that stabilizes Mpro/inhibitor complexes. However we focus our study to complexes corre-51

sponding to the pre-reactive state before the formation of a covalent bond between Mpro and52

the inhibitors, a state that is also pivotal to understanding the stability of Mpro/inhibitor53

complexes.19,20 Together with earlier theoretical studies, our present data will allow us to54

promote a more global understanding of the microscopic factors modulating the interaction55

of Mpro with putative inhibitors.56

Mpro/inhibitor complex starting structures are built from the X-ray PDB structure57

6Y7M21 corresponding to the Hilgenfeld’s inhibitor 13a1 by manually docking the other in-58

hibitors to best fit the 13a conformation. The Mpro catalytic pair His41/Cys145 is considered59

in its ionic form (its standard protonation state in Mpro as shown by a joint neutron/X-ray60

study22 - see Supplementary Information): their side chains are an imidazolium and a thiolate61

group, respectively. The inhibitors are not covalently bonded to Cys145. For each complex,62

we performed 10 independent NPT MD simulations (corresponding to different starting ve-63

locity sets) in the aqueous phase at the 10 ns scale using the code POLARIS(MD).23 Protease64

dimerization is needed for catalytic activity as local dimer interactions stabilizes the catalytic65

pocket shape.24 We consider here a single Mpro monomer and we account for the presence66

of a second unit by harmonically restraining the positions of the Mpro backbone carbons Cα67

that are more than 5 Å from any inhibitor atom.68
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Mpro/inhibitors complexes are modeled using an updated version of the polarizable all69

atoms force field TCPEp.25 Besides standard additive potentials like Coulombic and disper-70

sion energy terms, TCPEp also includes a many-body polarization term (based on an induced71

dipole moment approach including short-range damping effects) and many-body anisotropic72

terms to model hydrogen bond networks. The TCPEp parameters are assigned to reproduce73

high-level quantum ab initio computations regarding a training set of molecular clusters (see74

Ref. 26 for instance). Water is simulated using an updated version of the coarse-grained75

Polarizable Pseudo Particle, PPP, approach10,11 that improves ion hydration modeling. Pro-76

tease/inhibitor complexes are embedded in rectangular boxes comprising about 57 000 PPP77

particles. The force field and the accuracy of the coupled TCPEp/PPP approach to model78

hydrated proteins and α−ketoamide inhibitors are discussed in the Supporting Information.79

We also computed local Mpro/inhibitors Potentials of Mean Force, PMFs, in aqueous80

phase corresponding to the distance r between (1) the carbon atom connecting the ketoamide81

moiety to the inhibitor main chain and (2) the Mpro His164 backbone carbon C using standard82

Umbrella Sampling techniques coupled to our MD protocol. The r distance was scanned from83

4 to 8 Å: within that distance domain we assume our MD protocol to provide a sampling of84

the local Mpro/inhibitor PES that is sufficiently accurate.85

Along the last 2 ns MD segments, we extracted 100 Mpro/inhibitor regularly spaced86

snapshots (each comprising about 4 800 atoms) that were further investigated using a full QM87

O(N) approach based on Density Functional Theory with the Perdew-Burke-Erzerhof (PBE)88

functional implemented by a Daubechies wavelets formalism.6,7 On modern supercomputing89

systems the computation of a Mpro/inhibitor complex PBE single energy point is achieved90

within less than 2 hours using 1 024 computational cores. Note that the PBE energies91

discussed below (unless otherwise stated) have been corrected by including D3 dispersion92

terms.27 The localized basis functions used in that QM scheme allow one to readily gather93

system atoms into “fragments”(f) and to approximate the system density matrix F as a sum94

of fragment density matrices F f up to a desired level of accuracy measured by the ”fragment95
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purity” index Πf = Tr
(
(F f )2 − F f

)
.8,9 A fragmentation is physically meaningful when all96

the |Πf |s are small, typically about 5 % as shown by an earlier study9 and as set here. Such97

a fragmentation can be defined common to all the snapshots of an entire MD trajectory.98

A quantum Mpro/inhibitor interaction map may be thus readily drawn from the quantum99

energies ¯δU
fi

measuring the magnitude of the interactions between the Mpro fragments and100

the inhibitor (taken as a single fragment i) averaged over our MD simulations to account101

for Mpro/inhibitor complex structural fluctuations. Note that, the ¯δU
fi

s computed in the102

present study do not include the D3 dispersion correction, they measure the strength of the103

local Mpro/inhibitor repulsion-exchange and electrostatic interactions. They have thus to be104

considered to compare Mpro/inhibitor interaction patterns among them and not to discuss105

the global strength of Mpro fragment/inhibitor interactions.106

Along all independent MD simulations, inhibitors 11r, 13a, 13b and 14b interact107

strongly with the Mpro catalytic pair His41/Cys145, see Figure 1. The His41 imidazolium108

is hydrogen bonded to one of the ketoamide oxygens and the Cys145 sulfur strongly interacts109

with both the ketoamide sp2 carbons (the corresponding mean distances are about 2.8 Å).110

The mean Mpro/inhibitor distance r defined above is about 5.3 Å and these inhibitors are111

also hydrogen bonded to residues His163, His165, Glu166 and Asn189 backbones or side chains112

along all simulations in agreement with experiments.1 However large structural fluctuations113

of the inhibitor side chains can be observed, in particular the Boc group within the Mpro S4114

pocket.115

The above “standard ”Mpro/inhibitor interaction pattern is also observed along 6 Mpro/11p116

simulations (we recall that 11f and 11p are non-inhibitory substrates). Along them the mean117

dihedral angle ψ̄11p = 〈N− C− C− C〉 corresponding to atoms connecting the acetonitryl118

moiety to the inhibitor main chain is about 180◦. That moiety does not reside within pocket119

S2 and it is not hydrogen bonded to any Mpro residue. Along 3 other simulations, this120

interaction pattern is strongly altered: ψ̄11p ≈ −60◦, r ≈ 7.2 Å and the acetonitryl moiety121

establishes hydrogen bonds with the Tyr54 hydroxyl group and/or with the Gln189 backbone.122
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Inhibitor 11f maintains a “standard” interaction pattern only along 3 simulations: the 11f123

Boc group resides then at the ’entrance’ of pocket S2 (it is not as deeply buried in that124

pocket as the cyclo-hexyl and cyclo-propyl groups of inhibitors 13a and 13b, see Support-125

ing Information), in agreement with experiments regarding the SARS-CoV main protease.17126

Along all the other 11p/11f simulations, the inhibitor leaves the catalytic site.127

The propensity of inhibitors to maintain a standard interaction pattern may be assessed128

from our PMF(r) profiles, see Figure 2. The four strong inhibitors PMFs are close: they129

present a single minimum at r ≈ 5.3 Å and they increase then by up to 5 kcal mol−1 at130

r ≈ 7.5 Å. The PMF of 11f also presents a minimum at r ≈ 5.0 Å but it increases until it131

reaches a weak energy barrier of 2 kcal mol−1 at r ≈ 6.0 Å explaining the propensity of 11f132

to escape from the catalytic site along our simulations. We computed three PMF profiles133

for 11p corresponding to the ψ11p dihedral angle restrained harmonically to a value of 60134

(PMF11p
60 ), -60 (PMF11p

−60) and 180◦ (PMF11p
180 ), respectively. These dihedral angle values135

correspond to minimum locations on the acetronitryl dihedral energy profile discussed in136

the Supporting Information. PMF11p
180◦ is close to the 11f one with, however, with an even137

weaker energy barrier (about 1 kcal mol−1) at about 6.0 Å, whereas the lowest minima of138

PMF11p
60◦ and PMF11p

−60◦ are located at 6.8-7.0 Å. While we have not exhaustively sampled139

the Mpro/inhibitor PESs,28 the computed PMFs support the inhibitor behaviors along our140

independent MD simulations.141

We computed the MM and QM/PBE+D3 Mpro/inhibitor mean interaction energies ∆Ū142

from 100 Mpro/inhibitor complex snapshots extracted along a single MD simulation for each143

strong inhibitor 11r, 13a, 13b and 14b, and along three and five simulations corresponding144

to different Mpro/inhibitors interaction patterns for 11p and 11f , respectively. ∆Ūs are145

computed as the difference between the Mpro/inhibitor complex energy and the energies of146

Mpro and of the inhibitor alone in their complex geometry. Both these sets of ∆Ū values are147

linearly correlated. However the MM energies are more stable than the QM ones by about148

20 %, see Figure 2. We have identified (see Supporting Information) that this discrepancy149
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does not arise from differences in MM and PBE+D3 descriptions of Mpro/inhibitor short-150

range interactions, but rather from a PBE under-polarization of the Mpro chemical bonds151

yielding a PBE electrostatic potential within the Mpro catalytic pocket weaker by 20 %152

as compared to MM. A similar PBE bond under-polarization compared to a polarizable153

force field approach was already observed for liquid water.29 Lastly, D3 and MM dispersions154

represent from 40 to 80 % of the absolute ∆Ū values.155

MM and PBE+D3 ∆Ū values of the four strong inhibitors differ at most by 10% but they156

are all smaller than the 11p value corresponding to a simulation along which that inhibitor157

maintain a standard interaction pattern. The inhibitor potency is thus not dominated by158

the sole strength of the Mpro/inhibitor interaction but it results from complex interaction159

competitions between the inhibitor, the Mpro enzyme and their chemical environment, as160

discussed in Ref. 1 and as suggested by our PMFs. Along the simulations where inhibitors161

11p and 11f left the Mpro catalytic site, MM and PBE+D3 ∆Ū values are twice to three162

times weaker compared to simulations where the inhibitors maintain a standard interaction163

pattern with Mpro.164

Focusing now on the snapshot sets corresponding to a standard Mpro/inhibitor inter-165

action pattern, i.e. the four strong inhibitors sets and those corresponding to simulations166

labeled 8 and 9 in Figure 2 for inhibitors 11f and 11p, respectively, our QM fragmentation167

yields temporally stable and almost identical Mpro fragment patterns. Among the about 200168

fragments identified, about 20 of them (located at the inhibitor vicinity) interact noticeably169

with the inhibitor. Most of these fragments correspond to a single residue at the remarkable170

exception of the fragment Gly143-Ser144-Cys145 that gathers the oxyanion residues and the171

catalytic cysteine. We assigned the fragments to the Mpro catalytic domain pockets from dis-172

tance arguments, see Figure 3 where we also plot the mean energies ∆Ūpocket
inhi corresponding173

to the sum of the ¯δU
fi

energies running on the fragments belonging to a given pocket. For the174

four strong inhibitors and inhibitor 11f , their ∆Ūpocket
inhi profiles are close: they interact the175

strongest with pocket S1’(which comprises the Mpro catalytic pair) and in a negligible way176
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with pockets S3 and S4. The ∆Ūpocket
inhi profile of inhibitor 11p differs noticeably compared177

to the latter ones: 11p interacts the strongest with pocket S2 and noticeably with pocket178

S3. The dihedral angle ψ̄11p is about 180◦ along the 11p simulation 9: the 11p acetonitryl179

moiety is outside of pocket S2 and the inhibitor phenyl group initially residing within the180

pocket S4 core evolves to interact with the backbone CO groups of Val186, Arg188 and Thr190181

at the pockets S4/S2 boundary (see Supporting Information). The strongest interaction of182

11p with pocket S2 may thus be considered as an artifact but this does not lead to change183

the above conclusion about the difference in the ∆Ūpocket
inhi profiles. The energies ∆Ūpocket

inhi184

measure only the strength of the Mpro/inhibitor local repulsion-exchange and electrostatic185

interactions. Because of the weight of dispersion in Mpro/inhibitor interactions, a ∆Ūpocket
inhi186

profile close to those of the four strong inhibitors 13a to 11r does not correspond necessarily187

to a potent inhibitor, as for 11f .188

By employing a computational scheme which sequentially couples a multi-scale polariz-189

able MM approach and a particularly efficient QM method, we have shown that the most190

promising α−ketoamide inhibitors developed the Hilgenfeld’s team target mainly three pock-191

ets of the Mpro catalytic domain, namely S1, S1’and S2. Contrary to the recent large-scale192

MD simulations study of Huynh et al ,12 both our PMFs (in particular those corresponding193

to 11p and 11f) and fragmentation computations unambiguously show the inhibitor potency194

not to be tied to the inhibitor capacity to strongly interact with the Mpro pocket S4 but195

with pocket S2. Note that besides simulation artifacts underlined by Huynh et al (like the196

accuracy of their scoring functions and of their standard pairwise force fields), the conclusion197

of the latter authors may arise from their set of investigated drugs that were not able to198

specifically target pocket S2.199

Hence our computations strongly suggest Mpro pocket S2 to be a key anchoring site that200

is able to lock within the Mpro catalytic domain an α−ketoamide inhibitor even before cova-201

lently bonding to the Mpro catalytic cysteine occurs, which warrants the generality of that202

conclusion. We may also note here that other promising Mpro inhibitors like the carmofur203
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one3 and the inhibitor N32 and related4 all target pocket S2 by means of hydrophobic groups204

like cyclo-propyl or cyclo-hexyl, and even using a fluoro-phenyl group as shown by Dai et al .4205

New inhibitors must target that pocket to provide thermodynamically stable Mpro/inhibitor206

complexes, preferentially using the latter chemical groups.207

Supplementary Material Available208

This material is available free of charge via the Internet at http://pubs.acs.org. It pro-209

vides more detailed discussions regarding the accuracy of the our multi scale MM ap-210

proach to model proteins and α−ketoamide inhibitors in aqueous phase as well as of both211

the MM and quantum PBE level of theory to describe these inhibitors in gas phase as212

compared to high end quantum CCSD(T) computations. Discussions regarding the PBE213

under-polarization of the enzyme covalent bonds are also presented and the details of the214

Mpro/inhibitors structures, quantum and MM interaction energies and fragmentation data215

(like the fragment assignment to Mpro pockets) are also provided. The final structures of the216

Mpro/inhibitor complexes along all our MD simulations (in PDB format) are freely available217

at http://biodev.cea.fr/polaris/download.html.218
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Figure 1: (a) Definition of the six α−ketoamide inhibitors considered in the present study.
CN, CP, CH and Boc are the acetonytril, cyclo propyl, cyclo hexyl and tert-butyloxycarbonyl
groups, respectively. In the brackets the EC50 values in µM unit that measure the inhibitor
potency for the SARS-Cov-2 Mpro main protease.1 For inhibitors 13a, 13b, and 14b, the
interaction between their side chains and the Mpro pockets S1 to S4 (as defined in Refs.4,17)
are shown. (b) Superimposition of the final inhibitor 13a structures along the 10 independent
MD simulations within the Mpro catalytic binding site. (c) Detail of the Mpro/inhibitor
13b final structure along one of the simulations. Dashed lines are the strong hydrogen
bond between the His41 imidazolium and the inhibitor ketoamide group and the Cys145

sulfur/inhibitor ketoamide carbon sp2 distances.
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Figure 2: (a) Local PMF(r) profiles corresponding to the Mpro/inhibitor complexes. Black
line: mean PMF corresponding to inhibitors 11r, 13a, 13b and 14b (the yellow domain
is defined by the minimum and maximum values of each single PMF). Blue: PMF of 11f .
Red: PMF11p

180◦ (full line), PMF11p
−60◦ (dashed line) and PMF11p

60◦ (dotted line) corresponding to
inhibitor 11p, see text for definition. (b) Mean QM Mpro/inhibitor interaction energies ∆Ū
as a function of their MM counter parts (brown 11f , red 11fp, orange 13a, green 11r, light
blue 13b, dark blue 14b). The error bars correspond the standard deviations of these mean
energy values. For 11f and 11p data, the numbers shown corresponds to the simulation
labels (see Supporting Information).
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Figure 3: (a) Mpro fragments interacting noticeably with the inhibitors (i.e. their corre-

sponding fragment/inhibitor energy ¯δU
fi

is larger than kBT = 0.6 kcal mol−1). Each box
corresponds to a Mpro residue, the box colors show, in the upper part, the regroupment in
the QM fragments. Amino acids with similar colors belong to the same fragment. A white
top color indicates that the amino acid itself constitutes a good fragment. The bottom colors
indicate to which Mpro catalytic pocket the corresponding amino-acid has been (arbitrarily)
assigned. The pocket S1, S1’, S2, S3 and S4 are colored, respectively, in (dark) blue, green,
purple, pink and red. Because of the common residues delimiting the different pockets, we
define pocket S3 from the single residue His164. The cyan aminoacids have not been assigned
to a pocket. (b) ∆Ūpocket

inhi inhibitor/protease pocket energies for the MD snapshot sets where
the inhibitors maintain a standard interaction pattern. The corresponding standard devia-
tions represent about 20 % of the strong mean ∆Ūpocket

inhi values up to 80 % of the weak ones.
We can observe that the 11p inhibitor has an outstanding pattern both on the fragmen-
tation and on the pocket interactions. The strong ∆ŪS3

inhi value reported here for inhibitor
11p arises from a hydrogen bond network between that inhibitor, the backbone CO and side
chain imidazole group of His164, and the amide side chain group of Gln189 (see Supporting
Information).
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