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The Coronavirus Disease of 2019 (COVID-19) is caused by a novel coronavirus known as

the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). Despite extensive re-

search since the outset of the pandemic, definitive therapeutic agents for the treatment of the

disease are yet to be identified. The main protease (MPro) of SARS-CoV-2 is an enzyme essen-

tial for virus replication through viral proteolytic activity and subsequent generation of in-

fectious virus particles. Current computational efforts towards SARS-CoV-2 MPro inhibitor

design have generally neglected an allosteric mechanism linked to His41-Cys145 catalytic

dyad disruption and thus fail to target the open conformational state. We identify the rare

event associated with the allosteric regulation of MPro activity in the orientation of the His41

imidazole side chain away from Cys145. In this work, we show that molecular dynamics and

metadynamics simulations are fundamental for performing computer-aided MPro inhibitor

design where the sampling of this allosteric mechanism within a computationally feasible
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timescale is essential. We calculate a 4.2 ± 1.9 kJ/mol free energy difference between the

open and closed states of the SARS-CoV-2 MPro active site, indicating that favourable ligand

interactions with His41 over the Cys145-His41 dyad interaction can stabilise the open state.

Coronaviruses have proven to be a challenge for drug discovery since Severe Acute Respi-

ratory Syndrome Coronavirus 1 (SARS-CoV-1), better known as SARS (2002-2004) and the Mid-

dle East Respiratory Syndrome (MERS-CoV) (2012-2013). Severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) is the cause of the coronavirus disease 2019 (COVID-19). It is a

positive-sense single-stranded RNA virus that is contagious in humans, with zoonotic origins and

genetic similarities to bat coronaviruses.1 The virus mainly enters human cells through the receptor

angiotensin converting enzyme 2 (ACE2).2

To date, more than 21 million cases of COVID-19 have been confirmed, with more than

760,000 deaths worldwide.3 SARS-CoV-2 has a combination of high transmissibility, longer in-

cubation period and a much shorter interval between symptom onset and maximum infectivity

when compared with SARS and MERS-CoV.4 As a result, even with a relatively low mortality

rate, COVID-19 is proving much harder to eradicate and will therefore remain an epidemiological

problem until a therapeutic agent is developed.

Broad spectrum antiviral medication such as remdesivir have been proposed to decrease

SARS-CoV-2 RNA production, however remdesivir was not associated with statistically significant

clinical benefits.5 Recent clinical research has shown that administration of dexamethasone6 or

systemic corticosteroids,7 were found to be associated with lower 28-day all-cause mortality when
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compared with usual care or placebo.

The most promising tools for the cessation of the epidemic spread of COVID-19 are vac-

cines, with many in latter stages of clinical trials, that are expected to be available in late 2020 or

early 2021.8 The majority of these vaccines are based on platforms such as inactivated viral vectors

or RNA sequences encoding the spike glycoprotein of SARS-CoV-2 that trigger an immunogenic

response. The SARS spike protein has been identified as the major target of selective pressure in

the adaptive evolution of SARS coronaviruses.9 Recently, molecular dynamics (MD) simulations

have been used to study the druggability of the SARS-CoV-2 spike.10 They have identified vul-

nerabilities in the spike glycan shield — utilised to frustrate an immune response — that can be

harnessed for vaccine development.

Protease inhibitors, however, do not depend on an immunogenic response to elicit immunity.

Unlike immunogenic approaches, any inhibitor identified for the SARS-CoV-2 MPro would very

likely also serve as an inhibitor of further evolution of this virus as the sequence and structure of

the MPro are closely related to those from other betacoronaviruses.11 Elsewhere, protease inhibitors

have been extensively used for the treatment of HIV-AIDS12, 13 and hepatitis-C14. Molecular dy-

namics (MD) simulations were paramount in identifying the dynamic bound and free states of

the HIV-1 protease flaps (two glycine-rich β-hairpins) that cover a large substrate-binding pocket

used as a target for antiviral drugs.15 Also, MD simulations were integral in identifying a cryptic

trench within the HIV integrase, which became the target for the first FDA approved HIV integrase

inhibitor (raltegravir).12, 16
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The SARS-CoV-2 MPro is largely responsible for the proteolytic processing of the polypro-

teins transcribed by the SARS-CoV-2 genome, which are responsible for viral transcription and

replication. MPro cleaves the polyproteins at 11 conserved sites using the catalytic dyad.17, 18 A

catalytic dyad is a set of two coordinated amino acids, common to some enzyme active sites.

Within a histidine-cysteine (His-Cys) dyad, the His amino acid will act as a base and activate the

Cys mercaptan as a nucleophile for polypeptide cleavage.

Owing to the high sequence similarity, the conservation of primary structure about the cat-

alytic sites and the high degree of tertiary structure similarity between both proteases, it has been

surmised that the His41-Cys145 catalytic dyad plays the same role of regulating protease activity

within both SARS-CoV MPro proteins.11, 18 Disrupting this dyad, then, disables MPro activity and

subsequent virus replication. In order to be able to cleave the SARS-CoV-2 polyprotein, hydrolysis

must be facilitated by priming the MPro Cys145 mercaptan group for nucleophilic attack via depro-

tonation by the His41 imidazole group. The proteolytic mechanism in the SARS-CoV MPro active

site regulates protease activity through activation of the Cys145 mercaptan. The rotation of the

His41 imidazole towards Cys145 serves as an allosteric trigger to inducing proteolytic activity in

SARS-CoV MPro . One way to disrupt the proteolytic mechanism is to induce a conformational

change in the more flexible His41 imidazole side chain of the dyad and prevent it from abstracting

a proton from the Cys145 mercaptan group. An inhibitor would serve to stabilise this disrupted

conformation and therefore inhibit MPro activity.

Recently, MD simulations have been used to study the druggability of the SARS-CoV-2
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MPro.19, 20 However, conventional MD fails to disrupt the MPro catalytic dyad and thus deactivate

MPro activity within computationally achievable timescales. As such, screening potential ligands

from vast drug libraries to inhibit MPro is inaccurate and could fail to identify potent inhibitors. In-

stead, metadynamics (MetaD) enhances the sampling of rare events to reconstruct the free energy

landscape by discouraging revisiting of sampled states. It is a useful tool for studying mechanisms

of drugs binding to flexible targets where conventional MD may otherwise fail to ergodically sam-

ple the free energy landscape. Defining the free energy landscape of a complex simulation is

non-trivial and depends on a choice of a few collective variables (CV).21 Other enhanced sampling

techniques (Gaussian accelerated MD22) have been applied in elucidating cryptic pockets not de-

tectable from the MPro crystal structure, identifying additional pockets for studying MPro inhibition

beside the active site.23

In this work, we apply MetaD to identify the allosteric mechanism of SARS-CoV-2 MPro using

the inhibition of SARS-CoV-1 MPro with a previously identified potent inhibitor (D3F)24 (Fig

1, left). In order to comprehensively study whether a contender ligand successfully inhibits the

SARS-CoV-2 MPro, the MPro allosteric mechanism must be sampled within feasible timescales.

This sampling is difficult to achieve using conventional computational methods as there is a high

free energy cost to dyad disruption that these approaches cannot account for. We show that the

allosteric mechanism can be sampled using MetaD simulations through biasing rotations about a

single dihedral within the dyad, and illustrate this by incorporating a contender ligand (LIG) (Fig

1, right) to SARS-CoV-2 MPro.
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Figure 1: Inhibitor candidate ligand structures with molecular weight (MW) and calculated

lipophilicity (LogP). The drug candidate (code named LIG herein) considered for binding and

inhibition of SARS-CoV-2 (left). D3F, a strong binder and inhibitor of SARS-CoV-1 MPro (right).

LogP values were calculated using the ChemDraw LogP estimation tool.

Results

Allosteric regulation of SARS-CoV-1 and SARS-CoV-2 MPro activity is linked to the His41-

Cys145 interaction

Co-solvent MD simulations 25 are a useful tool for identifying binding hotspots on protein sur-

faces by simulating proteins in a solution of water and co-solvent molecules. This dynamic ap-

proach to identifying binding sites incorporates proteins’ inherent flexibility, allowing the cosol-

vent molecules to compete with water to bind to the protein surface.26 Our co-solvent MD simula-

tions were initiated by placing five LIG molecules randomly surrounding SARS-CoV-2 MPro . Of

the five LIG molecules, only one entered the binding site of SARS-CoV-2 in order to stabilise a
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binding mode (Fig. 2).

A short simulation of SARS-CoV-1 MPro with the inhibitor D3F bound in the active site

was also performed and was used to evaluate the success of the observed LIG binding in inhibiting

SARS-CoV-2 MPro, as the initial D3F binding mode has been proven to successfully inhibit SARS-

CoV-1 MPro in previous studies.24 When observing the bound state of D3F to SARS-CoV-1 MPro,

the nitrate group most proximal to His41 forms a strong electrostatic interaction between a D3F

nitro O atom and the N1-H of the His41 imidazole (D3F N-O · · · H-N1 His41) (Fig. 2A). This in-

teraction stabilises the orientation of His41 away from Cys145 which comprises the open (“holo”)

conformation of MPro. Despite the ligand appearing as bound within the SARS-CoV-2 MPro active

site, His41 is not seen to interact with the bound ligand at all (Fig. 2B). The primary difference

between the binding modes of D3F to SARS-CoV-1 MPro and LIG to SARS-CoV-2 MPro is the

orientation of the His41 imidazole with respect to Cys145. In the latter case, the His41-Cys145

catalytic dyad is maintained and thus the MPro is within a closed (“apo”) conformation. The disrup-

tion of the catalytic dyad via reorientation of the His41 imidazole or interaction with the Cys145

mercaptan side chain18 therefore serves as a prospective diagnostic tool for successful inhibition.

Generating the SARS-CoV-2 MPro active state via His41 side chain reorientation

The disruption of the catalytic dyad to promote ligand binding was further explored through the use

of enhanced sampling simulations. The binding mode of D3F to SARS-CoV-1 MPro indicates an

ability to achieve inhibition of SARS-CoV-2 MPro through promoting interactions with the His41
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A B

Figure 2: The observed binding modes of (A) D3F (yellow) within the SARS-CoV-1 MPro catalytic

binding site (cyan), showing the disrupted catalytic dyad (“holo”) and the strong D3F interaction

with His41 (dashed red line) and (B) LIG (orange) within the SARS-CoV-2 MPro catalytic binding

site (pink) with a maintained catalytic dyad (“apo”). The dyad residues and their interactions

(dashed blue line) are labeled His41 and Cys145.
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A ξ1 dihedral B ξbackbone2 dihedral

Figure 3: His41 imidazole side chain dihedrals. (A) ξ1 dihedral used for construction of the MetaD

bias. (B) ξbackbone2 dihedral considered within analysis of the performance of the bias and charac-

terising the disassociation of His41 from Cys145.

imidazole in the holo form. Metadynamics (MetaD) is herein employed with a bias potential

over the ξ1 dihedral of His41 in order to induce rotation of the His41 side chain imidazole group

about the ξbackbone2 dihedral. The ξbackbone2 dihedral cannot be used as a CV due to an intrinsic

conformational restriction, since the dihedral is part of the protein backbone. Instead, we have

applied a bias to the ξ1 dihedral torsion, which allows us to investigate the free rotational orientation

of the His41 side chain imidazole (Fig. 3).

Ergodic sampling along the ξ1 torsional CV space was achieved using MetaD simulations.

The free energy surface with respect to the ξ1 dihedral was calculated and is shown in (Supple-

mentary Fig. 1, top). This surface was used to verify metadynamics convergence by evaluating the

relative free energy differences between pairs of free energy minima, which stabilised after 70 ns
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(Supplementary Fig. 1, bottom).

MPro catalytic dyad conformational changes

In order to verify that our choice of CV of ξ1 torsion couples to and changes the degree of

ξbackbone2 torsion, we compare the probability densities found from our MetaD simulation to the

probability distributions observed in our co-solvent MD simulations of LIG-SARS-CoV-2 and the

D3F-SARS-CoV-1, which we use as the “apo” (closed conformation) and “holo” (open confor-

mation) states, respectively. In (Fig. 4A), the MetaD probability distribution clearly samples both

“apo” and “holo” states. In (Fig. 4B), this choice of ξ1 torsion CV also biases the the catalytic

dyad into an open state by orienting the His41 imidazole away from Cys145, measured through

the (His41-Nε2)-(Cys145-Sγ) distance.

To demonstrate the interconnection of the ξbackbone2 torsion and (Cys145-Sγ)-(His41-Nε) dis-

tance, we can represent the sampling of co-solvent MD simulations (“holo” - (Fig. 5A) and “apo” -

(Fig. 5C)) with the interchangeable MetaD sampling of both “apo” and “holo” states in a 2D space

(Fig. 5B). Comparing against the three density functions, it is noted that the region about ξbackbone2 =

-0.5 rad overlaps with the “holo” state, while the region about ξbackbone2 = 0.5 rad overlaps with the

sampled density of the “apo” in which the catalytic dyad remains intact throughout. This compar-

ison allows for the characterisation of each of the respective regions in the metadynamics density

function above to be considered as “apo” and “holo” conformational states (Fig. 5B).

In (Fig. 5B), the bimodal probability density in the 2D CV space includes points at shorter
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Figure 4: 1D probability density functions obtained from the co-solvent MD simulations of SARS-

CoV-1 “holo” (blue), SARS-CoV-2 “apo” (green) and SARS-CoV-2 MetaD simulation (purple)

over the (A) ξbackbone2 dihedral space and (B) (Cys145-Sγ)-(His41-Nε) distance.

(Cys145-Sγ)–(His41-Nε) distances at ξbackbone2 = -0.5 rad. This region indicates that, in the absence

of a potent inhibitor, the “holo” state cannot be stabilised by biased ξ1 sampling alone. As such,

the dyad will reorient to maintain the Cys145-His41 side chain interaction.

To confirm that the choice of a ξ1 bias samples the “apo”–“holo” transition, the time-dependent

behaviour of both the ξbackbone2 dihedral and the (Cys145-Sγ)-(His41-Nε) distance was evaluated

using K-means clustering.27 Three distinct clusters were found (Supplementary Fig. 2) correspond-

ing to the “apo” conformation (ξbackbone2 = 0.5 rad) , “holo” conformation (ξbackbone2 = -0.5 rad) and

transition region. The time dependent behaviour of ξbackbone2 dihedral and (Cys145-Sγ)-(His41-Nε)

distance show the choice of CV freely samples the reversible “apo”–“holo” transition throughout

the 100 ns trajectory.
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Figure 5: Probability density functions of the (A) SARS-CoV-1 “holo” , (B) SARS-CoV-2 MetaD

(inset showing MetaD “holo”) and (C) SARS-CoV-2 “apo” MD simulation defined within a 2D

CV space of the His41 ξbackbone2 dihedral and the (Cys145-Sγ)-(His41-Nε) atomic distance.

MPro free energy surfaces

In order to verify the reproducibility of the constructed bias, four replicas of the MetaD simulation

were performed until convergence was observed in each. The free energy profiles obtained in

each of the replicas show agreement, with deviation from the average free energy values observed

chiefly at the transition states and at the minimum at ξ1 = 1.9 rad. The deviation at this minimum is

due to the corresponding state being sparsely sampled in all replicas compared to the other system

states as a result of the high free energy barrier restricting sampling from other observed minima

(Supplementary Fig. 3).

As convergence of the bias was observed for all four replicas, it can be assumed that any

sampling beyond the point of convergence is within the desired thermodynamic ensemble. Thus,

the mean free energy surface with respect to the His41 ξbackbone2 dihedral over the 4 replicas was
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computed (Fig 6). The mean surface is bimodal, with positions of the minima at 0.5 and -0.5

rad corresponding the the sampled “apo” and “holo” states of the SARS-CoV-2 MPro catalytic

dyad, respectively. The “apo”-“holo” relative free energy difference of 4.2± 1.9 kJ/mol indicates

that the “holo” state is less energetically stable than the “apo” state in the absence of any ligands

interacting with His41. Considering this free energy difference between states and the high free

energy barrier (15.0 ± 1.3 kJ/mol between them, it can be assumed that the dyad “apo”–“holo”

transition is unlikely to be sampled using unbiased conventional MD simulations alone.

The free energy surface of SARS-CoV-1 “holo” (dashed blue line) was computed from the

reference simulation of the D3F-SARS-CoV-1 MPro complex using population analysis Fig. 6).

This surface is used as a reference state to compare against the mean MetaD free energy surface

as the “holo” state. The SARS-CoV-1 “holo” conformation is more energetically stable than the

SARS-CoV-2 MetaD surface “holo” minimum by approximately 4.2±1.9 kJ/mol. This energy dif-

ference highlights how the energetic penalty associated with dyad disruption in the “apo”–“holo”

transition may be recovered by ligand interactions in the active site.

13



Figure 6: Mean free energy surface obtained for co-solvent MD simulations of D3F-SARS-CoV-1

“holo” (blue) and four replicas of His41 torsional MetaD simulations (purple), defined within the

ξbackbone2 dihedral space. The shaded region corresponds to the standard deviation about each free

energy point calculated over the set of MetaD replicas.
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Conclusions

We have presented the application of metadynamics to molecular dynamics simulations of the

SARS-CoV-2 MPro to better inform the drug discovery efforts including virtual screening, molec-

ular docking and unbiased molecular dynamics simulations. We show that the proteolytic mech-

anism of MPro is contingent on the integrity of the His41-Cys145 catalytic dyad. and that the

rotation of the His41 imidazole side chain to Cys145 acts as an allosteric trigger to regulating this

proteolytic activity.

Using metadynamics, we find that promoting ligand binding and sampling of the active site of

the protease is achieved through disrupting the catalytic dyad by biasing over the His41 ξ1 dihedral

to subsequently sample over the ξbackbone2 dihedral. Using the (Cys145-Sγ)-(His41-Nε) distance

and the ξbackbone2 dihedral to define the collective variable (CV) space, we identify clusters of

unbound, intermediary and bound conformations of the flexible MPro active site throughout the

simulation. We show that repeated replicas of the His41 torsional metadynamics reproduce the

free energy surface along the 1D ξ1 and ξbackbone2 spaces. Our results detail the allosteric regulation

of the SARS-CoV-2 MPro, irrespective of the choice of ligand. The candidate ligand LIG acts

as a toy model and its inadequacy in disrupting the catalytic dyad was established by drawing

comparisons of its interaction in the MPro active site against the ligand D3F with SARS-CoV-1

MPro.

The application of our analysis uncovers the changes on the receptor structure as a result of

an allosteric mechanism resolved using enhanced sampling. This observation can assist in selecting
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an optimal strategy for screening ligands from drug libraries.The free energy comparison between

the D3F unbound and bound “holo” state minima suggests that the energy expended in disrupting

the dyad can be readily recovered using ligand interactions in the active site, and so this open dyad

state should be considered alongside the closed state as a target for virtual screening.

Methods

Molecular Dynamics

All MD simulations were performed in GROMACS version 2019.4 on the ARCHER Cray XC30

supercomputer on a single 2.7 GHz, 12-core E5-2697 v2 (Ivy Bridge) series processor node,

NVIDIA GeForce RTX 2060 or GeForce GTX1080Ti GPUs with the CUDA 10.2 toolkit. The

AMBER14SB forcefield 28 was used to model the system, where ligand molecule forcefield pa-

rameters were generated using the General Amber ForceField v2 (GAFF2) with charges calculated

using the AM1-BCC semi-empirical method.29.

The structure of the candidate ligand LIG was derived from a virtual fragment expansion,

docking, and screening exercise provided by Gabriel Grand, Elana Simon, Michael Bower, Bruce

Clapham and Jonah Kallenbach of Reverie Labs.30 Protein X-Ray diffraction (XRD) structures

for SARS-CoV-1 MPro holo structure (PDB code: 2GZ7) 31 and SARS-CoV-2 MPro apo structure

(PDB code: 5RE4) were used for these simulations. Missing residues from the SARS-CoV-2 XRD

structure were modelled using MODELLER 32 and subsequently solvated in a 90 Å cubic box of

TIP3P water molecules.
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For co-solvent MD simulations, five of the candidate ligand (LIG) were placed in random

coordinates within the box and the system net charge was neutralised by adding 4 sodium ions

into the system. The co-solvent MD simulations was performed for 100 ns. The simulation of

D3F bound in SARS-CoV-1 MPro was performed for 10 ns. The net charge in the system was

neutralised by adding 3 sodium ions. In all structures prepared for simulation, the His41 side chain

was maintained at the N1-H tautomeric state, as this state is primed for nucleophillic attack from

the Cys145 mercaptan in the active catalytic dyad.

The system was relaxed energetically using steepest-descent energy minimisation for 50000

steps with an energetic step size of 0.01 kJ/mol. The minimisation was terminated after the maxi-

mum energetic contribution was lower than a threshold of 10.0 kJ/mol. NVT and NPT equilibration

was performed for 1 ns using two separate velocity-rescaling thermostat coupling temperature to

velocities for protein, drug and solvent molecules (NVT), where a temperature of 300 K was main-

tained and 1 bar using the Parrinello-Rahman barostat (NPT).33 The Verlet cut-off scheme was

employed to generate pair lists and the electrostatic interactions were calculated using the Particle-

Mesh Ewald algorithm.34 Both electrostatic and van der Waals interactions were cut off beyond

1.2 nm. All bonds involving hydrogen atoms were constrained using the LINCS algorithm.35 Pro-

duction simulations ran with an integration stepsize of 2 fs. MDAnalysis was used to postprocess

the MD trajectories for analysis.36, 37
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Metadynamics

Four independent replicas of the non-tempered MetaD simulation were run to convergence.38 The

bias potential was setup to sample energetically hindered rotations about the ξbackbone2 dihedral of

His41 by biasing the sampling along the ξ1 torsional profile directly. The bias was accumulated

with a Gaussian deposition rate τ = 1 ps. The deposited Gaussians had a fixed height of 0.1 kJ/mol

and employed an adaptive width scheme in which the correlation between the biased CV space and

the microscopic configuration space is utilised to recalculate the covariance matrix. A correlation

length of 0.5 Å was used.39 MetaD simulations were performed using Plumed 2.5.4.40
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