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The complex absorbing potential (CAP) approach offers a practical tool for char-

acterization of energies and lifetimes of metastable electronic states, such as tem-

porary anions and core ionized states. Here, we present an implementation of the

smooth Voronoi CAP combined with equation-of-motion coupled cluster with sin-

gle and double substitutions method for metastable states. The performance of the

smooth Voronoi and a standard box CAPs is compared for different classes of sys-

tems: resonances in isolated molecules and in molecular clusters. The results of the

benchmark calculations indicate that the choice of the CAP shape should be guided

by the character of the metastable states. While Voronoi CAPs yield stable results

in the case of a resonance localized on one molecule, their performance in the cases

of states delocalized over two or more molecular species can deteriorate due to the

CAP leaking into the vacuum region between the moieties.

I. INTRODUCTION

Electronic resonances are metastable electronic states with finite lifetimes lying in the

ionization/detachment continuum. Common examples include transient anions formed by

electron attachment, and core-excited and core-ionized states that can undergo Auger decay

or related relaxation pathways. These states are key players in a wide variety of processes

ranging from those that occur in high energy environments (plasmonic photocatalysis, at-

tosecond and X-ray spectroscopies) to low energy electron-molecule scattering (DNA damage

from secondary electrons, interstellar chemistry) [1–6]. Resonances belong to the continu-

ous spectrum of the electronic Hamiltonian, so they are not part of the usual Hilbert space
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of square integrable functions [7]. Theoretical description of these states is generally not

possible by means of conventional quantum chemistry methods developed for bound states,

and one has to use special techniques to obtain accurate resonance energies and lifetimes.

Non-Hermitian quantum mechanics (NHQM) techniques provide an appealing approach

that allows one to leverage existing quantum chemistry methodology to treat metastable

electronic states [8]. In NHQM formalisms, a resonance appears as a single square-integrable

eigenstate of a non-Hermitian Hamiltonian. The resonance parameters can be extracted from

the corresponding complex eigenvalue:

E = ER −
iΓ

2
(1)

where the real part of the energy (ER) is the resonance position, and the imaginary part

(- iΓ/2) is the half-width, which is inversely proportional to the lifetime of the metastable

state (τ = h̄
Γ
) [7, 9]. One of the NHQM formalisms that has been successfully used to study

resonances in molecular systems is the complex absorbing potential (CAP) method. CAPs are

imaginary potentials added to the Hamiltonian, originally devised as a numerical technique

to absorb outgoing wave packets near the boundaries of finite grids [10]. CAPs have also

been applied in the time-independent framework to study various problems, including the

Stark effect, reactive scattering, and quantum transport in molecular devices [11–13], and

are now routinely used for evaluation of metastable states parameters [14–20].

In this work, we explored the effects of the CAP shape on computed resonance parameters

in molecular systems. In the context of electronic structure of metastable electronic states,

CAPs are used to transform the resonance into a single square integrable state, and to

render the state accessible by means of standard bound-state techniques [9]. To this end,

the electronic Hamiltonian is augmented with an imaginary potential (−iηW )

HCAP (η) = H − iηW (2)

where η is the CAP strength parameter, and W is a real potential which vanishes in the

vicinity of the molecular system and grows with distance [9]. An ideal CAP must satisfy the

following two criteria. First, it should not perturb the system in the inner, molecular region,

i.e. it should not introduce reflections. Secondly, the CAP should absorb the outgoing tail

of the resonance wave function [9, 16]. Several approaches for minimizing these residual

reflections have been proposed. Examples include “reflection-free” and “transformative”
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CAPs [21–23]. In most practical applications, simple quadratic CAPs such as those discussed

here are used, as they can easily be combined with existing electronic structure theory codes.

As the CAP-augmented Hamiltonian depends on the strength of the CAP (Eq. 2), a

choice has to be made on the optimal value of η which provides the best estimate of the

resonance position and width. In a complete one-electron basis, the exact resonance position

and width are obtained in the limit of an infinitesimally weak CAP (η → 0+) [9]. In practice

when finite bases are used, an optimal CAP strength ηopt is found by locating a stationary

point on the eigenvalue trajectory E(η), for example using the minimum of the logarithmic

velocity criterion (|η dE
dη
| → min) [9]. The shape of this trajectory, and the best estimate

of resonance position and width for a given basis set/method depends on the choice of the

CAP.

The most commonly used form of the CAP for electronic structure calculations is the

quadratic “box CAP”, which is defined by three cutoff parameters (R0
x, R

0
y, R

0
z) which specify

the onset of the box in each Cartesian coordinate [14, 24].

W = Wx +Wy +Wz

Wα =

 0 |rα| < R0
α

(rα −R0
α)

2 |rα| > R0
α

 (3)

where α = x, y, or z.

Practical recipes for choosing the box size have been suggested, and correction schemes

have been shown to the reduce the dependence of the results on the box size [25, 26].

However, the rigid box-like shape is not always reflective of the detailed geometry of a

molecular system, and it can be difficult to apply this type of CAP to systems which do not

efficiently fill the space.

The idea of defining a CAP using each atom’s Voronoi cell was proposed by Sommerfeld

and Ehara [16, 27]. The Voronoi absorbing potential wraps uniformly around any molecule,

and is specified by a single cutoff radius rcut. Following the work by Sommmerfeld and

Ehara [16, 27] we use the “smooth Voronoi” potential, which smooths out the edges between

Voronoi cells, making the resulting CAP more amenable to numerical integration [16]. In
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this case, the CAP is defined as follows [16]:

W (r) =

 0 rWA ≤ rcut

(rWA(r)− rcut)2 rWA > rcut

 (4)

rWA(r) in Eq. 4 is the effective distance to the molecular system evaluated as a weighted

average of the distances to all nuclei:

rWA(r) =

√∑
iwi|r−Ri|2∑

iwi
(5)

The weights are defined as follows:

wi =
1

(|r−Ri|2 − r2
min + 1 bohr2)2

(6)

where rmin is the distance to the closest atom: rmin = min
i
|r−Ri|.

In contrast to the box CAP, the Voronoi CAP shares exactly the symmetry of the molec-

ular system, and is flexible, i.e. is easily adjustable to changing nuclear configurations, for

example in dynamical simulation. Importantly, unlike the box CAP, the Voronoi CAP can

leak into the empty spaces in molecular clusters as it wraps around each molecule. Thus, one

can expect differences in behavior of these two types of CAP for different types of systems.

To shed light on these differences, we have implemented the smooth Voronoi CAP in the

Q-Chem program package [28] and compared its performance to that of the standard box

CAP for three types of systems: resonances in diatomic molecules (N−2 , CO
−), localized

resonances in a model cluster (N−2 (H2O)2), and delocalized resonance states in the anion of

the experimentally observed [29–31] carbon monoxide dimer ((CO)−2 ). We employed the

CAP equation-of-motion coupled cluster method with single and double substitutions for

electron attachment CAP-EOM-EA-CCSD [14, 25, 26] to compute the resonance energies

and widths of all model systems.

The structure of the manuscript is as follows. We outline the main features of the CAP

method in Sec. II A and discuss the technical details in Sec. II B. The performance of box and

smooth Voronoi CAPs for description of resonance parameters in diatomics, localized and

delocalized resonances in clusters is discussed in Secs. III A, III B, and III C, respectively.
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II. METHODS

A. Complex Absorbing Potentials

In the CAP method, resonance parameters are obtained as complex eigenvalues (Eq. 1) of

the CAP–augmented electronic Hamiltonian (Eq. 2). The CAP-augmented Hamiltonian is

complex symmetric (H(η)† = H(η)∗), and so the usual Hermitian inner product is replaced

with the c-product [9, 32]

(φi(r)|φj(r)) =

∫
drφi(r)φj(r)

In a finite basis representation, an optimal ηopt which provides the best estimate of reso-

nance position and width must be identified. The ηopt is highly system dependent, and varies

with the electronic structure method, basis set, and the form of the CAP used. To search

for ηopt, the calculation is repeated over a range of η values, generating complex eigenvalue

trajectories which depend on η. When using the logarithmic velocity criterion [9], ηopt

corresponds to the CAP strength on the eigenvalue trajectory where |η dE
dη
| has its minimum.

Results obtained in this fashion are rather sensitive to the CAP onset, due to unphysical

perturbations of the resonance wave function induced by the CAP [25]. A few correction

schemes have been proposed to improve the accuracy and stability of CAP augmented

calculations [25, 33]. Here we employ the scheme proposed by Jagau et al. [25], which is

based on first order “de-perturbation” of the real (ER) and imaginary (EI) parts of the

energy.

UR = ER − ηTr
[
WγI

]
U I = EI + ηTr

[
WγR

]
(7)

where W in the equation above is CAP W matrix (Eq. 2), and γR/γI are the real and

imaginary parts of the state reduced one particle density matrix. Resonance parameters

are obtained by locating stationary points of the first-order corrected eigenvalues UR and

U I (Eq. 7) with respect to η. This approach has been shown to significantly reduce the

dependence of the resonance parameters on the CAP onset compared to those obtained from

uncorrected trajectories [25, 26]. In this work, we follow the protocol of Jagau et al [25],

in which the reported corrected energies and widths are obtained from the earliest extrema
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of UR and U I which display approximate stationary behavior. Representative corrected

η-trajectories for each of the states are given in the SI.

B. Computational Details

We have implemented the smooth Voronoi CAP in the Q-Chem program package, and

the method was released as part of Q-Chem [28] version 5.2.2. A locally modified version of

Q-Chem 5.1.1 was used for these calculations. All complex eigenvalues were obtained using

the CAP-EOM-EA-CCSD method [14, 25, 26].

The basis sets used in our calculations consist of Dunning’s correlation consistent cc-

pVTZ [34] and aug-cc-pVTZ [35] basis sets augmented by additional even-tempered basis

functions. For the diatomics (and the carbon monoxide dimer), the aug-cc-pVTZ basis

set was augmented by an additional set of diffuse functions (3s3p3d) located at the center

of mass (of each monomer). The exponents for the first additional basis function for a

given angular momentum were obtained as one half of the average of the exponents of the

most diffuse basis functions with the same angular momentum in the original basis among

atom types. For example, the exponent for the first s-type diffuse basis function for CO−

has been calculated as α1,s = 1
2
× 1

2

(
αCdiff,s + αOdiff,s

)
= 1

2
× 1

2
(0.04402 + 0.07376). Each

subsequent exponent was obtained by division by two of the previous one: αi,l = αi−1,l/2,

where l = s, p, d. The CAP integrals were evaluated through numerical quadrature using a

Becke-type grid of 99 radial points and 500 angular Levedev points. [36, 37].

For the model nitrogen-water cluster, the basis set and grid were chosen to replicate those

used by Sommerfeld and Ehara [16] as closely as possible. On heavy atoms, the cc-pVTZ

basis set was augmented with additional diffuse basis functions. For nitrogen, a (2s5p2d)

set of even-tempered diffuse functions with scaling factors of 1/2 for s and d functions, and

2/3 for p basis functions was added. For oxygen, a set of (1s1p1d) diffuse functions with

a scaling factor of 1/3 was added. The grid used for computing the CAP integrals was a

Becke-type grid of 500 radial points and 3470 angular Levedev points. [36, 37].

Bond lengths of 2.0740 and 2.1316 bohr were used for N2 and CO, respectively. For

the model nitrogen-water cluster, experimental equilibrium geometries were used for the

monomers N2 and H2O, while the N2-oxygen distance was varied, as indicated in Fig 1A.

For the CO dimer, a reference CCSD(T) geometry from Ref. [38] was chosen as the starting
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(B)(A)

FIG. 1: Geometries of the N−2 (H2O)2 model cluster (A), and the (CO)−2 dimer (B). Resonance

states are investigated as functions of the intermolecular distance, R.

point, and the distance between centers of mass of the two monomers was varied (Fig. 1B).

Representative geometries of the clusters are given in the SI (Sec. SI).

III. RESULTS AND DISCUSSION

In this section, we compare computed resonance position and widths obtained from

box and Voronoi CAPs for three types of systems: resonances in diatomic molecules (sec-

tion III A), localized resonances in a model cluster (III B), and delocalized resonance states

in a dimer (III C). In the discussion below, the box CAP size is specified by a single onset

parameter rbox in such a way that the onset in each dimension (R0
α in Eq. 3, α = x, y, z) is

obtained by adding rbox to the maximum value of the nuclear coordinate in that dimension

(x, y, or z). The box CAP is centered at the molecular center of mass. Voronoi CAPs are

specified by the rcut cutoff radius, see Eq. 4.

A. Diatomics: N−2 , CO
−

The π∗ resonance states of CO− and N−2 arise from electron attachment to the lowest

unoccupied molecular orbital (LUMO) of the neutral diatomic molecule. Figs. 2A,B show

corrected (see Sec. II A) resonance energies and widths of the 2Πg resonance of N−2 , and the

2Π resonance of CO−, respectively, over a range of box sizes.

One can see that the effects of the CAP shape on the computed resonance parameters are

rather minor for these two states (Fig. 2). The resonance energies and widths are slightly

greater for the Voronoi CAP compared to those obtained with the box CAP. The widths

are more sensitive to the shape of CAP than the resonance energies with the differences in-

creasing with the increase of the CAP onsets. The resonance energies for the smallest onsets
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(A) (B)

FIG. 2: Results for 2Πg resonance of N−2 (A) and for 2Π resonance of CO− (B). Resonance energies

are shown in the upper panels, and the widths are given in the lower panels. The values for box

and Voronoi CAPs are shown in red and blue, respectively.

almost coincide in both cases, while for the largest values of rcut and rbox, the differences

between resonance energies computed with box and Voronoi CAP reach 0.02 eV and 0.04 eV

for N−2 and CO−, respectively. Similarly, the largest deviations between the widths obtained

with box and Voronoi CAPs are observed when rcut and rbox are set to 5 bohr (0.05 and

0.07 eV for N−2 and CO−, respectively). Importantly, throughout the parameter range we

explored, the influence of CAP shape on the results does not exceed that of the onset. The

slightly greater resonance energy and width computed with Voronoi CAPs in comparison to

those evaluated using analogous box CAPs can be explained by the Voronoi CAPs having

an effectively smaller volume of the region where the CAP is zero, i.e. an effectively smaller

CAP onset. Indeed, the values of resonance energies and widths decrease monotonously

with the increase of the onset for both CAP types (Fig. 2). Lastly, the results are in good

agreement with the numerous results which have been reported for these two states over

time (see ref [26] and references therein).

To summarize, for the 2Πg resonance of N−2 (A) and the 2Π resonance of CO−, the CAP

type does not significantly affect the computed resonance parameters. Switching from a

box to an analogous Voronoi CAP has the same effect on the results as simply reducing the

size of the box. Therefore, we conclude that Voronoi and box CAPs perform similarly for

small molecules, as the choice of CAP shape presents no unique challenges for these types

of systems.
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FIG. 3: Comparison of different box and Voronoi CAPs. Plotted is the isoline W=1 hartree for

box CAPs of 4 bohr (brown) and 2 bohr (magenta), and smooth Voronoi CAPs of 2 bohr (navy)

and 4 bohr (cyan) in the plane of the molecular system.

B. Localized resonance in a cluster: N−2 (H2O)2

We turn our attention now to molecular clusters. A model N−2 (H2O)2 cluster was used

as a pilot application of the Voronoi CAP by Sommerfeld and Ehara [16]. In this cluster,

the two water molecules provide an environment which splits the 2Πg resonance of N−2 into

in-plane (2B1g) and out-of-plane (2B3g) components [16]. In both states, the valence orbital

corresponding to the outgoing electron remains primarily localized on the N2 molecule. This

model system serves as a test case to illustrate a key difference in the behavior of box and

Voronoi CAPs. As shown in Fig. 3, when the water molecules are moved further from N2,

the Voronoi CAP will leak into the cavity between molecules. In contrast, the box CAP

may instead exhibit regions of “dead space” [16]. Provided that this “dead space” volume

is sufficiently large, the region may not be efficiently covered by the basis set, which can

introduce artifacts into CAP calculations. To explore the effects of the CAP shape and size

on the computed resonance parameters, we have considered three different onset values for

Voronoi and box CAPs.

We computed complex potential energy curves (i.e. real and imaginary parts of the

energy) as a function of water molecule distance R (see Fig. 1A). Interaction with the water
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FIG. 4: Computed resonance positions (A) and widths (B) for the out-of-plane B3g (upper panel)

and in-plane B1g (lower panel) resonance states of the model N−2 (H2O)2 cluster.The coordinate

R on the abscissa is the distance between the center of the N–N bond and the O atoms on each

water molecule. The labels “Box2”, “Box3”, and “Box4” denote rbox values of 2 bohr, 3 bohr, and

4 bohr respectively for box CAPs. “V2”, “V3”, and “V4” denote rcut values of 2, 3, and 4 bohr

respectively for Voronoi CAPs.

molecules stabilizes both states, which is reflected in lower resonance energies and widths

relative to the isolated N−2 studied in the previous section. The environment has a larger

effect on the in-plane component, lowering its energy and width relative to the out-of-plane

component. For the out-of-plane B3g state, the energies are insensitive to CAP choice or

onset. The widths vary by at most 0.16 eV between the smallest and largest CAPs for the

range of R values considered. The widths are consistently larger for Voronoi CAPs than box

CAPs, similar to what we observed for the N−2 monomer, which can be attributed to CAP

size effect, i.e. Voronoi CAP being effectively tighter than box CAP with the same value of

rbox. For the in-plane component, the dependence on the CAP type is more pronounced. The

differences in resonance energies are still rather moderate: the largest deviation observed at
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R = 5 Å is 0.10 eV for different CAP types and sizes. Yet, the variance in the width is much

greater than for the out-of-plane state; the results obtained with different CAP types vary

by as much 0.35 eV. The differences between Voronoi and box CAPs with analogous onset

values are also greater for the in-plane state, which can be explained by the Voronoi CAPs

leaking into the intermolecular region along the O–N–O axis (Fig. 1A), making Voronoi CAP

much tighter in comparison to the box one. Thus, the trends observed for the N2–water

dimer anion are similar to those for diatomic molecules and can be explained by variations

in the CAP onset parameters.

Yet, we note that the trend we observed for the in-plane B1g state differs from what

was reported by Sommerfeld and Ehara [16]. While the results obtained using Voronoi

CAPs were fairly similar, the authors in Ref [16] reported much larger widths when using

the box CAP, which they attributed to artifacts caused by the presence of “dead space”;

in other words reflections from the edge of the basis set. The discrepancy can be possibly

attributed to the following causes. The first is the choice of the electronic structure method

and specifics of CAP implementation. The CAP-augmented symmetry-adapted cluster-

configuration interaction (CAP/SAC-CI) method [15] used in Ref [16] employs a projected

formulation in which the CAP is projected onto a subset of SAC-CI eigenvectors, while our

CAP-EOM-EA-CCSD calculations include the CAP starting from Hartree-Fock [15, 26, 39]

level. The second likely cause is the structure of the η-trajectories, which is discussed in

further detail in the SI. Briefly, the box CAP η-trajectories contain a stationary region at

smaller values of η with noticeably lower energies and larger widths. The results reported

here correspond to the stationary point at higher values of η associated with a small plateau

of UR and U I (Eq. 7)

Based on the reported data, the two CAP types behave comparably: the energies for

both in-plane and out-of-plane states do not change much with the CAP shape or onset,

while the widths obtained with Voronoi CAPs are larger than those computed using box

CAP, similar to the trends observed for the isolated N−2 . Importantly, the deviations in the

computed resonance parameters for Voronoi and box CAP of comparable size are of similar

magnitude to the deviations which occur from changing the CAP onset for a given CAP

type.
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C. Delocalized resonance: (CO)−2

Finally, we examine the effect of CAP shape on delocalized resonance states. As a model

system we use an anion of the carbon monoxide dimer. The neutral dimer has two stable

isomers separated by 0.88 cm−1 that have been characterized both computationally and

experimentally [29–31, 38]. Here, we report the first theoretical study of resonances in the

carbon monoxide dimer. We explored the lower energy “a-state” isomer, in which the carbon

atoms are arranged closer together in a slipped parallel geometry [29, 38]. Starting from a

reference CCSD(T) geometry [38], we computed resonance parameters as a function of the

distance R (Fig. 1) between monomers for box and Voronoi CAPs of varying sizes.

The 2Π resonance in CO− splits into four states in the dimer, which arise from in-

phase/out-phase and in-plane/out-of-plane combinations of CO π∗ orbitals. As shown in

Fig. 5, the Dyson orbitals of the in-phase states posses significant amplitude in the space

between the monomers, in contrast to the the out-of-phase states. Thus, we would expect

the Voronoi CAP to noticeably perturb the in-phase states as it leaks into the cavity between

monomers, while the out-of-phase states should not be affected as much.

Resonance energies for the out-of-phase states (2Bg and 2Bu) display the same trend

of decreasing in energy as the monomers are stretched apart (Fig.6). As expected, the in-

phase out-of-plane 2Au state is stabilized by the π∗ orbital overlap, and, therefore, its energy

increases with intermolecular distance. Interestingly, the in-phase in-plane state 2Ag energy

is lowered once the monomers are pulled apart. This counterintuitive result can possibly

be attributed to either artifacts originating from the CAP or to stronger coupling to the

continuum at larger values of R. As shown in Fig. 6, the effects of CAP shape and onset on

resonance positions are much smaller for the out-of-phase states. For example, the 2Bg state

shows very slight deviations between the results obtained from Voronoi and box CAPs; the

differences are no greater than 0.05 eV. The resonance position of the in-phase 2Au state,

however, is very sensitive to the choice of CAP, with results that differ by as much as 0.23

eV. The computed resonance positions for the in-phase states are systematically larger for

Voronoi CAPs, with the trend becoming stronger as the system is stretched.

Turning our attention to the widths (Fig.7), the behaviors of the in-phase and out-of-

phase states again differ. The effect of CAP shape is most pronounced for the in-phase

2Ag state. As the system is stretched, the widths obtained from Voronoi CAPs become
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FIG. 5: Schematics and computed CAP-EOM-EA-CCSD Dyson orbitals for each of the four res-

onance states of the (CO)−2 dimer. The Dyson orbitals were plotted at the equilibrium geometry,

with an isosurface value of 0.02 at the minimum of the logarithmic velocity
∣∣∣η ∂E∂η ∣∣∣ for each state.

systematically larger than box CAPs, with the largest Voronoi CAP (rcut=4 bohr) lying

more than 0.1 eV above the smallest box CAP (rbox=2 bohr) at the largest intermolecular

distance. Importantly, for both in-phase states, the widths exhibit qualitatively different

behavior when computed with Voronoi CAP in comparison to those with box CAP. The

widths for the 2Ag state almost reach a plateau with box CAPs, while those obtained with

Voronoi CAPs continue to rise sharply for large values of R. For the 2Au state, the width

exhibits a maximum for the two smaller Voronoi CAPs, whereas the width obtained with

box CAPs monotonously rises. These inconsistencies between the box and Voronoi CAP can

be possibly attributed to perturbations of the in-phase states caused by CAP leaking into

the intermolecular space. Indeed, such differences are not present in the out-of-phase states,

which as expected exhibit a relatively smaller influence of CAP shape on the computed
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FIG. 6: Computed resonance positions for the four resonance states of the (CO)−2 dimer. The

coordinate R on the abscissa is the distance between centers of mass of the two CO monomers (see

Fig.1B). The labels “Box2”, “Box3”, and “Box4” denote box sizes of 2 bohr, 3 bohr, and 4 bohr

respectively, while “V2”, “V3”, and “V4” denote cutoff radii of 2, 3, and 4 bohr respectively for

Voronoi CAPs.

widths.

Overall, while Voronoi CAPs do not cause any notable artifacts for the out-of-phase

states, which is consistent with less density in the intermolecular space for those states,

greater deviations between the results obtained with box and Voronoi CAP are observed for

the in-phase states. For the in-phase states, the Voronoi CAP leads to both higher widths

and larger resonance energies, likely due to disruptions caused by the presence of CAP in

the cavity of the stabilizing intermolecular interactions.
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FIG. 7: Computed resonance widths for the four resonance states of the (CO)−2 dimer. The

coordinate R on the abscissa is the distance between centers of mass of the two CO monomers (see

Fig.1B). The labels “Box2”, “Box3”, and “Box4” denote box sizes of 2 bohr, 3 bohr, and 4 bohr

respectively, while “V2”, “V3”, and “V4” denote cutoff radii of 2, 3, and 4 bohr respectively for

Voronoi CAPs.

IV. CONCLUSIONS

In summary, we have presented an implementation of the smooth Voronoi CAP for CAP-

EOM-CCSD methods, and analyzed its performance for three different types of systems.

For diatomics, we observe very minor differences in resonance parameters obtained from

box and Voronoi CAPs. The deviations observed for localized resonances in clusters can be

explained by differences of the effective size of the CAPs. For delocalized resonances shared

by two monomers, we observed the largest deviations for states with significant density in

the intermolecular region, which can be attributed to the Voronoi CAP leaking into the

intermolecular region and inducing perturbations. Finally, we note that while the Voronoi

CAP is a natural choice for calculating resonance parameters for substantially changing

molecular geometries, one should be careful about the nature of the state of interest to
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avoid overlap between CAP and the valence part of the resonance state.
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