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Functionalized supramolecular cages are of growing importance in biology and biochemistry. They
have recently been proposed as efficient auxiliaries to obtain high-resolution co-crystallized proteins.
Here, we propose a molecular dynamics investigation of the supramolecular association of sulfonated
calix-[8]-arenes to cytochrome c. The binding sites prone to interactions with sulfonated calixarenes
can be identified without prior knowledge of the X-ray structure, and the binding free energies
estimated by molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) post-analysis are
found to be in neat agreement with the isothermal titration calorimetry (ITC) measurements (-12.0
and -10.8 kcal.mol−1, [Rennie et al., Chem. Phys. Chem., 2019, 20, 1011]). The per-residue
decomposition reveals the detailed picture of this electrostatically-driven association and notably the
role of the arginine R13 as a bridge residue between the two main anchoring sites. In addition,
the analysis of the residue behavior by means of a supervised machine learning protocol unveils the
formation of an hydrogen bond network far from the binding sites, increasing the rigidity of the
protein. This study paves the way towards an automated procedure for predicting computationally
supramolecular protein–cages association, with the possibility of a computational screening of new
promising derivatives for controlled protein assembly and protein recognition surfaces processes.

1 Introduction
Regulated protein assembly and disassembly is fundamental in
biology1. These mechanisms, as many biophysical and biochem-
ical processes2–5, lead to supramolecular aggregates and macro-
molecules. Chemistry at protein-protein interfaces has been
widely investigated, mostly to develop inhibitors6. Conversely,
and more recently, small auxiliary molecules have been proposed
to consolidate protein-protein interfaces in view of chemically-
assisted protein crystallization7–12. The modulation of protein-
protein interfaces by ligands whose morphology and electrostatic
potential offer tremendous perspectives from high-resolution X-
ray structural determination to controlled self-assembly13. In that
realm, functionalized calixarenes, notably para-sulfonato-calix-
[n]-arenes with high potential in biochemistry9,14,15.

The use of "molecular glues" has been pioneered in 20128, with
the obtention of a series of high-resolution structures characteriz-
ing the role of surface residues notably lysines (K) and arginines
(R) targetting functionalized calixarenes, whose role as biosen-
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Fig. 1 Interaction of the sulfonated calix-[8]-arene (sclx8, with the cy-
tochrome c (Cyt c PDB ID 6GD6). Two main sites (Site 1 in green, Site
2 in red) are identified based on X-ray (PDB ID 6GD6), which features
essentially lysine residues, some of them vicinal ("tweezers").

sors is well recognized16. Other residues, prone to more op-
portunistic non-covalent interactions, may also contribute to the
recognition process of calixarenes at protein-protein interfaces,
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which suggests that electrostatic interactions may not be the ex-
clusive driving force of this binding.

Recent isothermal titration calorimetry (ITC) measurements by
Crowley and coworkers17 allow to characterize the free energies
for the binding of a first sulfonated calix-[8]-arene (sclx8 see Fig-
ure 1 top), on the surface of a small heme protein, cytochrome
c18 (Cyt c, see Figure 1), followed by the fixation of a second lig-
and. Yet such experimental measurements for protein–ligand as-
sociation remain challenging19. Molecular dynamics (MD) simu-
lations offer an alternative way to evaluate binding free energies,
with the key possibility of per-residue decomposition to dissect
the overall binding free energy and pinpoint crucial residues or
cooperative network. A computational approach comes with a
predictive power for investigations of new protein–cage associ-
ations. In this manuscript, we challenge the computational de-
scription of the association of sclx8 with Cyt c, a choice motivated
by available X-ray and ITC data that characterize finely associa-
tion equilibria of the protein with one or two sclx8

17: P + L→ PL
and PL + L→ PL2. This protein presents many positively-charges
residues (16 lysines and 3 arginines, mostly on its surface) and
is therefore a legitimate target to probe the competitive binding
of sclx8 along our MD simulations. Our goal is to hone a robust
methodology with two main objectives:

• estimate the binding free energy with one and two cal-
ixarene(s) interacting with Cyt c

• assess the individual contribution for amino acids bind-
ing the calixarene, which would provide a cartography of
hotspots for calixarene binding

For organic, small-size ligands binding to proteins, approaches of
molecular docking have been long developed and are now glob-
ally successful20, with daily use of routine21 or more advanced
approaches22, eventually bridged to MD simulations23,24. Suc-
cessful docking approaches have been reported for small size
calixarenes, such as calix-[4]-arenes25–27, in the context of de-
sign of drug carriers28, transport phenomena12 or protein in-
hibitors25,26. Yet larger calixarenes prone such as sclx8 to a
higher flexibility may need the use of MD simulations, as rec-
ognized since the seminal paper by Gutsche and coworkers29.
Such supramolecular auxiliaries for protein crystallization can
present more versatile and flexible interactions patterns30 and
have been studied much more rarely in the literature31,32. For
instance, the calixarene sclx8, can approach from its upper or
lower rims, and its conformation can change depending on the
protein environment, from a double cone to a extended pleated
conformation33. In this paper, we show that the association
of the sulfato-calix-[8]-arene with Cyt c, which recognizes spe-
cific residues in the whole surface can be captured by all-atom
MD simulations. We report binding free energies estimated with
the Molecular Mechanics/Poisson-Boltzmann Surface Area34 ap-
proach (MM-PBSA), for both the first and second associations that
are found to lie in very good agreement with ITC measurements
for the Cyt c-sclx8 system17, hence validating a computational
approach for determining binding sites and corresponding free
energies. We also provide an insightful study of the per-residue

contribution to the binding by means of MM-PBSA calculations
and a supervised machine learning algorithm. Our approach of-
fers possibilities towards an efficient computational screening of
supra-biomolecular interactions.

2 Methods

2.1 Derivation of force field parameters for sclx8 and setting
up of the MD simulations

Classical all-atom molecular dynamics (MD) simulations have
been performed using the Amber package35and the Ambertools
suite of programs. A single Cyt c protein chain was used (108
residues), whose initial structure was taken from a cristallo-
graphic structure from the Protein Databank (Saccharomyces cere-
visae cytochrome c C102T, PDB ID code 6GD611,17). The pres-
ence of the heme group36 was stabilized within the protein
(bound with H18 and M80 residues) through the use of ”Metal
Center Parameter Builder” (MCPB) Amber tool37.The heme co-
factor (type B) was optimized at the DFT-B3LYP/6-31G(d) level
of theory by using a Stuttgart-Dresden SDD pseudopotential for
the iron center. A set of RESP charges was generated (see
ESI). The topology of the calixarene ligand has been validated
through different steps. By starting from the initial sulfonato-
calix[4]arene molecular structure, bearing a charge -3, quantum
calculations using the framework of the density functional the-
ory (DFT) at the DFT-B3LYP level of theory with the double-ζ
Pople’s 6-31+G(d,p) basis set and Grimme’s dispersion correc-
tion scheme D3BJ has been used to obtain a reliable optimized
geometry, and then a suitable RESP38 charges representation.
The obtained partial charges were then generated for describing
the sulfonato-calix[8]arene (see ESI). Its structure was optimized
at the DFT/M06-2X/6-31+G(d,p) level of theory, with a lowest-
energy geometry corresponds to an orientation of the hydroxyl
rims promoting a cooperative hydrogen bond network (shown in
Figure 1). All DFT calculations were performed using the Gaus-
sian 16 revision B.01 series of programs39.

The simulation boxes with the Cyt c protein plus one (Cyt c-
sclx8) ligand and two (Cyt c-2 sclx8) calixarene ligands, describ-
ing the two equilibria: P + L→ PL and PL + L→ PL2. were cre-
ated with the Amber suite of programs35. The AMBER/ff14SB40

and GAFF2 force fields41 were used, and potassium counterions,
added to neutralize the system total charge. Long-range elec-
trostatic interactions were computed using Particle Mesh Ewald
(PME) algorithm42,43. A cutoff of 10 Å was applied for the van
der Waals, for electrostatic interactions and for the real space of
the electrostatic interactions. An exhaustive description of the
protocol adopted to build the simulation boxes for the first and
second Cyt c-sclx8 associations is given as ESI. The last 10 ns
of each production run, when the equilibrium and convergence
of the system properties have been reached, have been analyzed
through the MM-PBSA energy analysis44–46.

2.2 Multilayer Perceptrons

Machine learning (ML) methods have gained enormous amount
of attention in recent years. Its power for finding important infor-
mation out of large amount of data has been embraced by the bio-
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chemistry community, many interesting applications have been
showcased in the literature47–52. Recently, Fleetwood et al.53

have demonstrated ML methods are capable of learning ensemble
properties from molecular simulations and providing easily inter-
pretable metrics of important features. In this study, we have per-
formed an analysis of our trajectories with Multilayer Perceptrons
(MLP) by utilizing the demystifying package from Fleetwood et
al.53. The MLP is a fully connected artificial neural network
(ANN) with one input layer, one output layer and at least one
hidden layer. After tests, the architecture of the MLP was chosen
to contain a single layer of 200 neurons to provide good accu-
racy. The rectified linear unit function (ReLU)54 was used for
the activation of neurons, and the Adam algorithm55 was used
for optimization. The inverse of the distances between the ge-
ometric centers of the residues were used as the input features
for the multilayer perceptrons (MLP) NN, due to better overall
performance over Cartesian coordinates, according to Fleetwood
et al. These internal coordinates were computed for all residue
pairs and all frames. Each frame of the trajectories was labelled
as either 1 or 0 according to whether the distance between the
calixarene and the protein is smaller than 10 Å (bonded) or not
(non-bonded). These sets of input features and labels were fed to
the MLP classifier for training. Upon completion of the training,
layerwise relevance propagation (LRP)56 was performed to find
out the important features for calixarene-protein interaction.

3 Results and discussion
Our MD simulations were started from a X-ray structure of iso-
lated cytochrome c Cyt c (PDB ID code: 6GD6), where the ligand
sclx8 was removed and then placed in a water box at a distance of
ca. 50 Å far from the protein center of mass (see Figure S1), as we
sought to capture the electrostatically-driven association without
the bias to start from a X-ray structure co-crystallized with sclx8

. Indeed, the sclx8 binding hot spots for a protein in solution can
differ from the regular, symmetry-driven macromolecular ensem-
ble observed in the crystal. To simulate the binding of the second
ligand, another set of starting points was generated, with two
solvated ligands or one bound/one solvated ligand (see Figure S2
and Table S1).

The sclx8 conformations and protein surface sampled along
the MD simulations with one ligand, represented in Figure 2 A,
clearly covers the key interacting residues identified on the X-ray
structure: K4, K5, K11 at Site 1, (in green in Figure 1), K72 and
K73 at Site 2 (in red Figure 1)11. Arginine interaction is well
known for anionic calixarenes57,58, and R13 (in black in Figure
2), standing between the two sites, can interact with sclx8 re-
gardless its binding site. After the addition of a second sclx8 (see
Figure 2 B), this arginine R13 can play a role as a bridge between
the two sites, with still a preference for the interaction with the
ligand on Site 1. At the end of all simulations, the two sclx8 are
anchored on the protein surface, on Sites 1-2 or on Site 1-3 (in
gray in Figure 2 B), observed in only one MD simulation). During
MD simulations, the first occupied site can be 1 or 2 alike, without
any impact on the Cyt c-2sclx8 final complex.

More quantitatively, binding free energies can be estimated
through the MM-PBSA post-processing of our MD simulations, of-

Fig. 2 A. Representative cartoon of superimposed conformations of dif-
ferent runs (see Table S1 for details) for the Cyt c-sclx8 system. The
covered conformations and the sampled protein surface, along four tra-
jectories of 200 ns, are reported with colored lines. B. Sites visited along
the 12 different trajectories for the Cyt c-2sclx8 system.

fering a direct comparison with the isothermal titration calorime-
try (ITC) measurements17. The first 1:1 equilibrium between Cyt
c and sclx8 was assessed by ITC to -10.8±0.9 kcal.mol−1, which is
in good agreement with the value we obtained from MD simula-
tions with the MM-PBSA approach: -13.5±6.4 kcal.mol−1 (Figure
3). The error bar from the MD simulations is rather important,
which is inherent to the MM-PBSA approach. As often for the
MM-PBSA approach, the estimated binding free energy is overes-
timated compared to the experimental value, due to the sampling
at short times with no binding–unbinding events. Cyt c presents
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many positively-charged residues and hence is prone to anchor a
second calixarene. The second equilibrium PL + L→ PL2 was also
studied (the starting points for these MD simulations are reported
in detail in ESI). The overall free energy for the second associa-
tion is also well reproduced: -7.8±0.9 vs. -8.2±7.0 kcal.mol−1

(Figure 3). Free binding energies ∆G for the two first association
equilibria between Cyt c and sclx8 are shown in Figure 3, along-
side with contributions summed over positively charged residues,
namely, lysines and arginines, or glutamates and aspartates for
the negatively-charged residues. This value is lowered by 3.0
kcal.mol−1 in the experiments and 5.3 kcal.mol−1 in MD simula-
tions compared to the first association, due to a smaller accessible
protein surface area (see ITC results). This confirms the perfor-
mance of MM-PBSA to evaluate the binding free energies59–62,
and validates in turn our computational approach.
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Fig. 3 Left panel: Experimental ITC vs. computed binding free energies
∆G in kcal.mol−1 (in red and blue respectively) for the first and second as-
sociations. Right panel: binding free energy ∆G in kcal.mol−1 for the first
and second associations and their decomposition over charged residues
(lysine, arginine, glutamate and aspartate), reported as histogram plot.

For both associations, the additive decomposition per type of
residues reveals that the Cyt c-sclx8 binding cannot be viewed
as a lysine–only problem. Indeed the contribution from all
lysines for the first and the second associations is about 8 to 16
kcal.mol−1 that the respective overall binding free energy (see
Figure 3). Where arginines attractive contribution is smaller ('5
kcal.mol−1), consistently with the ratio lysine/arginine of 16/3,
the overall binding energy is in turn moderated by negatively-
charged residues, namely glutamate and aspartate, whose role
is nearly equivalent in disfavoring the binding process (ca. 5
kcal.mol−1 each). For the second association, the repulsion be-
tween the two sclx8 can also counterbalance the attractive con-
tribution from positively-charged residues.

In order to further dissect the main interactions between sclx8

and Cyt c, it is insightful to decompose the overall interaction
energy into contributions deriving from single specific residues
of the protein (see Table 1 and Figure 4). This systematic per-
residue inventory confirms and quantifies the key role of lysines,
notably K4, K5, K11, K72, K73, K79, K86, K87, K89 and K100,
six of which being present as "tweezers": for instance, K86 con-
tributes to -3.7 ± 2.8 kcal.mol−1 to ∆G1, while K87 role is nearly
halved, -2.1 ± 1.4 kcal.mol−1; their contributions to ∆G2 are
nearly equal. One can propose a linear dependence between the

Fig. 4 Color map of per-residue decomposition ∆∆G1 (left panel) or ∆∆G2
(right panel). The color scale is defined by dividing each contribution by
the maximal absolute one (∆∆G1(R13)) and using the color code: blue
for attractive interactions, and red for repulsive interactions. The two
calixarenes are colored per main interacting sites.

strength of the interaction and the distance between the center of
mass of the lysine NH+

3 group and the most proximal sclx8 SO−3
sulfate group (see Figure S4). When one sclx8 is present in the
simulation, four lysines from site 2 (namely K72, K79, K86, K87)
define the hotspots for anchoring the ligand, in addition to R13.
This residue, reported in Table 1 as part of Site 1, can also take
part to the binding on Site 2. This central position explain its
large contribution of 4.4±2.6 kcal.mol−1 to ∆G1 (Table 1). The
interaction landscape is modified when two sclx8 are bounded to
the protein, with a more diluted attractive interaction, distributed
on more residues from both sites (K4, K5, K11, R13, K73 and K87
for a contribution between 2 and 3 kcal.mol−1). Figure 4 high-
lights this difference with a concentration of bright blue residues
around Site 2 for the 1sclx8 system whereas the blue surface area
for the 2sclx8 system is wider but lighter.

Our simulations corroborate that in the protein-sclx8 binding,
a significant contribution is covered by electrostatics interactions.
The downhill as a second sclx8 comes into play is effect is notable
by using this method, that carries the split of the total complex-
ation ∆G into electrostatic, van der Waals (vdW) and solvation
components. Crowley and coworkers have also defined11 inter-
acting residues in terms of their importance. Focusing on the
Aburied (see eq. 4 of ESI), there are master residues, that con-
tribute with an interface area of ' 100 Å2 to the total Cyt c-sclx8

interface, and key residues that contribute with 50-100 Å2 to the
total interface (see Table 1). The values of ∆i

SASA (see ESI for de-
tails), where i indicates the i-th residue, are reported in Table 1.
They give an idea of the residues participation during the interac-
tion, and they are a suitable comparison with the interface values
between the protein and the calixarene11. For some residues,
our results are in agreement with the classification proposed by
Crowley and coworkers: most of the lysines pointed out for their
important interface area belong to the binding hotspots described
in the simulations, except K54 and K100. However, T8 and Q16
were considered as key and master residues respectively but their
contribution appear minimal compared to the lysines from the
same category. Our simulations also reveal the important role of
K79, K87 and R13, which were not stressed by the interaction
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RES ∆∆G1 ∆∆G2 Int. Area ∆SASA

(kcal.mol−1 (kcal.mol−1) (Å2) (Å2)

Site 1 K4 -0.9 ± 0.7 -2.8 ± 1.0 > 100 62.5±1.7
K5 -1.1 ± 0.6 -2.3 ± 0.9 50-100 52.2±2.0
T8 -0.4±0.7 -0.9 ± 0.2 50-100 39.1±7.0

K11 -1.7 ± 1.2 -2.2 ± 0.3 50-100 49.3±2.6
R13 -4.4 ± 2.6 -2.6 ± 0.7 - 32.6±11.4
L15 -0.4 ± 0.5 -0.6 ± 0.4 50-100 15.8±4.0
Q16 -1.4 ± 0.8 -0.8 ± 0.6 > 100 30.5±5.2

Site 2 K72 -2.5 ± 2.2 -1.7 ± 0.4 50-100 50.4 ± 7.6
K73 -1.4 ± 1.4 -2.4 ± 0.8 50-100 48.5±14.7
K79 -2.6 ± 2.4 -0.8 ± 0.2 - –
K86 -3.7 ± 2.8 -1.8 ± 0.2 > 100 51.9±9.6
K87 -2.1 ± 1.4 -2.0 ± 0.4 - –

Site 3 K-2 -0.5 ± 0.1 -1.4 ± 0.4 - 52.3 ± 10.0
K100 -0.5 ± 0.1 -1.3 ± 0.1 > 100 36.7±24.3

Other K54 -0.6 ± 0.2 -0.7 ± 0.2
K89 -1.0 ± 0.5 -1.4 ± 0.5 -

Sum. lysines -7.6 -11.4 - -
Sites 1+2 -17.9 -23.6 - -

Total All -13.5 ± 6.4 -8.2 ± 7.0 515 407 ± 57

Table 1 Interacting residues defining three different binding sites of sclx8
on Cyt c Site 1 (in green), Site 2 (in red) and Site 3 (in gray), and their
contribution to the association free energy of the first sclx8 (∆∆G1), the
second sclx8 (∆∆G2), to the experimental interface area (Int. Area), and
the theoretical difference in solvent accessible surface area between free or
complex Cyt c in the presence of two sclx8 (∆SASA). Residues identified in the
experimental crystal structure are boldfaced 11. R13, here reported as part
of in Site 1, can interact simultaneously with two sclx8 molecules present in
Sites 1 and 2, hence acting as a bridge residue.

area analysis.
The amplitude of the buried surface area Aburied (see ESI for de-

tails) indicates, at this point, a very similar conformation adopted
by the two interacting calixarenes (extended conformation). The
experimental value, based on the X-ray crystal structures11 is 515
Å2, describing an interface area larger than the average protein-
protein crystal contact63, and highlighting the role as molecular
glue of the sclx8. The value obtained from MD simulations (407.0
± 57.4 Å2) reveals that the calixarene conformation can adapt it-
self to the protein shape, as its fluctuations reflect the structural
flexibility of the calixarene (see also SASA/RMSF part in the ESI).

Association of sclx8 to is guided by a strong electrostatic driv-
ing force, and induce larger effect for the structure. To identify
the possible allosteric effects upon sclx8 we took advantage of a
supervised machine-learning protocol recently proposed by Fleet-
wood and coworkers53 to monitor the structural changes of the
cytochrome upon binding of sclx8. Important residues known to
interact with sclx8 correspond to sites 1 and 2 are denoted in Fig-

ure 5 with red stars. But the ML analysis reveals a reorganization
of a series of residues (31, 43 and 49, as green triangles below)
which belong to a flexible loop of with formation of salt bridges
subsequent to the association with sclx8. This rigidification of the
flexible loop of far from the binding site probably contributes to
a surface entropy reduction.

Fig. 5 Important residues of upon sclx8binding revealed by super-
vised machine-learning protocol. The formation of salt bridges between
residues belonging to a looop at the other side of the protein is revealed
(green triangles).

4 Conclusions
In this study, we have relied on molecular dynamics simulations
to capture the mainly electrostatically-driven interaction between
sulfonato-calix-[8]-arenes ligands and cytochrome c. Our simula-
tions reveal the non-covalent successively taking place over time,
beyond the X-ray structure which is obtained ultimately for a crys-
tal after a control self-assembly process. For this electrostatically-
driven association phenomenom, the per-residue MM-PBSA de-
composition allows discriminate key and master residues com-
ing into play, with a non-negligeable contribution of negatively-
charged residues. The computational approach allows to charac-
terize more finely and systematically the surface of the protein
implied in the association process, and constitutes a first step
to analyze computationally the ligand contribution at protein–
protein interfaces. Also, it can be used as a predictive tool to
assess the affinity of a given molecular glue onto a protein, which
could be used for screening purposes and design of new efficient
auxiliaries.
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