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Abstract

We present a Langevin molecular dynamics study of an equimolar mixture of

monodispersed oppositely charged di-block four-armed polyelectrolyte stars. We use

an implicit solvent coarse-grained representation of the polyelectrolyte stars and var-

ied the length of the terminal charged blocks that reside on each arm. By varying the

polymer concentration we computed P-V diagrams and determined the free-swelling

equilibrium concentration with respect to a pure water reservoir as a function of the

charged block length. We investigate various structural properties of the resulting

equilibrium structures, like the number of ionic bonds, dangling arms, isolated stars,

and cluster sizes. The ionic bonds feature a broad distribution of the number of arms

involved and also display a distribution of net charges peaked around the neutral ionic

bond. Our main result is that for charged block length equal to 4 and 5 ionized beads

the resulting macro-aggregate spans the box and forms a network phase. Furthermore,

we investigated the dynamics of ionic bonds, and computed their lifetimes and restruc-
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turing dynamics. The bonds are weak enough to allow a network restructuring under

thermal fluctuations but are still strong enough to yield a stable gel phase.

September 6, 2020

1 Introduction

A polyelectrolyte is a polymer composed of monomers containing dissociable groups which

release counterions (e.g., Na+) upon dissolution in solvents, e.g. water. If the base polymer

is a star polymer, it is called correspondingly a polyelectrolyte star. If polyelectrolytes get

chemically cross-linked they can form polyelectrolyte gels, and since they are water soluble

one sometimes also calls them hydrogels. These gels possess a huge swelling capacity in aque-

ous solution can absorb water in amounts of up to a few hundred times their dry mass. This

makes them ideal base materials for super-absorbers in hygiene products1, biomedical2–9 and

agricultural10–12 applications, and even for desalination purposes13–16. In contrast to bulk

materials, polyelectrolyte micro- and nano-gels are being investigated as nano-reactors17–19

or as carriers for controlled drug release20–24.

Chemical cross-linking is not the only way to form a gel. There are so called physical gels

that form via reversible bonds that can be based on various physical non-covalent interactions

such as hydrogen bonds, π − π-stacking, hydrophobic forces, or van der Waals or ionic

interactions. The connectivity of the gel constituents is therefore partially or not at all fixed.

This leads to the fact that physical gels are normally less structured25–28 than chemical gels

which are often formed with tetra-functional nodes.

Physically cross-linked gels can have certain advantages; for example, a bond rupture

event is reversible, and such gels can be to a certain degree self-healing. Of special interest

could be ionic bonds, since they are tunable via many parameters. As an example, they

can be formed and destroyed dynamically, and also their strength can be tuned by addition

of salt, changes in the relative dielectric constant of the solution via adding co-solvents, or
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varying the solution pH if the dissociable groups are weak. For example, one could tune

cargo encapsulation and a following release on changing some of the stimuli, e.g. the ionic

strength.

The investigation of physically cross-linked networks by simulations are scarce. Excep-

tions worth mentioning are the investigations of associating polymers, so-called telechelic

polymer chains29–34, as well as the investigation of ionomers35–39 and neutral block star–

shaped copolymers34; these, however, do not fall into the class of strongly swelling, ionically

reversible cross-linked stars. Many theories also deal with the swelling of chemical gels, but

much less with the swelling behaviour of physical ones. As a notable exception we mention

the works of Tanaka and others40–46 on the properties of physically cross-linked ionic gels.

Since a popular way of synthesizing chemically cross-linked gels with a low polydispersity

is based on tetra-PEG ansatz from Sakai and co-workers47, in this work we will investigate

the physical gelation properties of four-armed polyelectrolyte stars, where one star species

carries positively charged blocks, and the other star species carries negatively charged blocks.

This could, in principle, lead to a regular tetra-functional network with matching charged

blocks if the system is perfectly monodispersed. To our knowledge there have been no pre-

vious simulations performed with ionically bonded star polyelectrolytes. Investigations of

regular charged polyelectrolyte copolymer networks using a thermodynamic model has been

done by the group of Patrickios in a series of publications48–50. Their model predicts that

such a network has a discontinuous transition from a homogeneous to a micellar phase. The

micellar-ordered phases are similar to those known from di-block copolymer melts. We there-

fore present the first exploratory simulation to study the gelation properties of an equimolar

solution mixture of oppositely charged star polyelectrolytes. For the sake of simplicity we

avoid to add any salt ion or counterion in solution, and we treat the system as perfectly

mono-dispersed.

The article is structured as follows: in Section 2 we will present our model and the used

simulation methods, followed by our results in Section 3. We will conclude with a summary
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of our main results and an outlook for further studies in Section 4.

2 Methods and Model

2.1 The model

Our system consists of a cubic simulation box of length L, with periodic boundary conditions

in all the three dimensions, which contains Ns = 64 star polymers. The latter are treated

as a coarse–grained "bead-spring" model and consist of Na = 4 arms tethered to a common

central monomer, or "nucleus". Each arm is composed of N (a)
mono = 10 monomers, so that

the number of beads in each star–like polymer is N (s)
mono = N (a)

monoNa + 1 = 41, and the total

number of monomers in the cell is N (tot)
mono = 41Ns = 2624. In the following, parameter and

properties that refer to monomers, individual arms and stars are labelled with "mono", "a",

and "s" as subscripts, respectively. Furthermore, during the discussion we will use italic

capital letters (A, B, etc.) as star indexes, italic lowercase letters (i, j, etc.) as monomer

indexes, and italic Greek lowercase ones (α, β, etc.) as arms indexes.

Each arm is structured as a AB-block copolymer, where "A" is the terminal part of the

chain and is composed of Ω beads carrying each one quenched monovalent charge (i.e., they

behave as strong electrolytes), whereas the part "B" is directly connected to the nucleus

and is composed by N (a)
mono − Ω neutral beads; the nucleus is neutral itself. We provide a

pictorial description of our block copolymer model in Figure 1. Half of the stars in solution

(N+
s ) carry positive charges, while the remaining half (N−s ) is negatively charged, so that

N+
s = N−s = Ns/2 = 32, and the system is overall electroneutral.

All monomers interact via a Weeks-Chandler-Anderson potential to simulate their ex-

cluded volume51:

ULJ(rij) =


4ε
[(

σ
rij

)12
−
(
σ
rij

)6
+ 1

4

]
if rij < rcut

0 if rij ≥ rcut;
(1)
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here, rij is the distance between two interacting monomer i and j, ε = kBT is the depth of the

potential, σ is the range of interaction, and rcut = 2 1
6σ is the cutoff radius. Bonds between

adjacent beads are simulated via finitely extensible non-linear elastic (FENE) potentials,52

UFENE(rij) = −1
2kr

2
max ln

1−
(
rij
rmax

)2
, (2)

where k = 30ε/σ2 is the spring constant and rmax = 3σ is the maximum allowed elongation.

Arms are connected to the central bead via the same FENE potential. No angular terms have

been added to the total potential, so that the polymer chains are fully flexible, and tethered

arms can easily rearrange around the nuclei. Electrostatic interactions are calculated by the

P3M method53,54, with errors55 set to 10−3. The solvent is treated as a uniform dielectric.

The Bjerrum length has the value λB = e2/4πεkBT = 2σ, where e is the elementary charge

and ε is the permittivity of the medium. Setting σ = 3.55 Å results in the typical Bjerrum

length of the water at room temperature, λB = 7.10 Å.

Figure 1: Models of tetra-functional strong polyelectrolyte stars simulated in this work. The
snapshots were taken from simulations at very high dilution. Ω is the number of charged monomer
at the end of each arm. Colour scheme: neutral monomers in grey, (positively) charged monomers
in red, central beads in yellow.
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2.2 Simulation methods

Molecular dynamics simulations are performed in the NVT ensemble using a Langevin ther-

mostat56 according to

mir̈i = −γṙi + Fi + Ri, (3)

where mi = 1 is the mass of the i-th monomer, ṙi, r̈i, Fi and Ri are, respectively, its

velocity, its acceleration, and the conservative and the random forces acting on it, and

γ = σ−1/(mε)1/2 is the friction coefficient. Random forces act on each monomer indepen-

dently and obey the fluctuation–dissipation theorem, i.e. 〈Rik〉 = 0 and 〈Rik(t)Rjl(t′)〉 =

2γkBTδijδklδ(t − t′). Equation 3 is integrated by a velocity Verlet algorithm with a time

step δt = 0.01σ(m/ε)1/2; thus our system time unit τ = σ
√
m/ε contains 100 integration

steps. All simulations have been performed with the software package ESPResSo57. In the

following all length and time units are expressed in multiples of σ and τ, respectively, unless

otherwise noted.

The equilibrium between the system and pure water is called "free–swelling equilibrium".

In the canonical ensemble it is obtained at the minimum of the Helmholtz free energy F as

a function of the volume V , that is ∂F/∂V = −P = 0, where P is the volume averaged

virial pressure, so that the equilibrium volume Veq = L3
eq (and, consequently, the equilibrium

concentration of the species Cs,eq) is defined at V where the pressure P is equal to 0.

In order to identify Leq as a function of the number of terminal charges, we performed

a series of simulations varying the box length L for species with Ω = 1, 2, 3, 4, and 5. For

each system type, three different simulation protocols have been implemented; these are:

single–points protocol: for each value of the desired box length, L ∈ [Lmin, Lmax], we

simulate the system starting from a random solution of Ns stars. The system is ini-

tially thermalized for a time ttherm, then we take a time-average measure of all desired

properties during a simulation time tsim.

expansion protocol: we start simulating a random solution of Ns stars at a box length
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L = Lmin and ensure ourselves that we have a positive volume average virial pressure P

(e.g., vide infra Figure 2). The system is thermalized for a time ttherm, then properties

are collected for a time tsim. Once the simulation at L = Lmin is done, we increase

the box length L by a quantity ∆L (in order to obtain an isotropic expansion in V ),

we thermalize the last configuration obtained at the previous volume for a time ttherm,

and then we collect properties for a time tsim. The described process is then repeated

until the system reach a desired box length L = Lmax.

compression protocol: we use the same scheme described for the "expansion" simulations,

but starting from a box length L = Lmax and decreasing it by a quantity ∆L at each

step until it reaches Lmin.

For all the cases, we set Lmin = 16σ, Lmax = 50σ, ttherm = 105δt and tsim = 106δt. We also

chose ∆L = 2σ except for the ranges of box length values in which the systems are expected

to be near the free–swelling equilibrium; in such ranges we increased the sampling resolution

up to ∆L = 0.25σ. For each simulated value of L, 50 independent simulations were performed

in order to improve the sampling of possible configurations that may be hindered by high

energy barriers. Our data represents averaged results accompanied by their standard errors.

Subsequently, Leq has been calculated by fitting the L values via a second-order polynomial,

and we performed 50 independent simulations at Leq (ttherm = 105δt, tsim = 106δt) in order

to collect information about structural and dynamical properties of aggregates in solution.

3 Results and discussion

3.1 Finding the free–swelling equilibrium

Figure 2 shows the behaviour of the volume averaged virial pressure P of the system as

a function of the box length L for species with a different number of terminal charged

monomers, Ω = 1, 2, 3, 4, and 5. Results are obtained implementing the "single–points"
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Figure 2: The isotropic pressure P (bar) vs L/Lmax for different values of Ω obtained via the "single
points" simulation protocol. The dashed lines are the quadratic fits performed in order to identify
the Leq values (the fitting parabolic function is used as the simplest option available and it has no
physical significance). The dotted grey line is only a guide to the eye for discerning positive and
negative pressure values. Standard error bars are included everywhere, but are sometimes smaller
than the plot symbols.
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protocol described in Section 2.2. For Ω = 1 (i.e., star polymers carrying only a monovalent

terminal bead on each arm), we observe a positive pressure over all L ranges simulated. At

high L/Lmax values, i.e. at high concentration (see also Figure S2Volume averaged virial

pressure P (bar) as a function of species concentration CS (mol/L) for the four Ω values. The

dotted grey line is only a guide for the eye for discern positive and negative pressure values.

Standard error bars are smaller than plot symbols where they’re not visible.figure.caption.7

in the Electronic Supporting Information (ESI)) P starts to strongly increase due to the

monomer excluded volume interactions, which oppose the compression preventing particles

overlaps. As the box volume increases, the system becomes more diluted, and P tends to

0+.

For Ω ≥ 2 we observe a different behaviour. As the number of terminal charges increases,

P decreases for all simulated box lengths. We attribute this to the progressively stronger

electrostatic attraction between the two oppositely charged species. At small box length

values we observe, as for the Ω = 1 case, positive values of P arising from the internal pressure

generated by monomer excluded volumes. Unlike for the Ω = 1 case, however, increasing

the box volume results in non-monotonic P curves, and we find regions of negative pressure.

As the system becomes more diluted, the isotropic pressure P asymptotically converges to

0 from below. We always find one box length Leq for which P (Leq) = 0 and that could be

a candidate system to possess an equilibrium phase against a pure water system. In order

to precisely determine Leq, for each Ω value (Ω ≥ 2) we fitted the points near P = 0 with

a parabolic function, weighting each data point with its respective statistical error (see the

dashed lines in Figure 2). In this way we found Leq/σ = 36.07, 28.27, 25.65, and 23.84 for

Ω values 2 to 5, respectively. These correspond to species molar concentrations Cs,eq equal

to 2.55 · 10−2, 5.40 · 10−2, 7.05 · 10−2 and 8.75 · 10−2 mol/l, respectively. Figure 3 displays

selected snapshots for the various systems at free–swelling equilibrium.

In order to check if our single-points simulation protocol is able to correctly sample the

system at equilibrium, i.e. that we do not run into metastable configurations, we performed
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Figure 3: Snapshots for system with various Ω values at the free–swelling equilibrium. The diameter
of all monomers has been reduced by roughly one half with respect to the real one in order to improve
the clarity of the pictures. Colour scheme: neutral monomers in grey, positively charged monomers
in red, negatively charged monomers in blue, the nuclei of positive stars in yellow, the nuclei of
negative stars in lime.
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Figure 4: Comparison between the results obtained via the three different protocols described in
Section 2.2 for the Ω = 4 case. The dotted grey line is a guide to the eye to discern positive and
negative pressure values. Standard error bars are included everywhere, but are sometimes smaller
than the plot symbols.
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the same simulations with the other two protocols described in section 2.2. Figure 4 displays

the results for the three different schemes for Ω = 4 (the worst performing case), while the

results for the Ω = 3 and 5 cases are reported in the ESI (Figure S4). From Figure 4, we

infer that even for the worst case the results obtained via the three different protocols are in

good agreement within error bars, hence we are confident that we are sampling the system

in an ergodic way at each box length value.

Figure 5: Average number of stars in contact with a given oppositely charged star ηs versus the
simulation time t for different Ω values. The inset shows the initial part of the simulation.

Since, for the sake of simplicity, we simulated only systems with an equimolar mixture of

oppositely charged, but otherwise identical stars, the smallest stable supramolecular aggre-

gates in solution are dimers composed by two oppositely charged stars. In order to investigate

the stability of the latter with respect to the aggregates observed at P = 0 (see Figure 3),

we decided to monitor the evolution in time of a solution of 32 pre-assembled dimers.

To set up the system, for each Ω value we thermalized (for a time t = 104) a single dimer
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at very low concentration. The dimers resulted stable for Ω ≥ 2, whereas for Ω = 1 the two

polyelectrolytes frequently dissociate and only transient dimeric interactions were observed

during the simulation. Thus, for Ω ≥ 2 species, 32 pre–equilibrated random configurations of

such dimers have been homogeneously placed inside a simulation box of side length L = 42σ

(L/Lmax = 0.84), and the system was simulated for a time t = 104.

To monitor the temporal evolution of the dimers, we define ηs,A as the number of oppo-

sitely charged stars in contact with a given star A (vide infra Figure 6). Hence, in order

to investigate the stability of the dimers with respect to clusters composed by more than 2

stars, we monitor the evolution of the value of ηs,A averaged over all the stars in solution,

〈ηs〉 = ∑Ns
A ηs,A. We define a positive (negative) star A to be "in contact" with a negative

(positive) star B if it is possible to find a pair of oppositely charged monomers i and j, be-

longing, respectively, to A and B, lying within a distance rij < rcont = 1.2σ from each other,

where rcont has been chosen as a reasonable distance to yield a sufficient binding strength.

This value is only slightly higher than both the distance at which our WCA potential goes to

zero (i.e., rcut = 2 1
6σ, see Equation 1) and the distances at which we observe the main peaks

in the pair distribution functions calculated between oppositely charged monomers at the

free–swelling equilibrium (see Figure S9Pair distribution function calculated between posi-

tively and negatively charged monomers for polyelectrolytes with different Ω values. rij is

the distance between the pairs. The grey dotted vertical line indicates the value of the cutoff

radius rcont used to define a "contact" (i.e., an ionic bond) between two oppositely charged

stars (or arms).figure.caption.15). Despite the arbitrariness of the choice, we would like to

stress that we explored alternative cutoff values, noticing that trends and behaviours which

we report it this work stay preserved, and only small quantitative differences appeared.

Figure 5 shows the temporal evolution of 〈ηs〉 for system with different Ω values. Due to

our initial set-up, all curves for t = 0 start at 〈ηs〉 = 1 (see the inset in Figure 5), as one

would expect in the presence of a solution of well-separated dimers in which each positively

charged star is in contact with only one negative star, and vice versa. For Ω = 2, we notice
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that 〈ηs〉 quickly drops to ∼ 0.4, meaning that more than the 25% of the dimers dissociate,

evidencing that the ionic bond are not strong enough to balance the entropic forces of the

stars that want to achieve a homogenous distribution; hence, for Ω = 2 the loss of contacts is

"overcompensated" by the increase in system entropy due to dimers dissociation. For Ω = 3,

4, and 5, instead, 〈ηs〉 initially rapidly increases with t and then it stabilizes around a value

roughly equal to 1.4, 2.3, and 2.8, respectively, which means that clusters containing more

than 2 stars start to form due to higher order multipole attraction. Moreover, we observe

that the time needed to reach equilibrium increases with Ω, which is probably due to the

progressively increase of the interaction strength between two stars bonded in a dimer, which

in turn results in a higher potential barrier that must be overcome to break the ionic bonds

apart.

3.2 System structural properties at the free–swelling equilibrium

In this section we discuss the structural properties of the supramolecular aggregates observed

at the free–swelling equilibrium (see Figure 3), with a particular focus on investigating the

presence of percolating networks as function of Ω. Similarly to the number of contacts for

a given star A, ηs,A, one can also define the number of contacts formed by an individual

arm α, ηa,α, and, consequently, the average value over all the chains in solution, 〈ηa〉. To

do this, we use the same definition of "contact" introduced previously, that is two oppositely

charged arms results linked if exist at least one pair of oppositely charged monomers lying

at a distance which is less than the cutoff radius rcont = 1.2σ. From such a definition it

immediately follows that if two arms are in contact, then so are the stars to which they

belong. Figure 6 displays an example of the calculation of such properties for an aggregate

composed of 3 stars. Especially in the case of lower Ω values, a non-negligible fraction of

stars (and, consequently, arms) may posses, at least transiently, no contacts in solution.

Thus, we define an "isolated" star as a polyelectrolyte star A for which ηs,A = 0, and the

average fraction of those as ∆s. There will also be arms that do not have an ionic bond to
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any other arm, which we call in the following "dangling" arms, whose fraction is denoted by

∆a. These are chains α for which ηa,α = 0 (see Figure 6). Our results for the above discussed

structural properties obtained for all systems are summarized in Table 1.

Figure 6: The picture represents a cluster of stars composed by 3 polyelectrolyte stars (i.e., Cs = 3),
A, B and C (Ω = 5) as an example. A: ηs,A = 1,

∑4
α=1 ηa,α = 2, 2 dangling arms; B: ηs,B = 2,∑4

β=1 ηa,β = 4, 1 dangling arm; C: ηs,C = 1,
∑4
γ=1 ηa,γ = 2, 2 dangling arms. Here, α, β and γ

are indexes that run over the four arms of A, B and C, respectively. For this specific system, we
find 〈ηs〉 = 4

3 ' 1.33, 〈ηa〉 = 4
12 ' 0.33, ∆s = 0 (no isolated stars), and ∆a = 5

2 ' 0.42. The color
scheme is the same as in Figure 3.

Table 1: Table summarizing results for the structural properties of the system at the free–swelling
equilibrium. The numbers in brackets indicate the statistical error in the last significant digit.

Ω 2 3 4 5

Leq (σ) 36.07 28.27 25.65 23.84
Cs,eq (mol/l) 2.55 · 10−2 5.40 · 10−2 7.05 · 10−2 8.75 · 10−2

∆a 0.872(0) 0.553(0) 0.291(0) 0.141(0)
∆s 0.575(1) 0.091(0) 0.006(0) 0.0003(0)
〈ηa〉 0.130(0) 0.481(0) 0.857(1) 1.21(0)
〈η′a〉 1.01(0) 1.08(0) 1.21(0) 1.41(0)
〈ηs〉 0.500(1) 1.74(0) 2.89(0) 3.82(1)
〈η′s〉 1.77(0) 1.92(0) 2.92(0) 3.82(1)

Figure 7 (upper panel) shows the behaviour of 〈ηs〉 and 〈ηa〉 as a function of Ω at the

free–swelling equilibrium. We notice that both observables scale linearly with the number

of terminal charges. The increase in the number of contacts with Ω is due to the increased

Coulomb attraction between the oppositely charged terminal end groups, which in turn
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results in a higher density (and, hence, in a lower mean star–star distance) at free-swelling

equilibrium (see Table 1 and Figure S2Volume averaged virial pressure P (bar) as a function

of species concentration CS (mol/L) for the four Ω values. The dotted grey line is only a

guide for the eye for discern positive and negative pressure values. Standard error bars are

smaller than plot symbols where they’re not visible.figure.caption.7).

Figure 7 (lower panel) also shows the fraction of isolated stars and dangling arms (∆s and

∆a, respectively). As expected, both quantities decreases as Ω increases. For Ω = 2, more

than 3 arms out of 4 (∼ 87%) result in no electrostatic bonding to other chains, evidencing

that we are not in presence of a network phase. We also observe a very high ∆a value for

Ω = 3 (∼ 55%). This is in agreement with the observations that in this case each stars is

on average connected with only 1.74 oppositely charged stars, and each arm possesses on

average only ∼ 0.5 contacts (see Table 1). Moving to the higher values of Ω = 4 and 5, the

fraction of dangling chains further decreases, but it remains, interestingly, higher than zero

(∆a ' 0.29 and 0.14 for Ω = 4 and 5, respectively). However, for these large values of Ω

almost all stars participate in forming ionic bonds, hence clusters, and ∆s is approximately

0.

Nevertheless, we should be careful in interpreting the number of contacts provided by

〈ηa〉 and 〈ηs〉, since ∆a and ∆s show non-negligible values in the most of the analysed cases,

hence the number of real contacts for non-isolated stars or and non-dangling arms is much

larger. Therefore we recompute the averages of ηs,A and ηa,α on the ensemble of stars A

and arms α, respectively, that are involved in at least one contact (i.e., excluding from the

averages all the isolated stars and all the dangling arms); we call these new observables 〈η′s〉

and 〈η′a〉, respectively. The renormalized contact data are contained in Table 1.

For 〈η′a〉 we found that the probability for a chain to bind more than one arm increases

with Ω, varying from 1.01 (Ω = 2) to 1.41 (Ω = 5). Thus, when Ω is large, the possibility

for an individual star’s ionic block to get in contact with two (or even more) oppositely

charged blocks is higher; the latter arms can either belong to the same star or to different
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ones. The fact that 〈η′a〉 increases with Ω can be explained bearing in mind that increasing Ω

results in: (i) an increased electrostatic attraction between the chains; (ii) a higher density

of the system; and (iii) an increase in the size of the terminal charged blocks of an arm,

and, hence, in an enhanced ability to accommodate two (or even more) oppositely charged

chains, without the latter being in contact with each other. As for 〈η′s〉, we notice that for

the Ω = 2 and 3 cases, non–isolated polyelectrolytes tend to bind on average roughly 2 stars,

whereas for Ω ≥ 4 our results do not considerably differ from those calculated including

also the isolated stars in the averages, and this is obviously due to the negligible fraction of

isolated stars found in solution.

To gain more insight into the architecture of supramolecular aggregates in solution, and

in order to investigate if the systems percolate, we now look at the size distribution of

aggregates composed by stars in solution. We define a "cluster of stars" (CoS) as the set of

stars fulfilling the criterion that any of them is in contact with at least one other star that

belong to such a CoS. Furthermore, we define the size Cs of a CoS as the number of stars

that belong to it (it follows that, e.g., dimers are CoS of size Cs = 2).

Figure 8 shows the probability density for a given star to belong to a CoS of size Cs

at the free–swelling equilibrium. This corresponds to the probability density to find a CoS

with a certain size Cs in solution weighted by the size itself and renormalized (the latter is

provided in Figure S10Probability density to find a CoA with a certain size Cs in solution

for the four Ω values.figure.caption.16 in the ESI). For Ω = 2 we observe that most of the

stars are bonded in dimers, the probability to find CoS composed by a higher number of

polyelectrolyte stars decreasing with Cs, with only a few occurrences observed for Cs ≥ 6.

Let us also recall that for Ω = 2 roughly 58% of the stars are isolated in solution. Instead, for

Ω = 3 the majority of the stars belong to the same large CoS, the size of the latter varying

approximatively in the range Cs = 30–64 (see the large peak which presents a maximum

at Cs ' 53), with non-negligible number of isolated polyelectrolyte stars (see lower panel

of Figure 7) or belonging to very small CoS. For the systems with Ω = 4 and 5, the vast
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Figure 7: Upper panel: number of average contacts 〈ηa〉 and 〈ηs〉 as a function of Ω; lower panel:
fraction of dangling arms ∆a and isolated stars ∆s as a function of Ω. Dashed lines in the upper
panel represent linear fittings. Standard error bars are smaller than plot symbols.
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Figure 8: Probability density to find a given star in solution that belong to a CoS of size Cs.
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majority of stars belong to a single very large CoS, with almost no isolated polyelectrolyte

stars (Ω = 5) or only a few ones (Ω = 4). Supported by a visual inspection of the snapshots

for the Ω = 4 and 5 cases (see Figure 3, and see also the movies provided in the ESI),

indicating that the box is completely filled by our polyelectrolyte stars, and also recalling

the high number of contacts observed (see the upper panel of Figure 7), we are confident

that we are observing a percolating gel.

In analogy with what was done for CoS, one can identify clusters formed by interacting

individual arms. We define a "cluster of arms" (CoA) of size Ca as the set of Ca chains that

fulfils the criterion that any of them is in contact with at least one other chain that belongs

to the same CoA (definition very similar to the one used by Gârlea et al. in their work

about the self-organization of soft patchy colloids34). Before discussing the results, let us

stress here that the size of a CoA is not equal to the number of arms involved in a bond, and

this is due to the fact that two chains belonging to the same CoA may not be in contact,

but rather be far from each other; this is true especially for the systems with Ω = 4 and 5,

for which the charged block of each arm is "long" enough to accommodate more than one

oppositely charged chain (we provide a pictorial illustration in the right panel of Figure 9).

The plot in Figure 9 shows CoA size distributions for all our simulated Ω values. When

Ω is low, the vast majority of arms is involved in the formation of simple positive–negative

contacts, or are dangling, whereas for higher values Ω values the CoA mean size increases,

and we observe for Ω = 4 and 5 that there is a non-zero probability to find CoA formed by

6 or more chains.

Since a CoA may not be charge-neutral we provide in Figure 10 heatmaps that show

the probability density to find a CoA with a certain size Ca and an "excess of arms" Qa in

solution. We define Qa as the excess charge carried by a CoA divided by Ω. At first glance,

in all the panels we notice a very marked checkboard pattern; the latter is due to the fact

that a CoA composed by an even (odd) number of arms must necessarily show an even (odd)

Qa. A symmetry shown in all the panels is that for a certain value of Qa the probability
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Figure 9: Left panel: CoA size distribution for the four Ω values. Right panel: examples of clusters
formed by 5 (i.e., Ca = 5, circled in violet) and 2 (i.e., Ca = 2, circled in orange) arms. For these
CoA, the "excess of arms" are Qa = −1 and 0, respectively. Notice that (i) arms that belong to
the same CoA may not be directly in contact with each other, and (ii) arms that are tethered to
the same central bead may belong to different CoA. The colour scheme is the same as in Figure 3.

density to observe −Qa is almost identical (as it should be by the global symmetry of our

monodispersed systems); we take this as another indication that our simulations sampled

the phase space properly.

From the heatmaps we observe that, for a given size Ca, the probability density decreases

as |Qa| increases. For Ω = 2 (top left panel of Figure 10) we observe that most of the

arms are involved in the simplest type of bond, that is, a positive-negative contact (hence,

Qa = 0), with the probability to find contacts involving 3 chains being roughly two order

of magnitude smaller. Nevertheless, it seems more probable to find a CoA with Ca = 3 and

|Qa| = 1, with respect to a neutral CoA in which 4 chains are involved. As Ω increases,

we can also find larger sizes of CoA probably due to the ability of the large charge patches

arms to bind to more than one oppositely charged chain. Furthermore, we observe several

occurrences of CoA composed by a very large number of chains especially for Ω = 5 (up to

44, see Figure S11− log10 of the probability density to observe a chain belonging to a CoA

of size Ca for Ω = 4 and 5. In case of 0 occurrences of clusters with a certain size Ca, we

arbitrary set the − log10 of the probability density to 5.6.figure.caption.17).
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As a final comment, let us point out that the calculated sizes of both CoS and CoA could

be slightly underestimated due to the fact that we never counted (i) two positive (or two

negative) polyelectrolytes, or (ii) two stars that are in touch only via neutral monomers, as

being in contact; although those situations seem to be very unlikely, they may occur due to

thermal fluctuations especially in the case of low Ω values, or when the system density is

very high.

Figure 10: Heatmaps showing the probability density to find a CoA with a given size Ca and an
excess of charges Qa for Ω = 2, 3, 4, and 5.

3.3 Ionic Bond Lifetimes

A visual inspection of the movies provided in the ESI suggests that even the ionic bonds

formed with Ω = 5 are quite soft and allow for a continuous restructuring of the network.
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In order to gain a more quantitative understanding of the bond strengths and lifetimes we

preformed an analysis of the bond dynamics in time and investigated which mechanisms can

lead to the breaking and subsequent reformation of such contacts.

We begin by defining a "contact time" τ as the time a contact between two arms α and

β persists in solution. The upper panel of Figure 11 shows the probability density p(τ) to

observe a contact that breaks apart in the interval [τ; τ+ ∆τ], with ∆τ = 0.05. Contrary to

the exponential decay expected, we notice that p(τ) displays a maximum around τ ' 0.3 for

any Ω. As previously discussed by Bunker and Hase58, this is a consequence of the “initial

state selection” that derives from the orientation of the relative linear momentum for the two

arms that have just come closer to be identified as a contact. Dissociation of the newly formed

bond may, in fact, require some time to partially invert their relative velocity so that they

can “wander back” to a distance at which the bond can be considered broken. Most likely,

a properly oriented collision between the two approaching arms is needed to trigger such

partial inversion, so that some degree of ballistic (hence, non–statistical) behaviour may

be present during the initial stages of the process. This notwithstanding, mean lifetimes

(τ̄calc =
∫∞

0 τp(τ)dτ) have been computed with the shown p(τ), and these are 0.40, 0.50,

0.60, and 0.68 for Ω = 2, 3, 4, and 5, respectively (see Table 2 for a summary). As one could

have expected, the mean lifetime increase with Ω.

A mono-molecular event is formally described by the equation α···β −−→ α+β, where "···"

denotes a contact between two arms. As p(τ) deviates from the statistical behavior expected

from such an event, also the fraction of surviving contacts (N(t)/N0) versus time should de-

viate from the exponential decay law e−tk1 = e−t/τ̄1 that are typical for such processes, where

k1 and τ1 are the first–order rate constant and the corresponding mean lifetime. To prove

this point we investigated the short time behavior of N(t)/N0 (see the inset in the lower panel

of Figure 11). At short times the lack of linearity displayed by ln[N(t)/N0] shows a faster

decay, indicating the presence of an intrinsically non–statistical (as in Rice–Ramsperger-

Kassel–Marcus theory59,60) behavior for the dissociation process. This is characterized by
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Figure 11: Upper panel: probability density p(τ) to observe a contact persisting in solution for
a time τ. Natural logarithm of N(t)/N0 versus the contact time τ; here, dashed lines represent
the linear fittings of the statistical part. The inset shows the short time behaviour of ln[N(t)/N0]
versus τ. τ is in system time units.
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an elevate population of fast dissociating states that are generated right after contact forma-

tion, leading to a high number of short time dissociation events. At longer times, N(t)/N0

instead appears to decay exponentially, so that fitting the long time part of the scatter plot

allowed us to compute the statistically derived mean lifetimes τ1, which are 0.36, 0.57, 0.82,

and 1.20 for Ω = 2, 3, 4, and 5, respectively. As one would have expected, τ1 > τ̄calc for

Ω ≥ 3, as the fitting process eliminates the majority of fast dissociation events. The fact

that such inequality is not satisfied when Ω = 2 is simply due to the limited sample of events

collected and the related inaccuracy of the long time distribution. Also, the increase of the

ratio τ1/τ̄calc upon increasing Ω seems to support the idea that the collision between two

arms forming a contact are the cause of the high population of fast dissociating dimers. In

fact, it is well known that it becomes increasingly less likely for a colliding pair to redistribute

into internal modes a sufficiently large fraction of their relative kinetic energy so to allow the

formation of a meta-stable dimer the higher the kinetic energy is61. Obviously, the latter

increases upon increasing Ω due to stronger Coulomb interactions.

Table 2: Contact times (in system time units) and relative frequencies for the three mechanisms (I,
Sant, Spos) and the non–classifiable ones (O). Etot is the relative total number of events observed
calculated with respect to the Ω = 2 case. The numbers in brackets indicate the statistical error
on the last significant digit.

Ω 2 3 4 5

τ̄calc 0.401(0) 0.504(1) 0.601(1) 0.676(0)
τ1 0.362(1) 0.573(9) 0.823(9) 1.20(1)
I 79.7(1)% 68.3(1)% 52.3(1)% 41.1(1)%
Sant 1.3(0)% 5.5(0)% 10.2(1)% 12.1(0)%
Spos 17.1(1)% 17.9(1)% 20.6(0)% 21.2(0)%
O 1.9(0)% 8.2(1)% 16.9(0)% 24.8(1)%
Etot 1.00 2.91 4.34 5.44

In order to better analyse the details of the discussed non–statistical effects and to inves-

tigate which other mechanism may be involved in restructuring the network of electrostatic

bonds, we computed the relative frequency of three different mechanisms by means of which

an arm α can loose a contact (that lasted for a time t = τbond) with an oppositely charged
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arm β, and switch the latter with a new arm γ after some time τlag. These three mechanisms

are illustrated in Figure 12, and they are:

"intermittent bond" (I): a contact temporarily breaks reforming after a time τlag has

elapsed (see Figure 12 (a))

e.g., α···β
τbond−−−→←−−−τlag

α + β.

"anticipated partner switch" (Sant): a negative (positive) arm γ binds to an existing

contact causing the detachment of another negative (positive) chain (see Figure 12

(b))

e.g., γ + α···β τlag−−→ γ···α···β τbond−−−→ γ···α + β.

"postponed partner switch" (Spos): an arm α loses a contact and then form a new bond

with a different chain after a time τlag (see Figure 12 (c))

e.g., γ + α···β τbond−−−→ γ + α + β
τlag−−→ γ···α + β.

Additionally, we classify all those mechanisms that cannot be included in the mentioned

categories as "non–classifiable mechanisms" (O). A more detailed discussion on the three

mechanisms and the protocols implemented to categorize dissociation events is provided in

the ESI.

Figure 13 and Table 2 show the results of our analysis. In the latter, we also report

the relative frequency of events observed, Etot, with respect to the Ω = 2 case. We notice

that Etot increases with Ω, which is probably related to the increase of the equilibrium

density with Ω. For Ω = 2, the vast majority of events (∼ 80%, see Table 2) are classified

as "intermittent contacts", which is probably due to the fact that stars are assembled in

dimers or small CoS, so that mechanisms involving the exchange of arms are relatively rare,

whereas temporary detachment due to thermal fluctuations are favoured by the relatively

low Coulomb attraction between oppositely charged chains. Roughly ∼ 17% of the events

result are "postponed partner switches", whereas the fraction of Sant and O mechanisms

results negligible.
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Figure 12: Pictorial description of the three mechanisms investigated: (a) I; (b) Sant; (c) Spos.
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As Ω increases, we observe an enhancement in the fraction of Spos, Sant, and O mecha-

nisms, a clear evidence of the possibility for the network bonds to restructure themselves.

Again, the increase in the number of Spos may be rationalized by recalling that the equilib-

rium density increases with Ω; in fact, the denser the solution gets, the more likely it becomes

for a positively (negatively) charged arm to replace a dissociating positive (negative) arm of

a vicinal contact. As for the Sant mechanism, also the increasing length of charged segments

may play a role in increasing its frequency. The longer the charged block is, the higher is the

probability for an arm α to “accommodate” more than one contact with oppositely charged

segments (β, γ, etc.). This we attribute to the possibility for the charged portion of β and

γ arms to stay further away from each other while being coordinated to the same α arm.

Importantly, the 1 : 2 positive–negative (or vice versa) coordination mode is also expected

to facilitate the detachment of, e.g., the β arm, as its binding energy with α ought to be

lower due to the repulsive Coulomb interaction with γ.

As for the non–statistical behavior previously discussed, Figure 13 presents the plots of

ln[N(t)/N0] versus τbond for all Ω values and the three discussed mechanism. From these,

one notices that fast dissociation events arise mainly as a consequence of the Spos and I

mechanisms, the latter invariably being the most likely whereas the former presenting a more

marked fractional deviation from the statistical behavior. Juxtaposing these results with

similar ones concerning τlag (see Figure S13Natural logarithm of N(t)/N0 versus τlag (system

time units) for the three mechanisms and the four Ω values.figure.caption.20), it emerges that

it takes more time for two free (e.g., α and β) arms to form a contact from a dissociated

state than breaking an electrostatic bond already formed. Given the unhindered nature

of the process forming a contact from dangling arms, we believe the previously discussed

ballistic dynamics to be a robust justification for the non–statistical behavior evidenced by

our data.

To conclude this section, we mention that the increase in the fraction of O–events upon

increasing Ω is mainly due to an increase in the number of events that present multiple ap-
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proaches or detachments taking place contemporary within the time window represented

by our time resolution (∆τ = 0.05). This is well supported by Figure S12Fraction of

non–classifiable mechanisms (O) as a function of the time resolution ∆τ for the Ω = 5

case.figure.caption.19, which shows the dependency of this fraction on ∆τ itself for the case

Ω = 5. Obviously, if ∆τ was infinitely small, only single dissociation or association events

would be recorded.

Figure 13: Natural logarithm of N(t)/N0 versus τbond (system time units) for the three mechanisms
and the four Ω values. We also report the linear fits (dashed grey lines) calculated in Figure 11 for
a direct comparison.
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4 Conclusions

We performed a Langevin molecular dynamics computational study in order to investigate

the possibility to create a supramolecular network by mixing equal amounts of oppositely

charged di-block star-shaped polyelectrolytes under salt free conditions. Our polyelectrolyte

stars consisted of four polymeric bead-spring chains tethered to a central common bead and

carrying a tunable number Ω of (positively or negatively) charged monomers at their ends,

using a polyelectrolyte primitive model in an implicit solvent62.

We investigated systems with Ω values from 1 to 5 at different concentrations and de-

termined from the P-V curves the equilibrium concentration with respect to a pure water

phase. Our results yielded equilibrium concentrations for Ω ≥ 2 (see Figure 2 and 3). The

reproducibility of our results for three different simulations protocols (see Section 2.2 and

Figure 4), and the fact that also a solution of pre-thermalized dimers has relaxed (Figure 5)

demonstrate that our simulations yield true equilibrium structures.

The observed phases at free–swelling equilibrium have been characterized via many struc-

tural parameters (see Table 1). We found that the number of contacts increases with Ω, with

a non–zero probability to observe contacts involving more than two oppositely charged arms

for Ω ≥ 4. Conversely, the fraction of dangling arms decreases with the number of terminal

charges, but it remains interestingly non–zero even when Ω = 5, for which we observe that

∼ 14% of the arms are not involved in any ionic bond.

From an analysis of the cluster of stars (CoS) in solution we found that for the Ω = 2

case only dimers and small oligomers can form, whereas for Ω = 4 and 5 all stars are part of

a single macro-aggregate (see Figure 8), the latter being identified as a percolating network

spanning the whole box, i.e. a gel–like phase, after a visual inspection of snapshots and

trajectory movies provided in the ESI. The Ω = 3 case turned out to be an intermediate

one, in which most of the stars belong to a main CoS (the latter fluctuating in size), with

a non–negligible number of stars being isolated in solution or belonging to small oligomers

or secondary CoS. An analogous analysis has been performed for clusters composed by
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individual arms (CoA), revealing that also in this case their size increases with Ω (see Figure

9). Furthermore, we found some CoA with an excess charge, whose probability of occurance

increases with Ω as well. Overall, the ionic cross-links structure is far from being trivial even

for the case of equal charged terminal bonds. The simple picture of having mostly saturated

ionic bonds is definitely not applicable.

In order to gain more insight in the dynamical processes of forming and dissolving ionic

bonds, we analysed the contact time of such bonds as function of Ω. As expected, the mean

lifetime increases with the latter. Nevertheless, we found strong deviations from the ex-

pected first–order dissociation kinetic, the latter underestimating the frequency of persistent

contacts and fast dissociation events for almost all cases (see Table 2). We described various

mechanism leading to contact formations and ruptures, observing a non–zero probability

(even for low Ω values) for an arm involved in a bond to be replaced by another chain with

the same charge, a finding that clearly opens up the possibility for the network to restructure

itself in time.

This study has been so far restricted to a small parameter regime, most notably is

the absence of counterions or background salt ions. As such it should serve as a proof-of-

principle that gel formation in mixtures of oppositely charged polyelectrolyte stars is possible.

However, more complicated situations like adding different ion types as mono- or even multi-

valent ions (e.g., in order to increase bond strengths by divalent ions bridging), changing the

ionic block from being a strong polyelectrolyte to a weak polyelectrolyte and adding thus

the possibility of the charged groups to respond to pH or to form inter-molecular charged

hydrogen bonds63–65, or introducing polydispersity in arm length or in charged block length

can easily be simulated with more refined models, and these systems are currently under

investigation. The experimental realization of some of such systems is currently pursued in

the group of F. H. Schacher66.
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