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Abstract 

Urease inhibitors are known to play a vital role in the field of medicine as well as agriculture. 

Special attention is attributed to the development of novel urease inhibitor with a view to 

treating Helicobacter pylori infection. Amongst a number of urease inhibitors, a large numbers 

of molecules fail in vivo and in clinical trials due to their hydrolytic instability and toxicity 

profile. The search for potential inhibitors may require screening of large and diverse databases 

of small molecules and to design novel molecules. We developed a Monte-Carlo method based 

QSAR model to predict urease inhibiting potency of molecules using SMILES and GRAPH 

descriptors on an existing diverse database of urease inhibitors. The QSAR model satisfies all 

the statistical parameters required for acceptance as a good model. The model is applied to 

identify urease inhibitors among the wide range of compounds in the phytochemical database, 

NPACT, as a test case. We combine the ligand-based and structure-based drug discovery 

methods to improve the accuracy of the prediction. The method predicts pIC50 and estimates 

docking score of compounds in the database. The method may be applied to any other database 

or compounds designed in silico to discover novel drugs targeting urease. 
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Introduction 

Urease has emerged as a therapeutic target for the design and discovery of antibacterial, 

antifungal drugs. Urease occurs as a virulent factor in many pathogenic bacteria and fungi [1-

5]. Pathogen Helicobactor pylori (H. Pylori) is unable to form a colony in the stomach of the 

host in the absence of urease [6]. Inhibition of urease has also utility in agriculture by 

preventing soil urease mediated hydrolysis of urea applied as fertilizer [7].  Therefore, search 

for urease inhibitors has gained momentum due to its application in the field of medicine as 

well as agriculture.  

Several studies reported a number of urease inhibitors of diverse class ranging from 

urease derivatives to metal complexes [8, 9]. Structure-activity relationship studies have also 

been reported to optimize the leads of the individual class of compounds [10-13]. However, a 

large number of molecules with high potency as urease inhibitor fail during in vivo and in 

clinical trials due to their hydrolytic instability and adverse toxicity profile [14]. In order to 

overcome these hurdles, an intensive large-scale screening of existing as well as designed novel 

molecules need to be carried out to find ultimately a urease inhibitor of desired 

pharmacokinetic properties and toxicity free profile. However, the process will be time 

consuming and high cost incurring if implemented only through experimental methods. 

Introduction of an in-silico screening method prior to experimental validation will drastically 

reduce the time and the expenditure. There is a need to develop a reliable QSAR model which 

can predict the potency of a molecule as a urease inhibitor. The model should also provide 

leads to improve upon the structure of the molecule to enhance its potency and pharmacokinetic 

properties while diminishing the toxicity. 

In the present work, we have developed a Monte-Carlo method based QSAR model 

using SMILES and GRAPH descriptors taking a database containing a diverse class of urease 

inhibiting compounds. This ligand-based drug discovery method is combined with structure-
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based drug discovery by including docking score with an aim to improve the quality of the 

method. The method predicts urease inhibition properties of a wide range of compounds 

included in the phytochemical database NPACT, as a test case. The model may also be applied 

to other databases and compounds designed in silico. The model may be useful in prediction 

and designing novel urease inhibitors and drastically reduce the number of compounds for 

synthesis and experimental screening leading to drug discovery. 

Materials and Methods 

The Database 

A database of 436 urease inhibitors was collected from the BindDB database (please refer to 

the supplementary data file Dataset S1) [15]. The inhibitory activity IC50 in nM unit in the 

database were converted into M and finally to pIC50 (-log IC50 in M), which were used for 

QSAR modelling. The structures of the inhibitors were obtained in sdf format from the 

database. Subsequently, they were converted to SMILES by Open Babel [16]. The dataset was 

randomly split into four subsets: Training, Invisible Training, Calibration, and Validation. 

Three such independent splits were generated. They were random, not identical and they had a 

similar range of pIC50. The splits were used to build up the models. Training, Invisible Training, 

and Calibration subsets were used for the model building while Validation subset was used for 

testing the quality of the model. The model was tested on a phytochemical database, NPACT 

(Naturally occurring Plant-based Anti-cancer Compound-activity-Target database), which is a 

curated database of 1574 phytochemicals that exhibit anti-cancer activities [17]. Besides 

anticancer activity, these phytochemicals are also known to have other medicinal applicability.  

The SMILES and GRAPH descriptors 

Execution of molecular structure by both SMILES and molecular graphs result in a hybrid 

descriptor that develops a QSAR model with better statistical quality [18]. The hybrid optimal 
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descriptors used to spring up the model for the urease inhibitors were computed by the 

following equation 

HybridDCW(T∗, N∗)=SMILESDCW(T∗, N∗)+GRAPHDCW(T∗, N∗)   (1) 

 
Where DCW is the correlation weight descriptor. T* is the preferable threshold value for 

classification of molecular features into active and rare structural attributes (SAk). If the 

frequency of SAk in the training set is < T*, then these attributes were taken to be rare and 

hence not included in the modelling process. N* is the preferable number of epochs of the 

Monte-Carlo optimization [18].  

The SMILES based optimal descriptors were calculated using the following equation:  

SMILESDCW(T∗, N∗) = ƩCW(Sk) + ƩCW(SSk) + ƩCW(SSSk) + CW(PAIR) + CW(NOSP) +  
CW(HALO) + CW(BOND) (2) 
 
 
where CW is the correlation weight for a structural feature extracted from SMILES; Sk, SSk 

and SSSk are SMILES attributes which contain one-, two-, and three SMILES elements 

respectively; PAIR reflects the possible combination of atom pairs and/or bonds that are present 

in the structure together but disconnected from each other; NOSP, a global molecular descriptor 

related to the presence or absence of nitrogen, oxygen, sulphur and phosphorus atoms; HALO, 

a global molecular descriptor related to the presence or absence of fluorine, chlorine and 

bromine atoms; and BOND indicates the presence of double (=), triple (#) or stereo-chemical 

bonds (@ or @@) in SMILES [17].  

 
Calculation of graph-based optimal descriptors were carried out as per the following equation 
 

GRAPHDCW(T∗, N∗)= ƩCW(Ak)+ ƩCW(0Eck)+ ƩCW(1Eck) +ƩCW(2Eck) (3) 
 
Where Ak is an element i.e. carbon, nitrogen, oxygen, etc. for hydrogen suppressed graph; and 

0ECk, 1Eck, and 2Eck are the Morgan’s extended connectivity of each vertex [20]. 
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The QSAR models were built using CORALSEA 17 ([21], CORAL software available at 

http://www.insilico.eu/coral). The process involved three steps; (i) search for preferable 

threshold value and number of epoch with various values of the threshold (T = 1-3), the number 

of epochs (N = 1–30) and number of probes (P =1- 3) (ii) selection of preferable T* and N* 

corresponding to the maximum correlation coefficient of calibration set and (iii) calculation of 

the correlation weight descriptor (DCW) to build up the model with T = T* and N = N*. Finally, 

predictability of the model with the validation set was estimated which contains compounds 

that are not included in the process of the building up of the model. The DCW was used to 

calculate the pIC50 value as follows 

pIC50= C0 + C1 × DCW(T∗, N∗)      (4) 

Statistical Parameters 
 
Coefficient of determination, r2 and the coefficient for external cross-validation, Q2

ext, are two 

usual parameters to estimate the efficiency and stability of a QSAR model. They are defined 

as 

   
       (5) 
 
 
 
  
 (6) 
   
 
where, n is the number of compounds in the dataset (training, invisible training, calibration or 

test), Yi are the measured values; Ῡ is the averaged value for an overall dataset; Ῡtrain or Ῡ(train) 

is the averaged value of the dependent variable for the training set. Y(exp) is the experimental 

value of the dependent variable; Y(pred) is the predicted value of the dependent variable. 

A model is acceptable when r2 and Q2
ext are greater than 0.5. However, a rigorous approach to 

test the quality of a model is made by determining a robust parameter, Δrm
2. 
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    Δrm

2= |rm
2– r*m

2|     (7) 
    rmav

2= 0.5 (rm
2+r*m

2)    (8) 
rm

2 = r2 + (1- |√(r2-r0
2)|)    (9) 

 r*m
2 = r*2 + (1- |√(r*2-r*0

2)|)   (10) 
       

where, r0
2 is coefficient of determination without intercept; r*2, r*0

2, coefficient of 

determination with and without intercept with inter changing the axes of experimental and 

predicted values. rm
2, r*m

2, should be greater than 0.5 and  Δrm
2 should be less than 0.2 for an 

acceptable model [20-24]. 

The robustness of a QSAR model is further validated using the randomization technique. 

 
           (11) 
            
Where rr

2 is the Y-randomized coefficient of determination. Cr2
p should be greater than 0.5 for 

a model to be acceptable [20].  

Other conditions for acceptability of a QSAR model include slopes of regression lines through 

origin k and kk(randomized) should be 0.85 <k < 1.15 and 0.85 <kk< 1.15; (r2 − r0
2)/r2and (r2 

–rr0
2)/r2 should be <0.1. 

Index of ideality of correlation, IIC, is proposed to estimate the reliability of prediction [25]. 

Higher is the reliability of prediction, closer the IIC to 1.0. Mean absolute error (MAE) is 

utilized in estimation of IIC. 

MAE= (1∕n)Ʃ|Yexp–Ypred|     (12) 
 

Δk = Experimentalk−Predictedk    (13) 
 

           (14) 
 
 
            (15) 
 
 
            (16) 
 

Cr2
p= r(r2− rr

2)1∕2 
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Applicability Domain 
 

Reliable prediction with the QSAR model is expected only when a compound lies in the 

applicability domain (AD) of the predictor. The AD of a compound is defined in the present 

work on the basis of DefectSMILES as follows 

 
 

         (17) 
 

 

 

A compound is in the AD if  
 

 

            

               (18) 
 
 

 

Where,                          , is average DefectSMILES 
 
 
Docking 
 
Structure of H. pylori urease (1e9y B) was taken as the target. 1253 phytochemicals (MW ≤ 

600) from NPACT database were selected as the ligand set. Docking scores were obtained by 

applying AutoDock Vina algorithm [26] using YASARA molecular modeling suite version 

18.4.24 [27]. The ligands and the active site residues Ala169, Thr170, His221, Asp223, Trp224, 

His248, Met317, Cys321, His322, Arg338, Asp362, and Met366 were allowed to be flexible 

during docking.  

Molecular Dynamics Simulation 

Molecular dynamics simulation process was applied for in silico validation of the stability of 

the protein ligand complex. The protein-ligand complex was put in the aqueous medium 

(TIP3P water model, density 0.997 g.l-1,  NaCl 0.9% as counter ions) in a cubic simulation box 

setup with at least 5 Å around the complex molecule under periodic boundary conditions. The 

system was energy minimized by steepest gradient approach (100 cycles) using AMBER14 

force field. The molecular complexes were simulated for 20 ns (production period) with frame 

capture at every 25 ps step to analyze the trajectory by various evaluation parameters. 

YASARA suite is used for molecular dynamics study [27]. 

DefectSMILES<2 × DefectSMILES 

DefectSMILES 

ActiveSAk 
DefectSMILES = ƩSAkdefect 
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ADMET study 

FAF-Drug4, a free web service (http://fafdrugs4.mti.univ-paris-diderot.fr/), was used to predict 

the physicochemical and biological properties of the ligand molecules in the database and as a 

filter to accept the suitable molecules for further drug development studies [28]. FAF-Drugs4 

is an ADME-Tox (adsorption, distribution, metabolism, excretion and toxicity) prediction 

tool.FAF-Drugs4 employs pre-defined filters, but users can also customize their own filtering 

parameters by using the Filter-Editor service. The filters applied in the present study were 

Drug-like soft, PAINS (Pan-Assay Interference Compounds: A, B and C) [29], and 

LillyMedChem rules (relaxed). FAF-QED module was run to obtain the quantitative estimates 

of drug-likeness, which ranges from 0.0 (most unfavourable) to 1.0 (most favourable) [28].  

Flow Chart of the Work 
 
The flow chart adopted in the present work is graphically represented in Fig. 1. The 

experimental validation has not been done in the present work. 

 

Molecular Visualization 

Molecular structures are visualized using Biovia Discovery Studio Visualizer 16.1.0 tools. 

(https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-

studio/visualization-download.php)  
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Fig. 1 Process flow for novel urease inhibitor discovery 

 
Results and Discussion 
 
There are 436 compounds in the urease inhibitor database, which were distributed randomly 

into four categories (training, invisible training, calibration and validation) in three splits. The 

identities of compounds in four categories distributed in three splits are presented in Table 1. 

There were no duplicate compounds in the database. 
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Table 1. Percentage identity of Training (Train), Invisible training (Inv), Calibration (Cal), and 
Validation (Val) sets in different splits. 

 

 

 

 

 

 

 

 

 

 

 

 
Identity (%) = (Ni, j/(0.5(Ni+Nj))x100 
Ni, j is the number of substances which are distributed into the same set for both i-th and j-th 
split 
Ni is the number of substances which are distributed into the set for i-th split; 
Nj is the number of substances which are distributed into the set for j-th split. 

 

The statistical parameters obtained by QSAR study employing a Monte-Carlo method 

using SMILES and GRAPH descriptors applying CORALSEA 17 software are presented in 

Table 2. The parameters suggested that all the three splits yielded acceptable QSAR models 

for prediction of pIC50 of compounds as urease inhibitors. However, QSAR model from split 

1, which had lowest Δrm
2value (0.05) among the three splits was used for further prediction. 

End point was estimated as follows. 

 
Endpoint =   3.3576082 (± 0.0065335)+  0.0277408 (± 0.0001133) * DCW(1,25)     (19) 
 
The average of DefectSMILES = 1.51321 
 
 

 

 

 Category Split 1 Split 2 Split 3 
Split 1 Train 100 17.8 13.6 

 InvTrain 100 13.6 18.8 
 Calib 100 19.6 21.5 
 Valid 100 16 21 
     

Split 2 Train 17.8 100 23 
 InvTrain 13.6 100 14.4 
 Calib 19.6 100 21.5 
 Valid 16 100 19.8 
     

Split 3 Train 13.6 23 100 
 InvTrain 18.8 14.4 100 
 Calib 21.5 21.5 100 
 Valid 21 19.8 100 
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Table 2.  Statistical parameters of predictive models with three randomly split datasets. 

Statistical parameters Split 1 Split 2 Split 3 
n (Train, Inv, Cal, Val) 118, 117, 102, 99  117, 118, 100, 101 118, 113, 106, 99  
r2(Train, Inv, Cal) 0.838,  0.838, 0.759 0.811, 0.811, 0.814 0.821, 0.821, 0.737 
Q2(Train, Inv, Cal, Val) 0.832, 0.832, 0.750, 

0.667 
0.804, 0.804, 0.804, 

0.745 
0.815, 0.814, 0.726, 

0.763 
s (Train, Inv, Cal, Val) 0.363, 0.402, 0.409, 

0.452 
0.380, 0.385, 0.371, 

0.442 
0.374, 0.360, 0.408, 

0.426 
MAE (Train, Inv, Cal, Val) 0.259, 0.300, 0.309, 

0.320 
0.281, 0.280, 0.281, 

0.340 
0.281, 0.258, 0.318, 

0.329 
F (Train, Inv, Cal, Val) 600, 594, 316, 211 493, 497, 429, 306 534, 509, 292, 375 
IIC (Train, Inv, Cal, Val) 0.772, 0.832, 0.871, 

0.715 
0.827, 0.628, 0.902, 

0.836  
0.690, 0.889, 0.859, 

0.723 
Cr2

p (Train, Inv, Cal) 0.836, 0.835, 0.755 0.806, 0.809, 0.813  0.820, 0.816, 0.732 
Parameters of Validation    
r2 0.685 0.755 0.772 
r2

0 0.667 0.714 0.694 
rr2

0 0.642 0.752 0.772 
(r2- r2

0)/ r2 0.026 0.055 0.101 
(r2- rr2

0)/ r2 0.063 0.005 0.001 
k 0.975 0.993 0.982 
kk 1.017 0.999 1.011 
r2

m 0.594 0.601 0.556 
r*2 0.685 0.755 0.772 
r*2

0 0.642 0.752 0.772 
rr*2

0 0.667 0.714 0.694 
(r*2- r*2

0)/ r*2 0.063 0.005 0.001 
(r*2- rr*2

0)/ r*2 0.026 0.055 0.101 
k* 1.017 0.999 1.011 
kk* 0.975 0.993 0.982 
r*2

m 0.543 0.710 0.758 
r2

mav 0.568 0.656 0.657 
Δr2

m 0.051 0.109 0.202 
 

The total numbers of structural attributes (SA) were 879 out of which 790 were active. Top 

SAk associated with increase and decrease of Endpoint is listed in Table 3. 
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Table 3. List of top 25 structural attributes associated with increasing and decreasing 
Endpoints 

Increasing Endpoint SA   Decreasing Endpoint SA 

SAk 
 

CW(SAk
)    

        
ID  

  
SAk 

 
CW(SAk

)    
ID  

c...(...S... 26.003 695  EC2-Cl..7... -9.630 389 
NOSP00000000 25.249 549  $10000100100 -9.245 22 
$00000001000 23.066 5  N...C...1... -7.434 502 
C...(...-... 20.629 211  C...1...=... -7.185 227 
o...(...c... 18.753 833  c...C...N... -6.630 747 
EC2-O...4... 18.498 419  C...N...3... -6.623 257 
=...C...1... 17.940 197  S...N...1... -6.441 578 
c...C...=... 17.377 745  C...\...C... -6.380 271 
C...(...3... 13.379 215  C.../...1... -6.314 221 
F...(...F... 12.809 283  C...[...(... -6.128 264 
++++F---Br== 12.190 69  1...c...1... -6.005 123 
HALO10100000 11.750 471  c...3...F... -5.311 737 
NOSP01100000 11.496 552  4...n...(... -5.126 172 
$00011001010 11.125 18  s...(....... -5.004 848 
C...4....... 11.063 238  C...1.../... -4.999 225 
EC2-N...24.. 11.060 405  EC2-s...13.. -4.940 444 
EC2-o...16.. 10.877 441  F...3....... -4.939 287 
$00011000000 10.876 13  s...(...c... -4.620 849 
C...O...C... 10.753 262  s...1...(... -4.561 851 
C...O...2... 10.253 261  EC1-N...2... -4.309 327 
c...C...(... 10.251 743  c...[...H... -4.255 766 
EC1-O...2... 10.246 336  n...[...n... -4.249 817 
[...c...2... 9.938 655  C...=...1... -4.186 240 
4...c...-... 9.874 170  s...c...c... -4.183 867 
n...[...1... 9.248 816  1...O...(... -4.000 119 

 

Phytochemicals are known to have diverse medicinal properties [30, 31] and also considered 

to be safe drugs with low adverse effect [32]. There are several databases, which could be tested 

to predict urease inhibition property. However, in the present study we select the NPACT 

database, which contains phytochemicals with known anti-cancer properties. Besides the anti-

cancer properties, the phytochemicals in NPACT also have other known (may be unknown) 

medicinal values. The recent trend is to systematically search for a phytochemical as an 

alternative remedy to many diseases. Phytochemical urease inhibitors were searched for the 

treatment of pathogenic infections where urease was considered as a therapeutic target. Also, 
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a phytochemical urease inhibitor can mitigate the aerial loss of nitrogen from fertilizer urea in 

an eco-friendly manner [7]. 

 
QSAR model from split 1was applied to predict pIC50 of 1253 phytochemicals from the 

NPACT database. The experimental IC50 values of EGCG (2.2 μM or pIC50= 5.6575), myricitin 

(98.7 μM or pIC50 = 4.0057), and baicalin (2740 μM or pIC50 = 2.5622) had been reported 

earlier by others and compiled in a review [8]. Ahmed et al [33] reported curcumin as urease 

inhibitor (IC5019.74μM or pIC50 = 4.7046). The values predicted by the present QSAR model 

were 5.4034, 4.2971, 2.8252, and 5.1964 for EGCG, myricitrin, baicalin, and curcumin 

respectively. The pIC50 values predicated are very close to the experimentally reported values 

indicating the good predictability of the present model.  

Docking scores of phytochemicals in the database were estimated parallelly by 

AutoDock Vina algorithm [26] using YASARA suite [27]. A filter of “pIC50> 5.0 and docking 

score >8.0” was applied to obtain a set of compounds, which fall in the applicability domain 

(AD). These compounds were predicted as strong urease inhibitors. Further, ADMET filter was 

applied using FAF-Drugs4. Drug-likeness were estimated applying FAF-QED module [28]. 

Finally, a set of leads that pass through all the filters are presented in Table 4. The details of 

the parameters predicted by FAF-Drugs4 and FAF-QED are presented in supplementary Tables 

S1 and S2. 

The docking best poses of the lead molecules in interaction with the active site residues 

are depicted in supplementary Fig. S1. Ni ions (3001, 3002), Gly279, Cys321, His322, Arg338, 

and Ala365 are common interacting moieties in various docking poses. Cys321, His322 sit on 

the tip of the flexible flap of the cavity. 

 
The leads were lignans and flavonoids. Flavonoids are reported to have anti- H. pylori 

and urease inhibitory activities [8, 34]. Flavonoids are food supplements without significant 
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side effects and resistance. Hence may be suitable as a drug against urease as the target. 

Inophyllum E, curcumin, and (2S)-2'-methoxykurarinone have QED values > 0.5 in the range 

of 0.0 to 1.0 (Table 4). Therefore, the focus may be put on these three leads for further study.  

 

Table 4. List of lead compounds obtained after filtration. 

Compound  
ID 

Name Class pIC50  
calc 

AD Dock 
Score 

ADMET 
FAF-

Drugs4 

QED 
FAF-
QED 

21635715 Agastenol Lignan 5.6008 YES -8.694 Accepted 0.391 
637406 Agastinol Lignan 5.4721 YES -8.974 Accepted 0.366 
455251 Inophyllum E Flavonoid 5.3672 YES -8.995 Accepted 0.625 

 NPACT01531 Vibsanin C Terpenoid 5.3471 YES -9.127 Accepted 0.406 
969516 Curcumin Flavonoid 5.1964 YES -8.203 Accepted 0.619 

5281810 Tectoridin Flavonoid 5.1313 YES -8.548 Accepted 0.245 
11982641  (2S)-2'-

methoxykurari
none 

Flavonoid 5.0960 YES -8.128 Accepted 0.507 

PubChem/NPACT Identities of compounds are listed. AD, applicability domain, QED, 
quantitative estimation of drug-likeness. 
 

Leads were optimized by in silico study of derivatives designed by taking clue from the 

Structural attributes (SAk) increasing Endpoint (Table 3). c….(…S), sp2 carbon branching 

extension containing sulphur, is the top most attribute contributing to the increase of Endpoint. 

Besides presence of fluorine in the structure is another high contributing attribute. Including 

these two attributes in structures of curcumin, inophyllum E, and methoxykurarinone 18 

derivatives are designed. The results of pIC50 prediction, FAF Drugs4 filtration and 

determination of QED are presented in Table 5. The derivative LD10 is the same as curcumin 

derivative reported by Ahmed et al [33]. It was reported to have IC50 value 2.44 μM (pIC50 = 

5.6126) while the prediction in the present work is somewhat higher, pIC50 = 6.3993. Some 

derivatives with a predicted pIC50 value higher than 6.0 is enlisted (Table 5 and Fig.2). These 

may serve to improve the design for high potential urease inhibitors from phytochemicals. 
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However, experimental validation of the proposed leads will have the final say in 

further drug development. 
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Fig. 2 Structures of sulfur and fluoride derivatives of inophyllum E and curcumin with pIC50 

value greater than 6.0 (Please refer to table 5 for details of smiles and other properties) 
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Protein-Ligand Complex  

Analysis of simulation data of protein-ligand complexes shows that all the complexes have 

RMSD values about 3.0 Å or less (Fig. 3). The RMSF values are most fluctuating (>5.0) in the 

region 462-470 in case of curcumin, 464-468 in case of LD16, Ser466 in case of inophyllum E 

and (2S)-2'-methoxykurarinone (Fig. 4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Simulation trajectories of H. pylori urease LD16 (blue), curcumin (red), inophyllum E 
(green) and (2S)-2'-methoxykurarinone (yellow) bound complexes for 20 ns in aqueous 
medium. 
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Fig. 4. Root mean square fluctuation during simulation of H. pylori urease LD16 (blue), 
curcumin (red), inophyllum E (green) and (2S)-2'-methoxykurarinone (yellow) bound 
complexes for 20 ns in aqueous medium.  

 

Ligand Analysis 

Two important trajectories of ligands are analyzed: Ligand movement and Ligand 

conformation. Ligand movement measures displacement of ligand during simulation and 

ligand conformation measures change in conformation of the ligand during simulation. Both 

the parameters are expressed in RSMD in Å. The ligand conformational RSMD values were 

within 2.0 Å for all the ligands including derivatives (not shown here). The ligand movement 

of inophyllum E was significantly higher (between 6-10 Å) than the RMSD value of protein-

complex trajectory (< 3.0 Å), after 10 ns of simulation (Fig. 5). However, the analysis of the 

structure by alignments of structures before and after MD (20 ns) reveals that the ligand has 

moved and reoriented inside the cavity and has not gone out (Fig 2S). TM-align is used for the 

structural alignment [35] 
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Fig. 5. Root mean square deviation of movement of ligands during simulation of H. pylori 
urease-ligand complexes LD16 (blue), curcumin (red), inophyllum E (green) and (2S)-2'-
methoxykurarinone (yellow) bound complexes for 20 ns in aqueous medium.  
 
 
 
 
Conclusion 
 
An acceptable QSAR model has been developed to predict the urease inhibitory potentials of 

small molecules in terms of their pIC50 values. The model may be useful in identifying the 

potential urease inhibitors in a database of newly designed compounds before going for actual 

isolation, purification, or chemical synthesis and experimental validation.  The reduction of the 

size of the huge database by computational method to a small set of compounds for 

experimental validation may drastically reduce the time and cost of the novel drug discovery. 

Besides, the model may be helpful in optimizing the lead molecule by predicting the increase 

or decrease of potency due to the modification of the structure of the lead. The work is in 

progress in our laboratory to apply the QSAR model to the screened hit molecules from ZINC 

database and designed catechol based molecules for lead identification and optimization [36, 
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37]. However, the final conclusion awaits experimental validation of the drug candidates 

selected by in silico methods. 
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