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In this work, we used finite-field derivative techniques and density functional theory (DFT) to com-
pute the static isotropic polarizability series (α` with ` = 1, 2, 3) for the C60–C84 fullerenes and
quantitatively assess the intrinsic non-additivity in these fundamental response properties. Critical
analysis of the derived effective scaling laws (α1∼N1.2, α2∼N2.0, α3∼N2.7) provides new insight
into how the electronic structure of finite-sized fullerenes—a unique dichotomy of electron confine-
ment and delocalization effects due to their quasi-spherical cage-like structures and encapsulated
void spaces—simultaneously limits and enhances their quantum mechanical response to electric field
perturbations. Corresponding molecular dispersion coefficients (Cn with n = 6, 8, 9, 10) needed to
describe the non-trivial van der Waals (vdW) interactions in fullerene-based systems were obtained
by inputting the α` into the hollow sphere model within the modified single-frequency approxima-
tion. Using first-order perturbation theory in conjunction with >140, 000 DFT calculations, we
also computed the non-negligible zero-point vibrational contributions to α1 in C60 and C70, thereby
enabling direct comparison between theory and experiment for these quintessential nanostructures.

The molecular polarizability (α`) describes the ten-
dency of a molecule to form an induced multipole mo-
ment in the presence of an electric field (α1, dipole po-
larizability), field gradient (α2, quadrupole polarizabil-
ity), field Laplacian (α3, octupole polarizability), and/or
higher field derivatives [1–4]. Knowledge of the α` se-
ries is crucial when describing induction and disper-
sion/vdW interactions [4–6], predicting/understanding
the spectroscopic signatures (i.e., Raman, sum-frequency
generation) of molecules and condensed matter [7, 8],
as well as developing next-generation polarizable force
fields and machine-learning based intra-/inter-molecular
potentials. As quantum mechanical response proper-
ties, the α` series is governed by complex many-body
interactions (e.g., electron correlation, charge delocal-
ization, secondary polarization), and tends to become
more non-additive with increasing order and molecular
size/complexity [1–4, 9–13]. From a theoretical point of
view, an accurate and reliable description of α` can be
quite demanding, and often requires sophisticated treat-
ment of electron correlation in conjunction with large
(and diffuse) basis sets [14–19]. From an experimental
point of view, α` measurements are susceptible to (zero-
point) vibrational contributions, thermal effects, as well
as origin and orientational dependencies [20–22].

Through the Casimir-Polder (CP) relationship [23],
non-additivity in α` is also reflected in the dispersion
coefficients (Cn), which govern the strength of the vdW
forces between molecules and materials. Since even slight
variations in the (effective) vdW power laws can impact
the structure, stability, and properties of a system [24–
26], knowledge of how α` scales with system size is funda-
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mental to understanding these ubiquitous non-bonded in-
teractions. At the nanoscale, non-additivity in Cn is par-
ticularly important, as vdW forces are largely responsi-
ble for directing self-assembly and the energetic contribu-
tions from higher-order terms can be 50% of the leading-
order C6 component [27–29]. Given that fullerenes, nan-
otubes, and multi-layer graphene already exhibit unusual
scaling behavior [24–26, 30–36] at the C6 level, enhanced
non-additivity in the higher-order Cn is expected to have
an even more profound effect on such nanostructures.

Of specific interest here are the fullerenes, which are
characterized by quasi-spherical cage-like structures, en-
capsulated void spaces, and nearly uniform surface elec-
tron densities, thereby making them unique systems for
studying non-additivity in the α` and Cn scaling land-
scapes [24, 37–40]. For the popular fullerenes (e.g., C60

and C70), α1 and C6 have been well-investigated by the-
ory [24, 38, 41–43] and experiment [22, 44–49], with most
studies reporting qualitatively similar values for these
leading-order terms (although direct comparison between
theory and experiment has not been possible due to vi-
brational and thermal effects [20–22]). Theoretical stud-
ies [24, 38, 40] have also shown that α1 and C6 exhibit
strong non-additivity with increasing fullerene size as
well as non-trivial quantum-/finite-size effects [39, 50].
However, there has been little to no work dedicated to
the higher-order α` and Cn for the fullerenes, and many
existing models [37, 51–57] for these quantities—the ve-
racity of which have yet to be confirmed—still rely on
accurate values for α1 (or even α`) as input.

In this Letter, we address these limitations by comput-
ing ab initio values for the α` series (` = 1, 2, 3) in the
C60–C84 fullerenes using DFT and finite-field derivative
techniques. With these values in hand—which are ar-
guably the most accurate values to date—we obtain the
molecular dispersion coefficients (Cn with n = 6, 8, 9, 10),
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quantitatively ascertain the intrinsic non-additivity in
the α` (and Cn) series, and derive the corresponding ef-
fective scaling laws as a function of fullerene size. De-
tailed analysis of the ab initio data with respect to clas-
sical models that treat the fullerenes as conducting spher-
ical shells or solid spheres demonstrates how the unique
electronic structure of single-walled fullerenes—a com-
plex dichotomy between electron confinement and charge
delocalization—simultaneously limits and enhances their
response to electric field perturbations. Analogous to the
deviations from asymptotic vdW scaling laws observed
at finite (nanoscale) distances, this analysis also demon-
strates how quantum-/finite-size effects markedly alter
the α` (and Cn) scaling landscapes in these quintessen-
tial nanostructures. We conclude this work by computing
the non-negligible (≈ 1−2%) zero-point vibrational cor-
rections [20, 58–60] to α1 for the C60 and C70 fullerenes,
enabling the first direct comparison between experiment
and theory for this fundamental response property.

To begin, we computed static isotropic (electronic)
polarizabilities (α` with ` = 1, 2, 3) for the lowest-
energy isomers of the C60, C70, C76, C78, and
C84 fullerenes using finite-field derivatives at the
SCAN0/Sadlej//SCAN0/6-31G(d) level (see Supporting
Information (SI) for computational details, Table S1 for
isomer comparison, and Tables S7–S11 for the optimized
structures). Since the SCAN0 [61] hybrid functional,
which admixes 25% exact exchange into the SCAN [62]
meta-GGA functional, combined with the Sadlej [14]
triple-ζ basis set, which has been optimized for molecular
properties such as moments/polarizabilities, furnishes α`
values to ≈ 1% of benchmark quantum chemical meth-
ods for C20 (the smallest cage-like fullerene [63]), this
level of theory was used for the larger fullerenes in this
work (Table S2). Corresponding frequency-dependent
polarizabilities (α`(iu)) were obtained within the mod-
ified single-frequency approximation (MSFA) [56] by in-
putting α` into the hollow sphere (HS) model of Tao and
Perdew [54], and used to compute Cn (n = 6, 8, 9, 10)
via the CP integral [23]. All calculations were performed
using Q-Chem [64] and FHI-aims [65].

The computed α` (and Cn) are summarized in Table I
(and Table S3). For α1 and C6, our values are in ex-
cellent agreement with the available theoretical data for
the fullerenes (Table S6). For the higher-order terms, α2

and α3 in Table I are the only ab initio values available
to date. In previous studies [37, 40, 53–57], these quan-
tities have been estimated using a classical formula de-
rived by considering a conducting spherical shell (or solid
sphere) of uniform electron density with outer radius R
and thickness t, namely, α` ≈ αmodel

` = R2`+1 (valid for
0 < t ≤ R) [37, 66]. Since these are among the simplest
models for the fullerenes [37, 50], we first examine the
models’ assumption that α` can be derived using a single
radius per fullerene by inverting this formula to obtain

R` = α
1/(2`+1)
` . These R` values—along with the esti-

TABLE I. Values (in au) for the multipole polarizabilities (α`

with ` = 1, 2, 3; computed at the SCAN0/Sadlej//SCAN0/6-
31G(d) level) and homo-molecular dispersion coefficients (Cn

with n = 6, 8, 10; computed by inputting α` in the HS/MSFA
model) in the C60–C84 fullerenes. Also provided are the effec-
tive scaling law parameters (and R2 values) from non-linear
fits to a power law (aNb) ansatz. Additional homo-/hetero-
molecular Cn (n = 6, 8, 9, 10) can be found in Tables S4–S5.

Ab Initio Ab Initio + HS/MSFA

Molecule α1/102 α2/104 α3/106 C6/105 C8/107 C10/109

C60(Ih) 5.368 4.281 3.319 0.990 4.207 14.620

C70(D5h) 6.640 5.803 5.153 1.462 6.891 26.963

C76(D2) 7.250 6.877 6.543 1.735 8.861 37.418

C78(C2v) 7.546 7.224 6.915 1.863 9.639 41.139

C84(D2d) 8.090 8.310 8.345 2.143 11.872 53.827

a 3.903 13.487 54.633 10.231 165.632 2461.939

b 1.206 1.970 2.696 2.248 3.045 3.816

R2 0.994 1.000 0.998 0.996 0.999 0.999

mated (outer) physical radius of each fullerene 〈R〉 [67]—
are plotted against N in Fig. 1. From this figure, one can
see that R1 ≈ R2 ≈ R3 ≈ 〈R〉 for C60–C84; with mean
signed deviations of−2.9% (R1), +0.2% (R2), and +1.5%
(R3), each R` agrees fairly well with 〈R〉, and the emerg-
ing picture is qualitatively consistent with these models.
In the same data, we also observe a weak (but still in-
creasing) dependence of R` on ` as R3 & R2 & R1 for
each fullerene. Here, we argue that both of these observa-
tions can be rationalized by considering the unique elec-
tronic structure of the fullerenes, whose quasi-spherical
cage-like structures and encapsulated void spaces lead to
an essentially metallic electron density that is delocal-
ized across the entire fullerene surface, yet largely con-
fined to a thin surrounding shell. Unlike the spherical
shell and solid sphere models—in which the density is
confined to an infinitesimally thin shell at the conductor
surface [37]—electrons on the fullerene surface still retain
some degree of radial flexibility, which serves to enhance
their response to electric field perturbations. This prop-
erty manifests itself in the (albeit weak) growth of R`
with ` observed above, which indicates enhanced non-
additivity in the fullerenes beyond that due to the in-
creasingly higher-order powers in the model α` formula.
In the same breath, the fact that the electrons on the
fullerene surface are largely confined to a surrounding
thin shell also simultaneously limits the radial extent of
their response to external electric fields. Evidence of this
is seen in the qualitatively similar R` values in Fig. 1
that only weakly depend on `; although higher-order α`
data is scarce, the dependence of R` on ` seems to be
stronger for extended systems like n-alkanes [68], and is
expected to be even more pronounced in conjugated ex-
tended systems like s-trans alkenes and polyacenes [69].
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FIG. 1. Top: System-size dependence of the `-dependent radii
(computed using the ab initio α` in the conducting spherical

shell/solid sphere model formula, R` = α
1/(2`+1)
` ) and esti-

mated physical radii (〈R〉) [67] in the C60–C84 fullerenes. Bot-
tom: Percent error when predicting higher-order α` (` = 2, 3)
and Cn (n = 8, 10) under the model assumption of a single
radius (R = R1) per fullerene.

Although the differences among R` are small, the er-
rors made when predicting α` (and Cn) under the as-
sumption of a single radius per fullerene can be substan-
tial and warrant further discussion. Since an accurate
determination of α1 is most straightforward among the

α` series, we first set R = R1 = α
1/3
1 for each fullerene

(following previous work in Refs. [40, 53, 55–57, 66]) and
re-compute α2 and α3 via α` ≈ αmodel

` = R2`+1. The cor-
responding errors, εα`

≡ (αmodel
` − α`)/α`, are also plot-

ted in Fig. 1, from which one can immediately see that
these higher-order properties are substantially underesti-
mated in C60–C84. With mean deviations of 14.8± 1.5%
(α2) and 26.9± 1.6% (α3), these errors are significant in
magnitude and increase with `; such discrepancies can be
traced back to the variability in R` (e.g., R3 & R2 & R1),
which becomes amplified by the increasingly higher-order
powers in the model formula. Also depicted are the er-
rors which propagate into C8 and C10 when inputting
these α` values into the HS/MSFA model; with mean de-
viations of 13.0 ± 1.4% (C8) and 24.4 ± 2.0% (C10), the
non-additivity in these quantities is also substantially un-
derestimated, rendering them unsuitable for describing
vdW interactions between fullerenes. Here, the errors in
C8 and C10 are quite similar to those in α2 and α3, which
follows from factoring α` out of the CP integral (which
yields C8 ∝ α1α2 and C10 ∝ α1α3 + α2α2) [40, 54]. We
further note that the R used to generate the error profile
in Fig. 1 is not unique. Setting R = 〈R〉 is also physically
justifiable, and overestimates α1 by 9.4% and underesti-
mates α2 and α3 by 1.1% and 10.0%, respectively [70];
since 〈R〉 ≈ R2, the error is still substantial and simply
redistributed onto α1 and α3. Another logical choice for
R arises from treating each fullerene as a spherical di-
electric shell [71] with ε derived from the homo–lumo

gap [50, 72]; for C60, this yields an R that is only 1.5%
larger than R1 and hence a similar error profile to that in
Fig. 1. Alternatives based on the current theory of vdW
radii might also be interesting to consider [73, 74].

As the system size increases, the error introduced by
using a single radius to predict α2 and α3 (or C8 and
C10) is fairly constant and does not increase with N (see
Fig. 1). Such system-size-independent deviations are re-
flected in the relatively small (≈ 1.5%) standard devi-
ations in εα`

(and εCn
), and are primarily due to the

fact that the variability among R` values does not in-
crease with N for C60–C84 (cf. R2/R1 = 1.04 (1.03) and
R3/R1 = 1.05 (1.05) for C60 (C84)). Physically speak-
ing, this can again be attributed to the fullerene elec-
tronic structure, in which the electron density is largely
confined to a thin shell whose thickness does not grow
with N [40, 50, 56]. In the same breath, this size-
independence is also due in part to treating the fullerene
as a molecule instead of a collection of atoms [56]; in
doing so, many-body interactions and electron delocal-
ization effects—both of which are size-dependent by def-
inition and largely responsible for the non-additivity in
α`—are intrinsically accounted for by the model. In any
case, the use of a single radius (per fullerene) is sim-
ply not flexible enough for a quantitative prediction of
α` and Cn; when computing Cn (in particular), more
sophisticated models that account for the non-trivial `
dependence of R` (e.g., HS/MSFA [54, 56])—in conjunc-
tion with the high-quality ab initio α` values provided
herein—are crucial for an accurate and reliable descrip-
tion of these quintessential nanostructures.

To further explore how α` (Cn) scale with fullerene
size, we now derive the corresponding effective scaling
laws by fitting our data to power law (aN b) ansätze.
The resulting parameters (a and b) and R2 values are pro-
vided in Table I (with fitted functions plotted in Fig. S1).
With R2 > 0.99 in all cases, these fits accurately describe
the system-size dependence in these quantities, yield-
ing negligible fitting errors of −0.05%,−0.02%,−0.22%
for α1, α2, α3 (−0.21%,−0.22%,−0.38% for C6, C8, C10).
Here, we find that α1, α2, and α3 scale as ∼N1.2, ∼N2.0,
and ∼N2.7 for the C60–C84 fullerenes; with exponents
that substantially deviate from unity, these terms are all
strongly non-additive and become increasingly more so
for larger `. For α1, our finding that b = 1.21 is in ex-
cellent agreement with Kauczor et al. (b = 1.25) [38]
and Tao et al. (b = 1.19) [40] (see Table II); due to the
scarcity of higher-order α`, the b values obtained for α2

and α3 herein are the only ab initio values available to
date. We note in passing that further comparisons to
the values provided by Saidi et al. [39] and Tao et al. [40]
would not be appropriate, as these values correspond to a
much wider range of finite-sized fullerenes (e.g., C60–C720

and C60–C3840); to characterize how quantum-/finite-size
effects influence the α` (and Cn) scaling landscape for
C60–C84, we now discuss our findings with respect to the
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TABLE II. Effective scaling law exponents (b) for the polariz-
abilities (α`) and dispersion coefficients (Cn) in the fullerenes.

α1 α2 α3 C6 C8 C10

Ab Initioa 1.21b 1.97b 2.70b − − −
Ab Initio + HS/MSFAa − − − 2.25b 3.05b 3.82b

N∝R2 (spherical shell)c 1.50b 2.50b 3.50b 2.75d 3.75d 4.75d

N∝R3 (solid sphere)e 1.00b 1.67b 2.33b 2.00d 2.67d 3.33d

Gobre et al. [24]f − − − 2.25 − −
Kauczor et al. [38]g 1.25 − − 2.19 − −

Saidi et al. [39]h 1.46 − − 2.80 − −
Tao et al. [40]i 1.19 1.65 2.11 2.26 2.73 3.20

aC60–C84 fullerenes bThis work cConducting spherical shell model;

R→∞ limit dRef. [37] eConducting solid sphere model; all R values
fSelf-consistent screening (SCS) model; C20–C540

gTime-dependent

DFT (B3LYP); C60–C84
hCapacitance-polarizability interaction (CPI)

model; C60–C720
iConducting spherical shell/solid sphere model (for

α`) and HS/SFA (for Cn); C60–C3840 (two-point formula)

formal (R → ∞) limits of the conducting spherical shell
and solid sphere models.

Since N ∝ R2 for a spherical shell (in the R → ∞
limit) and N ∝ R3 for a solid sphere (for all R values),
these models differ in their description of how α` grows
with N , i.e., α` = R2`+1 = N (2`+1)/δ with δ = 2 (spher-
ical shell) and δ = 3 (solid sphere). The corresponding
scaling law exponents for α` (and Cn) based on these
models are provided in Table II, from which one can see
that the growth of α` with N in the solid sphere model is
slower than that in the C60–C84 fullerenes, which in turn
is markedly slower than that predicted by the R → ∞
limit of the spherical shell model. Again, both of these
observations can be rationalized by considering the di-
chotomous electronic structure of the fullerenes, which
simultaneously limits and enhances their response to elec-
tric field perturbations. On one hand, confinement of the
electrons to a thin shell unusually far from the fullerene
center leads to a substantially more polarizable electron
density than the distribution of the same number of elec-
trons throughout the volume of a solid sphere (with a
necessarily smaller R), thereby leading to enhanced α`
values compared to the solid sphere model. On the other
hand, the curvature in the finite-sized fullerenes sup-
presses many-body polarization of the electrons across
the surface, which limits the extent of the electronic re-
sponse and leads to reduced α` values compared to the
graphene-like R→∞ limit of the spherical shell model.

For the Cn, we find that C6, C8, and C10 scale as
∼N2.2, ∼N3.0, and ∼N3.8, which is again indicative
of strong non-additivity that increases with `. Since
this non-additivity primarily originates from the intrinsic
non-additivity in the underlying α`, our discussion of the
Cn scaling laws will be brief. For C6, our finding that
b = 2.25 is in excellent agreement with previous studies
employing time-dependent DFT (b = 2.19) [38] as well as
the SCS (b = 2.25) [24] and HS/SFA (b = 2.26) [40] mod-
els (Table II). Following the analysis performed above for

α`, we again find that our results lie between the Nn/3

and N (n−1/2)/2 dependence of the solid sphere and spher-
ical shell models [37]; as such, our data unambiguously
confirms that the Cn in C60–C84 grow much faster than
a pairwise-additive model would suggest.

Returning to the ab initio α` provided herein, we
conclude this Letter by investigating the zero-point vi-
brational contributions (zpvc) to α1 in the popular
C60 and C70 fullerenes, as these often non-negligible
contributions enable direct comparison between exper-
iment and theory. For a molecule in its ground vibra-
tional state, αzpvc

1 can be computed using first-order per-
turbation theory [58–60] as αzpvc

1 =
∑
i κi, in which

κi ≡ 1
4

[(
∂2α1

∂q2i

)
0
−
∑
j
φiij

ωj

(
∂α1

∂qj

)
0

]
is the contribution

from the i-th vibrational mode. In this expression,
(∂nα1/∂q

n
j )0 are the n-th partial derivatives of α1 (eval-

uated at the equilibrium structure) with respect to nor-
mal mode qj with frequency ωj , φiij are the anharmonic
(cubic) force constants, and the sum includes all vi-
brational modes; see SI and Ref. [18] for more details.
To obtain ab initio values for these quantities, we per-
formed an extensive series of (>140, 000) DFT calcula-
tions, and found that αzpvc

1 = 8.5 au (C60) and 9.6 au
(C70); these vibrational contributions are non-negligible
in magnitude and account for ≈ 1.6% and ≈ 1.4% of α1.
Individual contributions (κi) to αzpvc

1 from each vibra-
tional mode in C60 are plotted in Fig. 2. Similar to
αzpvc

1 in water [18], the primary vibrational contributions
are due to high-frequency bond-stretching modes [75]
(i.e., ≈ 1400−1600 cm−1; largest contribution from the
Hu mode at ω = 1564 cm−1), and not low-frequency
squashing (≈ 250 cm−1) and/or breathing (≈ 500 cm−1)
modes [76–78]. From Table III, one can see that α1 is
slightly smaller than the DOSD estimate [22, 48] for C60,
while αtot

1 = α1 + αzpvc
1 are well within the error bars

measured by molecular beam deflection [44, 46] and time-

Squashing Mode

Breathing Mode

Tangential Double-Bond 
Stretching Mode

FIG. 2. Individual mode contributions (κ in au) to αzpvc
1

in C60 (computed at the SCAN/tier-1//SCAN/tier-1 level).
The corresponding plot for C70 is provided in Fig. S2.
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TABLE III. Summary of the ab initio electronic (α1, com-
puted at the SCAN0/Sadlej//SCAN0/6-31G(d) level), vibra-
tional (αzpvc

1 , computed at the SCAN/tier-1//SCAN/tier-1
level), and total (αtot

1 ≡ α1 + αzpvc
1 ) polarizabilities for C60

and C70 along with the available experimental data.

Theory Experiment

α1 αzpvc
1 αtot

1 αtot
1

C60 536.8 8.5 545.3 516.2±54a, 533.1±27b, 599.9±41c

558.6±17d, 589.8±20e

C70 663.8 9.6 673.4 688.3±95a, 732.2±55c, 718.0±9e

aMolecular beam deflection [44, 46] bTime-of-flight spectrometry [45]

cMatter-wave interferometry (MWI) [47] dDipole oscillator strength

distribution (DOSD) estimate of α1 [22, 48] eMWI [49]

of-flight spectrometry [45] for C60 and C70. While our
values are consistently smaller than those obtained us-
ing matter-wave interferometry [47, 49], the experimen-

tal ratios of αtot,C70

1 /αtot,C60

1 = 1.22 (believed to be more
accurate than absolute α1) using this technique are in
excellent agreement with our ab initio value of 1.23.

The α` (and Cn) provided herein for C60–C84 are the
most accurate and reliable theoretical values obtained to
date, and unequivocally demonstrate that these quanti-
ties are strongly non-additive and become increasingly
more so for larger ` (and n). Derivation of the cor-
responding effective scaling laws in addition to a crit-
ical analysis of the α` and Cn data in the context of
the classical spherical shell and solid sphere models pro-
vides new insight into how the unique electronic struc-
ture of the single-walled fullerenes—a complex interplay
between electron confinement effects and charge delo-
calization due to the structure and topology of these
nanosystems—serves to both limit and enhance their re-
sponse to electric field perturbations. Of particular inter-
est are the quantum-/finite-size effects observed in these
scaling laws, which are analogous (and intimately re-
lated) to the deviations from asymptotic vdW scaling
laws observed in both finite and extended systems at
nanoscale distances [25, 26, 30–36, 79], and undoubtedly
impact the structure, function, and properties of these
quintessential nanostructures.
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and J. F. Dobson, “Cohesive properties and asymptotics
of the dispersion interaction in graphite by the random
phase approximation,” Phys. Rev. Lett. 105, 196401
(2010).

[34] A. J. Misquitta, J. Spencer, A. J. Stone, and A. Alavi,
“Dispersion interactions between semiconducting wires,”
Phys. Rev. B 82, 075312 (2010).

[35] A. J. Misquitta, R. Maezono, N. D. Drummond, A. J.

Stone, and R. J. Needs, “Anomalous nonadditive dis-
persion interactions in systems of three one-dimensional
wires,” Phys. Rev. B 89, 045140 (2014).

[36] P. S. Venkataram, J. Hermann, A. Tkatchenko, and
A. W. Rodriguez, “Unifying microscopic and continuum
treatments of van der Waals and Casimir interactions,”
Phys. Rev. Lett. 118, 266802 (2017).

[37] A. Ruzsinszky, J. P. Perdew, J. Tao, G. I. Csonka, and
J. M. Pitarke, “van der Waals coefficients for nanostruc-
tures: Fullerenes defy conventional wisdom,” Phys. Rev.
Lett. 109, 233203 (2012).

[38] J. Kauczor, P. Norman, and W. A. Saidi, “Non-
additivity of polarizabilities and van der Waals C6 coeffi-
cients of fullerenes,” J. Chem. Phys. 138, 114107 (2013).

[39] W. A. Saidi and P. Norman, “Polarizabilities and van
der Waals C6 coefficients of fullerenes from an atomistic
electrodynamics model: Anomalous scaling with number
of carbon atoms,” J. Chem. Phys. 145, 024311 (2016).

[40] J. Tao, Y. Jiao, Y. Mo, Z. H. Yang, J. X. Zhu,
P. Hyldgaard, and J. P. Perdew, “First-principles study
of the binding energy between nanostructures and its
scaling with system size,” Phys. Rev. B 97, 155143
(2018).

[41] A. Jiemchooroj, P. Normana, and B. E. Sernelius, “Com-
plex polarization propagator method for calculation of
dispersion coefficients of extended π-conjugated systems:
The C6 coefficients of polyacenes and C60,” J. Chem.
Phys. 123, 124312 (2005).

[42] K. Kowalski, J. R. Hammond, W. A. de Jong, and
A. J. Sadlej, “Coupled cluster calculations for static and
dynamic polarizabilities of C60,” J. Chem. Phys. 129,
226101 (2008).

[43] D. H. Friese, N. O. C. Winter, P. Balzerowski, R. Schwan,
and C. Hättig, “Large scale polarizability calculations us-
ing the approximate coupled cluster model CC2 and MP2
combined with the resolution-of-the-identity approxima-
tion,” J. Chem. Phys. 136, 174106 (2012).

[44] R. Antoine, Ph. Dugourd, D. Rayane, E. Benichou, and
M. Broyer, “Direct measurement of the electric polariz-
ability of isolated C60 molecules,” J. Chem. Phys. 110,
9771–9772 (1999).

[45] A. Ballard, K. Bonin, and J. Louderback, “Abso-
lute measurement of the optical polarizability of C60,”
J. Chem. Phys. 113, 5732–5735 (2000).

[46] I. Compagnon, R. Antoine, M. Broyer, Ph. Dugourd,
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