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ABSTRACT 
Multicomponent exponential decay data arise frequently in magnetic resonance measurements and in 

numerous other circumstances. For any such data set, there are many different distributions of relaxation 

rates that can fit the data to high precision, so choosing or designing an optimal analysis can be 

challenging and ambiguous. Nevertheless, multicomponent exponential relaxation data provide 

valuable information for scientific, engineering, medical, and other applications. This report describes 

and illustrates a set of automatable relaxation analysis protocols that are model-agnostic and suited to 

extracting information under circumstances when little prior knowledge about the underlying 

distribution is used. Methods described include: parameterizations based on small geometrically 

incremented exponential basis sets and orthogonalized or transformed versions of those basis sets, 

autoregressive and least-squares determination of rates and amplitudes of small numbers of discrete 

components that fit the data precisely, calculation and comparison of average relaxation rates and 

average relaxation times to simply describe rate distributions, and quasi-continuous renderings that are 

regularized in a Fourier domain and that convey the resolution of the analysis via peak widths. Protocols 

are generalized to treat two-dimensional relaxation measurements. A second part of this report 

discusses mathematical and physical underpinnings of the methods. This discussion, organized around 

the Sloppy Model perspective, justifies the methods advocated here, and may be useful for insight and 

understanding, uncertainty analysis, and to inform practical implementations of multicomponent 

exponential decay analysis software. 
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INTRODUCTION 
Numerous protocols (Whittall, 1996) (Istratov and Vyvenko, 1999) are available for fitting 

multicomponent exponential relaxation measurements. Displays of the results of the different protocols 

can look quite different from each other. This is illustrated in Figure 1, which compares some of the 

parameterizations and displays discussed in this report. Even though the plotted results from different 

protocols look quite different, in all cases, the original data are reproduced to high precision. All protocols 

that fit data to within its noise capture the same information about the relaxing system even if they differ 

in how that information is conveyed. 

It is also apparent that, without additional knowledge or suppositions, the true underlying model for a 

system cannot be uniquely determined since different models give experimentally indistinguishable fits. 

As emphasized in Figure 1, even discrete vs. continuous underlying distributions cannot be distinguished. 

If prior knowledge about the relaxing system is available, the best course of action is usually to use that 

knowledge for guidance (Mailhiot et al., 2018) (Van Landeghem et al., 2010), and when possible to 

directly fit parameters in a model to the data. Textbook approaches to parameter estimation and model 

selection (Bevington, 1969) (Sivia and Skilling, 2006) can be applied in these cases. 

The focus of this report is on analysis methods that can be applied with little or no supervision, and that 

are suited to situations where little or no prior knowledge is available or used beyond assuming that the 

curves are exponential decays having one or more components. The methods discussed therefore do not 

attempt to determine which underlying model is most appropriate for the system measured. Rather, the 

emphasis is on methods that extract and convey the information objectively provided by the 

measurement in a manner suited to the purpose of the measurement. Envisioned applications include 

the use of nuclear magnetic relaxation measurements for automated process control, medical 

diagnostics, raw material screening, quality assurance, and numerous other situations. The methods are 

also valuable for fundamental and mechanistic investigations if essential limitations of multicomponent 

exponential decay analysis are considered. Emphasis is placed on numerically efficient and stable 

parameterizations that can pass results automatically to computers for further analysis. However, 

conveying information from the analyses to people expecting certain formats is also considered. Though 

the focus of this report is on magnetic resonance, multicomponent exponential decay curves arise in 

numerous other circumstances, and the methods advocated here are likewise broadly applicable. 
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Figure 1. Parameterizations often appear different but fit the data well. (A) dotted black line gives 
starting distribution of relaxation rates used to generate a multicomponent exponential decay curve; 
green line shows fitted distribution from SVD truncated to 14 components; orange spikes show 
amplitudes and rates of a small (11) basis parameter set fitted to the decay curve; purple spikes show 
discrete fit of five components using ARM+LSQ. (B) differences between decay curves generated by 
the fits in Panel A compared to the decay curve generated from the starting distribution. All 
parameterizations reproduce the original decay curve to within 2 parts in 10,000 or better, a higher 
precision than is often available from real-world measurements. Time and rate units are sec and sec-1, 
respectively. The decay curve had 2001 evenly spaced points ranging from 0 to 10 seconds. Amplitudes 
in Panel A are arbitrarily scaled to allow comparison of parameterizations. Differences in Panel B are 
relative to a decay curve whose initial point is one arbitrary unit. 

 

Overview of the fitting problem 

Analysis of multicomponent exponential decay data entails finding a set of spectral amplitudes s  and 

relaxation rates r  to create a modeled data set, ( )iy t , that best agrees with a time-dependent signal 

( )id t , sampled at time points it  
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In these expressions, n  is the number of components, and i  is a random noise contribution, assumed 

uncorrelated in time and normally distributed around zero. For simplicity the independent variable t  is 

referred to as time in this report, but the problem and solutions apply to many different independent 

variables or functions. As another example from magnetic resonance, t  might refer to a function of 

squared gradient strengths, pulse durations, and delays in magnetic resonance diffusion measurements.  

In the limit of continuous distributions of decay rates, the model becomes 

 ( ) ( ) ( )r ty t d s e 


  −=  .  (1.3) 

Being the formal definition of the Laplace transform of the distribution ( )s  , this expression motivates 

the prevalent use of the moniker Inverse Laplace Transform, ILT, for quasi-continuous renderings of 

( )s   and for algorithms that find such renderings. 

This report will frequently describe the multicomponent exponential fitting problem in matrix-vector 

notation, 

 y = Bs ,  (1.4) 

 d = Bs + ε = y + ε ,  (1.5) 

where y  is the data vector predicted by the model, B  is a basis matrix whose columns contain unit-

intensity single component decay curves, s  is a spectral vector containing appropriate amplitudes, d  

is a column vector containing the data points, and ε  is the noise vector. 

Equation (1.4) can be m0dified to use different bases by inserting matrices Q  and their inverses 
-1

Q  to 

transform the basis and spectral vector, 

 ( )( )-1

Q Q
y = BQ Q s = B s .  (1.6) 

Transformations will include orthonormalization of the basis functions to gain numerous advantageous 

properties, or conversion to a Fourier basis, which facilitates regularization and its interpretation. 

Equations (1.4) and (1.5) (or their transformed analogs) are to be solved for the vector s  and sometimes 

the matrix B , to maximize the parameter likelihood function. As usual, it is equivalent and more 

convenient to minimize the negative of the log of the likelihood function. When the noise is normally 

distributed around zero, then within an inconsequential additive constant, the negative log likelihood is 

given by the familiar expression 
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Here, the sum is over all dn  data points, and   is the standard deviation of the noise, assumed here to 

be equal for all data points. 

Protocols for solving Equations (1.1)-(1.5) can mostly be placed into two broad categories, often denoted 

as discrete and continuous (Whittall, 1996) (Istratov and Vyvenko, 1999). For discrete analysis, a long-

standing (Provencher, 1976) favored approach is to estimate or hypothesize initial values for a set of 

component decay rates and amplitudes, and then to refine those initial values using a least-squares 

minimization procedure. Given reasonable initial parameter values, computational aspects of the 

minimization problem are not currently challenging thanks to fast computers and efficient algorithms. 

However, there is continuing development of principles and methods for discovering the appropriate 

number of discrete components, for finding initial parameter values, and for alternatives to least-squares 

parameter estimation. Approaches to finding discrete solutions based on autoregressive methods, and 

in particular the Matrix Pencil Method (Fricke et al., 2020), appear to be particularly successful, and are 

adopted here.  

Finding continuous distributions ( )s  , or more precisely quasi-continuous renderings, that fit 

multicomponent relaxation data is an ill-posed problem—there is no unique solution that is stable to the 

noise. Regularization, which constrains the fitted distributions in ways intended to suppress unphysical 

features in the displayed results, must be imposed. Regularization protocols have long been essential to 

widely used quasi-continuous analysis protocols (Butler et al., 1981) (Provencher, 1982). Many protocols 

are available, including imposition of non-negativity and the use of Tikhonov regularization. Developing 

and applying more advanced regularization methods that apply in specific situations, for example when 

the underlying distributions have both narrow and broad components (Borgia et al., 1998) (Reci et al., 

2017), remains an active aspect of research in multi-component exponential relaxation data analysis. 

Two-dimensional relaxation measurements have similar advantages to two-dimensional spectroscopy 

measurements. Advantages include better resolution and more information about interactions and 

exchange among spin systems having different relaxation rates. Two-dimensional relaxation 

measurements have been used for decades (English et al., 1991) (Lee et al., 1993), but early applications 

were hindered by challenges with data analysis. Their use accelerated following the publication of a rapid 

2D Inverse Laplace Transform method (Song et al., 2002), and they are now widely applied. An 

incomplete list of a few of the many current research topics related to two-dimensional relaxation 

measurements include development of processing algorithms (Su et al., 2019) (Fricke et al., 2020), 

classification of food products (Greer et al., 2018), porous media characterization (Silletta et al., 2018), 

and investigations of biomaterials like cartilage (Mailhiot et al., 2018). There does not appear to be 

widespread agreement on the best methods for processing or for parameterizing the information 

content of 2D measurements. 

Multi-component exponential relaxation analysis is ill-posed because of the high degree of linear 

dependence among single-component relaxation curves. The origin and extent of linear dependence can 

be appreciated by inspecting the first terms of the Taylor series for the logarithm of a sum of two 

decaying exponential functions, 
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To first order in time, the sum of a pair of components behaves as a single component whose decay rate 

is the amplitude-weighted average of the components. By similar reasoning, to first order, a single-

component relaxation curve can approximate a set of nearby relaxation curves. In this level of 

approximation, exponential decay curves are linearly dependent. Higher order terms, proportional to 

powers of ( )r r t − , are responsible for a degree of linear independence among components. Roughly 

speaking, and depending on the relative amplitudes of the components, these terms become important 

only at times that are long enough so that the quantity ( )r r t −  becomes significant. If the signal 

decays into the noise or if the signal is truncated before these terms become apparent, then the data 

cannot be used to distinguish a distribution of components having relaxation rates in the range between 

r  and r  from a single component having the amplitude-weighted average of these relaxation rates.  

Equation (1.8) thus gives a simple and useful perspective on why there is no unique quasi-continuous 

solution and on why multi-exponential decay analysis has low resolution. A single relaxation curve can 

closely mimic a pair of curves having nearby relaxation rates, and a pair of curves with nearby relaxation 

rates can closely mimic a single-component curve. The ranges of rates over which these ambiguities 

apply depend on the noise level and duration of the recorded data. Furthermore, it is apparent that 

innumerable self-canceling combinations of components can be constructed and included in any model 

without significantly influencing the decay curve generated by the model. 

These properties may be understood as an example of Sloppy Model behavior (Transtrum et al., 2015). 

Sloppy model methods apply when detailed descriptions of a system may involve many underlying 

details and parameters, but most parameters values are highly or entirely uncertain when fit to data. In 

these cases, a few combinations of parameters can nonetheless be well-defined. Viewing the 

multicomponent exponential relaxation problem from this perspective provides insight and informs 

rigorous and practical approaches to dealing with essential ambiguities. This perspective is described 

further in Part 2 of this report. 

The remainder of this report is organized as follows. Part 1 presents and illustrates a set of analysis tools 

that meet the goals outlined above. These methods include the use of small exponential basis sets and 

transformed versions of those basis sets to efficiently capture and record the information available from 

the data. A practical definition of resolution is offered based on the geometric interval needed to 

generate basis sets that fit the data adequately. Autoregressive methods, in particular the Matrix Pencil 

Method, are then used. The resulting parameters are subjected least-squares refinement and to 

uncertainty analysis using the Fisher Information Matrix and using Monte Carlo explorations of likely 

parameter values. Average relaxation rates and average relaxation times are then introduced as 

parameters that partially but usefully describe the effective width of distributions of relaxation rates 

underlying the measured decay curves. An approach to regularization based on viewing the relaxation 

rate distributions in a Fourier domain is presented. Unlike other regularization methods, this endows 

widths of peaks in quasi-continuous renderings with definite and recognizable physical meaning. The last 
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section of Part 1 generalizes the methods to two-dimensional data sets. Part 2 of the report provides 

deeper conceptual and mathematical descriptions of some underpinnings of the methods. The 

discussion in Part 2 is organized around the concept of sloppy models and Fisher Information. 
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PART 1: DESCRIPTION AND ILLUSTRATION OF METHODS 

Small Basis Parameterization Strategies 

A pragmatic definition of resolution for multi-exponential fitting 
It follows from Equation (1.8) and the accompanying discussion that the amplitudes of only a small set of 

regularly incremented single-component decay curves can parameterize multicomponent relaxation 

data, regardless of the richness of the underlying distribution. Quantifying this idea leads to a practical 

definition of the resolution achievable from a noisy decay curve.  

Resolution is expressed as the geometric interval between relaxation rates needed to construct an 

adequate set of fixed-rate basis curves for use in Equation (1.4). To make this more precise, a definition 

of the term adequate is required. As one definition of the term, consider a geometrically incremented 

basis set B  and a single component, unit intensity test decay curve testy , chosen from within the range 

of relaxation rates spanned by the basis. Denote the spectral vector giving the least-squares fit to that 

curve as tests . Somewhere in this fitted curve there is a point of maximum deviation having the value 

max,test test test max
 = Bs - y . Among all possible test curves testy  in this range, there is a worst case, wcy , 

giving the largest maximum deviation max,wc . The term adequate means that for a basis set built using a 

given geometric interval, the value of max,wc  is less than or equal to some maximum tolerable deviation. 

This suits present purposes, though other definitions of adequate can be devised, depending on the 

approach to data acquisition, processing algorithm, and error analysis. 

Figure 2 illustrates some features of an example of a curve used to determine resolution using this 

protocol. The horizontal axis shows max,wc . The vertical axis is the increment between the basis curves 

that gives that maximum deviation. If the horizontal axis is interpreted as the maximum tolerable error 

for a fit to a noisy decay curve, the vertical axis can be interpreted as the resolution.  

Compared to the number of points usually displayed when most Inverse Laplace Transform algorithms 

are used, the resolution achievable for realistic signal-to-noise ratios is quite coarse. For the case 

considered in Figure 2, a maximum deviation of ~0.3% corresponds to a geometric increment of ~2, and 

coefficients of only 11 fixed-rate decay curves suffice to parameterize data for a range of relaxation rates 

spanning three orders of magnitude. As data quality improve, the resolution becomes less sensitive to 

the maximum tolerable error, slowly and asymptotically approaching a limiting value of 1. According to 

Figure 2, a range of maximum tolerable errors from 10-6 to 10-3 corresponds to a range of resolutions 

between approximately 1.3 and 1.7 
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Figure 2. Resolution as a function of maximum tolerable deviation between fitted and true decay 
curves. Resolution is defined as a geometric increment between relaxation rates used to construct a 
set of decay curves that can fit data to within a maximum tolerable deviation. Different resolution 
curves will be obtained depending on the time increment and the range of decay rates included in 
construction of the basis curves. This curve was constructed using a range of decay rates between 0.3 
and 300 sec-1. Basis and fitted curves consisted or 2001 points incremented linearly over 10 seconds. 
1000 curves having relaxation rates spaced geometrically throughout the range were tested to identify 
the worst case. 

 

Implementation of Small and Orthonormal Basis Parameterizations 
Since a small number of basis curves with coarsely incremented relaxation rates suffices to precisely fit 

multicomponent exponential decay curves, a very simple protocol can be used to parsimoniously capture 

all the information in a relaxation measurement without making any assumptions about the underlying 

distribution of relaxation rates. This amplitude-only protocol, here denoted SBP (Small Basis 

Parameterization), starts by picking a series of single-exponential basis components whose fixed rates 

are geometrically incremented within the range of expected relaxation rates using the resolution factor 

as the increment. These basis curves are assembled into a basis matrix B . Then, Equation (1.5) is solved 

for the spectral vector s  giving the least-squares fit to the data. Because the number of basis curves is 

low, the spectral vector can be found directly without needing to consider ill-conditioning of the basis 

matrix or regularization of the spectral vector. An analysis of this type is shown in Figure 1. 

Among the notable shortcomings of this small basis parameterization, it is difficult to ascribe clear 

meaning to the values in the resulting spectral vector. Least-squares fitting using a small basis can exploit 

small differences of large amplitudes to accommodate physically inconsequential differences between 

the original and the modeled decay curves. This can lead to coefficients that oscillate, thereby obscuring 

the physical meaning of the parameters. This shortcoming can be alleviated, and many advantages 

accrued, if the basis set is appropriately orthonormalized before fitting to the data. For orthonormal basis 

parameterization (OBP), the fitting function given by Equation (1.4) is modified according to Equation 

(1.6) to give 
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 ( )( )-1

O O
y = B s = BO O s . (1.9) 

Here, O  orthonormalizes the small basis matrix B  based on its Singular Value Decomposition (SVD) to 

give the orthonormal basis O
B . This choice of SVD for orthonomalization vs. other possible methods 

such as QR decomposition, and the advantages claimed of OBP in the following paragraphs, are justified 

and discussed in Part 2 of this report.  

One advantage of OBP is that the resulting parameter values are uncorrelated. A second advantage is 

that, in the Bayesian perspective, the probability distributions for all the orthogonal basis parameter 

values have the same variance, equal to the noise variance of the data. Another advantage is that each 

parameter is the scalar product of the orthogonalized basis function with the decay curve and is in that 

sense a functi0nal of the time-domain data. As will be illustrated, these parameters are simultaneously 

functionals of the underlying distribution of relaxation rates, and in that sense have discernable physical 

meaning. The use of spectral-domain and time-domain functionals to parameterize and exploit multi-

component relaxation analysis is well established. Often, the functionals are calculated based on ILT-like 

interpretations of the data (Parker and Song, 2005). The recent use of logarithmic moments calculates 

useful functionals directly from the data (Petrov and Stapf, 2017). 

Figure 3 illustrates some consequential properties of orthogonal basis sets and related Fourier basis sets, 

discussed in more detail in Part 2 of this report. Panel A shows the orthonormalized basis functions. 

Higher index curves have increasing numbers of zero crossings. The weightings of intensities from the 

underlying distribution for these curves are shown in Panel B of Figure 3. Being functionals of the data 

with the indicated mappings to the rate distributions, orthogonal basis parameters give information 

about the positions of rates in the underlying distribution. The precision with which the underlying 

distribution can be specified is low because increasingly rapid oscillations in the rate domain basis 

functions create increasing amounts of intensity cancellation in the time domain basis functions. Panel C 

shows the singular values for these basis functions, which reflect the decreasing importance of the 

orthogonal basis functions in fitting to data. The solid line shows the singular values for a large (256) 

finely incremented basis. These values fall of very rapidly and approximately exponentially.  By about 15 

singular values, the importance drops below one part in 10,000. Small basis sets follow nearly the same 

curve but have somewhat less importance for the higher indices. This provides another indication of the 

low resolution available from multicomponent exponential analysis. 

Panel D of Figure 3 shows consequences along the time axis of using Fourier weightings of the rate 

distribution (not shown). These time domain functions are not orthogonal though they have been 

normalized. The advantage of the Fourier basis, as described below, is that it facilitates regularization 

when pseudo-continuous representation of the information in the decay curve is desired. The Fourier 

basis is discussed further in Part 2 of this report. 
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Figure 3. Basis vectors for orthonormal and Fourier basis parameterization. (A) Shapes of the first five 
orthonormalized basis vectors, plotted on a logarithmic scale to reveal behavior at short times. These 
were generated using 6, 12, 18, and 25 basis functions geometrically incremented within the same 
range. Shapes are quite similar and approach the limiting shape from SVD of a large (256 functions) 
basis set (black curve). (B) Weightings in the spectral dimension corresponding to the orthonormalized 
basis vectors determined from the large basis set. (C) Comparison of the relative singular values as a 
function of basis set size. For all basis set sizes, these remain very close to the singular values of a large 
basis set. The first several singular values and vectors are stiff and well defined by the data. The rapid 
decrease of these values shows that high-index coefficients have low importance for fitting regardless 
of the size of the basis set. They correspond to sloppy parameters. For orthonormalized functions 
determined by SVD, the number of zero crossings increases with the index into the SVD for both the 
time-domain and rate-domain weightings. (D) Normalized basis functions generated from Fourier 
weighting of components of a large (256 function) basis set. Data functionals calculated from curves 
in D lead to a Fourier series of coefficients that may be easily regularized. To facilitate visualization, 
signs of all basis functions are adjusted to have their first point non-negative in this figure. Though 
plotted using logarithmic time axes, the curves were computed and used with linear time spacing. 
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OBP is especially useful when used for comparisons among different samples thanks to the 

commensurate parameters it generates. To illustrate the need for commensurate parameters, consider 

the examples of on-flow measurements or large numbers of related measurements on patients. Results 

may be compared or used to train or exploit machine learning models. Assume that each measurement 

is performed using the same experimental protocol with comparable instruments, and that the same 

orthonormal basis set is used for analysis of each one. Under these conditions, each parameter is a 

functional that weighs, integrates, and combines precisely the same decay rate ranges of the underlying 

distribution. Each parameter also reveals unique (orthogonal) information about that underlying 

distribution. In contrast, a common approach of finding an appropriate number of components, and 

fitting rates and intensities for those components, may generate incommensurate parameterizations. 

For example, the approach might find different numbers of components for different samples, in which 

case it will not be clear how to handle missing components, and it will not be possible to know which 

components should be compared from sample-to-sample. Orthonormal basis parameterization has 

none of these ambiguities. 

 
Figure 4. Characterization of random distributions using Orthonormal Basis Parameterization. (A) 
Illustrative sampling of 500 randomly generated relaxation rate distributions, and the corresponding 
synthesized decay curves, colored according to their initial classification. (B) Unsupervised 
classification of decay curves based on two orthonormal basis parameters calculated from the decay 
curves. See text for details 
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Figure 4 provides an example of OBP-based classification using simulated data. This exercise was 

intended to mimic the permeation of water into a porous material. For these situations, free water 

typically has slow transverse relaxation rates, while absorbed water may sample different environments 

where it has faster relaxation rates. It could be important to distinguish among materials that differ in 

their pore properties. 

To roughly mimic this and to construct Figure 4, 500 relaxation rate distributions consisting of three 

components each were randomly synthesized to create a test data set. To generate each distribution, 

intensities of three components were randomly chosen and scaled to a total intensity of 1. To each of the 

three intensities, a relaxation rate was assigned. These relaxation rates were chosen randomly from 

within three pre-specified ranges (1.0-2.65, 7.0-18.5, 49.0-129.6) with components in each range having 

pre-specified widths (log widths = 0.15, 0.4, 0.4). Gaussian (on the log axis) distributions for each 

component centered on the randomly chosen relaxation rate, with the specified widths and intensities, 

were summed to create an underlying distribution for each simulated sample. These distributions of 

relaxation rates were used to generate a decay curve for each simulated sample. The decay curves had 

2001 points evenly spaced over 5 seconds, with the slowest and fastest relaxation rates residing in the 

range 0.5 and 700 per second. Random Gaussian noise with a standard deviation of 0.003 was added to 

each curve.  

Prior to the analysis, samples were arbitrarily classified as “orange” if the slowest rate contained > 25% 

of the total intensity. The remaining samples were classified as “blue” if the remaining intensity was >50% 

in the middle rate component, and “green” if the remaining intensity was > 50% in the fastest 

component. Example relaxation rate distributions and decay curves are shown in Figure 4. The decay 

curves were processed using OBP, and dot plots of pairs of parameter values were constructed and 

colored according to the classification. Even without employing sophisticated classification methods, it 

is evident from Figure 4 that the unsupervised OBP treatment can successfully classify most samples. 

Discrete Adjustable Rate Component Methods 

Autoregressive approaches and the Matrix Pencil method 
As described in references (Fricke et al., 2020) (Hua and Sarkar, 1990) (Sarkar and Pereira, 1995), 

multicomponent exponential time series can be efficiently analyzed using any of a number of linear 

algebraic methods. Though several names are used for this class of methods, in this report the term 

Autoregressive Modeling (ARM) is preferred. Methods in this class rely on model-independent matrix 

factorizations or polynomial root-finding exercises to extract parameters. The results do have physical 

meaning if interpreted as exponential models, but they can be applied to non-exponential data. 

Autoregressive methods used in NMR include various implementations of Linear Prediction (Koehl, 

1999), the Filter Diagonal Method (Mandelshtam, 2001), and the Matrix Pencil Method. The Matrix Pencil 

method is favored in this report. 

Autoregressive methods applied to real-valued but noisy multicomponent exponential data can generate 

large numbers of parameters. Complex-valued components modeling oscillatory behavior often appear 

among these parameters. These appear as complex-conjugate pairs to ensure a net real-valued 

contribution, and they typically model noise or artifacts of imperfect measurements, such as oscillations 

in the first several spin-echoes sometimes observed in transverse relaxation measurements. Component 

selection heuristics are therefore needed to determine the number of components to extract, and to 

evaluate if the components are physically meaningful. For example, oscillatory components can be 
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excluded because they model noise or non-exponential components. Components having decay rates 

that are fast relative to the decay sampling rate can often be excluded because they model noise in the 

first few points. Depending on circumstances, components decaying (or growing) much more slowly than 

the total acquisition time may be rejected as unphysical, but they also can model baseline offsets or 

equilibrium levels towards which magnetization relaxes. 

Least squares refinement 
Least-squares optimization of parameters generated by the Matrix Pencil Method usually improves fit 

quality. A speculative reason for this is that Matrix Pencil implementations involve Singular Value 

Decomposition, which minimizes squares of deviations in directions perpendicular to the solution 

vectors. Least-squares fitting, as usually implemented and as used here, minimizes squares of deviations 

perpendicular to the time axis. These differences in the measure of distance could lead to different 

optima. In any case, parameter value adjustments resulting from least-squares refinement are usually 

small. It is nevertheless worthwhile when precise characterization or comparison is needed. In this report, 

the autoregressive Matrix Pencil Method and component selection heuristics are used to determine the 

number of justifiable components, and to provide high-quality initial values for the parameters. Least-

squares refinement is routinely and reliably used to quickly find nearby local optima. The combined 

method is herein denoted ARM+LSQ. 

Uncertainty analysis of ARM+LSQ parameters 

Uncertainty analysis frequently involves the matrix of mixed second derivatives of 
2  with respect to the 

parameters, called the Fisher Information Matrix. The inverse of this matrix gives the parameter variance-

covariance matrix. From the Bayesian perspective, the diagonal elements of a parameter variance-

covariance matrix give lower bounds for variances for the parameter values, assuming the distribution of 

likely parameter values is normal. These variances (or the corresponding standard deviations) are easily 

calculated and reported with the parameters themselves. Monte Carlo methods can also be used to 

explore ranges of parameter values. For data sets where more comprehensive uncertainty analysis is 

justified, or when formulas for the Fisher Information Matrix elements are not available, it can be 

advantageous and informative to carry out such explorations. A more detailed treatment of parameter 

uncertainty analysis is provided in Part 2 of this report. 

Figure 5 shows the results of using ARM+LSQ to analyze a transverse relaxation measurement of a 

sample of ground roasted coffee beans mixed with an equal weight of water. Results are presented as a 

spike plot, where the positions of the vertical spikes indicate the relaxation rates of components, and the 

heights of the spikes indicates the amplitudes of the contributions of those components. Component 

selection was based on finding the maximum number of components that yielded exclusively real-valued 

relaxation rates and amplitudes. A maximum of 6 components could be justified. Attempting to extract 

a smaller number of parameters gives components that are spaced more widely. The uncertainties in 

these parameters were determined using the Fisher Information Matrix as described above and in more 

detail in Part 2 of this report. The pseudo-continuous distributions reflect the resolution of the 

measurement and were found using the convolution method described in detail below. 
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Figure 5. Discrete fits using ARM+LSQ, related pseudo-continuous renderings, and uncertainty 
analysis. Data are from a transverse relaxation measurement of equal weights of water and roasted 
ground coffee beans. (A) Spike plot showing rates and their amplitudes for 4-component (blue) and 6-
component (orange) fits. Inset is the pseudo-continuous rendering of these fits obtained by convolving 
the spike plot with a Gaussian function to show the resolution of the data. (B) Preferred form for 
displaying results. The spike plot showing the discrete fit of six components (orange) conveys the 
information available from the data. The superimposed pseudo-continuous distribution (blue) conveys 
the resolution available from the measurement. The parameter uncertainties (heavy black line) are 
encoded as the widths of Gaussian functions. On this scale, the uncertainties are small relative to the 
line thickness. Figure 7 shows a case where noisier data leads to greater, more easily visualized, 
uncertainties. 
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Average Relaxation Rates and Average Relaxation Times 
It is frequently useful to summarize properties of a distribution using a few parameters, for example, 

using moments or other data functionals. In this work, compact and simple summary statistics are 

provided for the multicomponent exponential relaxation problem by the average relaxation rate, R , 

and the reciprocal of the average relaxation time, 1/ T . These are denoted herein as the rate-average 

relaxation rate, and the time-average relaxation rate, respectively. Rate-average relaxation rates weigh 

rapidly relaxing components more heavily, whereas time-average relaxation rates weigh slowly relaxing 

components more heavily. In general 1R T , and the values are the same only when there is a 

single sharp component. It is also noteworthy that for a data trace ( )d t , R  is the initial slope of a plot 

of ( )( )log d t  vs. t  , while T  is the integral of the trace if the first point is normalized to 1 and if the 

trace is measured for a time long compared to its slowest relaxation rate. R  is subject to increased 

uncertainty if the initial part of the decay curve is not adequately sampled, and 1/ T  is subject to 

increased uncertainty if the decay curve is not sampled long enough. 

Underlying distributions can be partially characterized using these parameters. For example, if the 

underlying rate distribution is assumed log-normal, and if   and   are the location and width 

parameters in the log-normal distribution, then 

 ( )
2

log
2

R


= +   (1.10) 
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log
2T




 
= −  

 

.  (1.11) 

Whether the underlying distribution is log-normal or not, the size of the difference between these 

averages (or their logarithms) gives a measure of the width of that distribution. The idea and intent are 

reminiscent of the weight-average and number-average molecular weights that are widely used in 

polymer chemistry as simple measures that characterize polymer polydispersity. In practice, calculating 

rate-average relaxation rates and time-average relaxation rates is conveniently achieved using 

amplitudes and rates from either the SBP analysis or from ARM+LSQ. 

Quasi-Continuous Renderings 
Widely used Inverse Laplace Transformation algorithms applied to magnetic resonance relaxation data 

do not produce mathematically unique and reversible transforms, but instead produce interpretations of 

the data. In this sense, the ILT moniker can be somewhat misleading, and in this report the phrase quasi-

continuous rendering is preferred. As usually understood, these renderings of amplitude as a function of 

relaxation rate must be constructed using many more than the 10~15 basis amplitudes that can be 

determined uniquely from the data alone. Many different amplitude combinations can be found that are 

mutually compensatory and that can assume wide ranges of values while remaining fully compatible with 

the data, as discussed in the Introduction and described in more detail in Part 2 of this report. 

Regularization can be understood from this perspective as choosing values of these ill-defined parameter 

combinations to suppress undesirable features appearing in the spectrum of relaxation rates. In this view, 
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the highly parsimonious spike representations resulting from ARM+LSQ are objectively regularized 

because all undefinable parameter combinations are set to zero. However, by tradition, and in the sense 

used in this report, regularization generates smooth, sometimes broad distributions of relaxation rates, 

even if the data come from discrete underlying source distributions. The widths of peaks in the 

distributions depend not only on the source distributions and the noise, but also on the regularization 

algorithm and the degree of regularization applied. 

It is reasonable to ask, and hard to answer: When traditional regularization methods are used, what is the 

physical meaning of the intensity at a given relaxation rate? Non-expert users of quasi-continuous 

renderings hold tacit and reasonable expectations concerning the physical meaning of these renderings. 

Reasonable expectations include having a spectrum-like or chromatogram-like appearance, a 

correspondence of high intensities with the presence of material in the sample having relaxation rates in 

the vicinity of the intensity maxima, and a lack of visually prominent features that may inadvertently 

suggest the presence of information that is not justified by the data. It is fair to expect that relatively 

broad peaks should correspond to sets or distributions of components that span a wide range of 

relaxation rates. 

Part 2 of this report motivates and describes an approach to performing regularization in a controlled 

way that leads to quasi-continuous renderings that meet these reasonable expectations. Since there is 

no established meaning for the widths of peaks in these quasi-continuous renderings, in this work a 

meaning is chosen and imposed to add to the information conveyed by the plots. In particular, the peak 

widths are regularized to convey the resolution of the data. The approach tames excursions of the ill-

defined parameter combinations by regularization in a Fourier domain. 

A brief and approximate justification of the method, different from that presented in Part 2, begins by 

examining the coefficients for constructing ill-defined parameter combinations. These coefficients have 

fluctuating signs when arrayed along the relaxation rate axis, leading to near cancellation of intensities 

in the resulting curves along the time axis. The fluctuations have frequency components above that set 

by the resolution of the measurements. Dealing with rapidly fluctuating ill-defined components is 

straightforward in the Fourier domain because such high frequency components can be trivially 

identified and damped or zeroed. Transforming back to the relaxation rate domain produces quasi-

continuous renderings having the reasonably expected properties listed above. The resolution of the 

rendering in the rate domain can be controlled through the number of Fourier components used and the 

way they are damped. 

A very simple application of this idea leads to the following straightforward algorithm for quasi-

continuous renderings. The method does not even require overt transformation to and from the Fourier 

domain. Begin with an initially empty spectral vector with a fine spacing between rates. Parameterize 

the data using the ARM-LSQ method. For each coefficient in the discrete parsimonious representation 

of s , enter the amplitude of the component at the position in the spectral vector that is closest to the 

rate associated with the component. This is called a spike representation in this report. Convolve the 

resulting spike representation with a broadening function whose width corresponds to the resolution of 

the data. A reasonable choice for broadening is a Gaussian shape, though more carefully chosen shapes 

may be appropriate. Behind the scenes, convolution algorithms may work in a Fourier domain, but that 

detail is unimportant for practical implementation using high-level programming tools.  

As shown in Figure 5, simultaneous display of both the spike plot and the quasi-continuous convolved 

representation is very useful for visually communicating results to people. Parameter uncertainty can 
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also be simultaneously shown in such plots. The spike representation of discrete components conveys a 

parsimonious encapsulation of nearly all the information available from the measurement. If the 

underlying distribution were discrete, this would be the best representation of that distribution 

achievable with the number of parameters allowed by the heuristics. The width of signals in the quasi-

continuous rendering conveys the resolution of the measurement. Parameter uncertainties from the 

Fisher Information Matrix can be revealed by superimposing corresponding widths on the spike plot. 

Investigators who prefer the continuous style of display find all the information extracted from the data 

in plots such as Figure 5-B. This includes parsimonious discrete component amplitudes and rates, their 

uncertainties, and the resolution of the data. 

Applications to Two-Dimensional Measurement 
All the protocols listed above are adaptable to processing and display of two-dimensional 

measurements. A few aspects of this will be illustrated in this section. Equations (1.12) and (1.13) give 

expressions for a predicted two-dimensional relaxation spectrum Y , that agrees with the data matrix 

D . 

 c r
Y = B SB   (1.12) 

 c r
D = Y + N = B SB + N   (1.13) 

Here, S  is the spectral matrix, 
c

B  is the column-spanning exponential basis matrix, 
r

B  is the row-

spanning exponential basis matrix, and N  contains the noise. 

Two-dimensional Small Basis Parameterization is almost identical to the one-dimensional case. Fixed-

rate basis matrices, 
c

B  and 
r

B , are constructed using unit intensity relaxation curves having 

geometrically incremented relaxation rates. The increments are chosen according to the resolution, and 

ranges are chosen to span the column and row spaces of the data matrix, just as with the one-dimensional 

case. Their inverses are used to find a least-squares solution to Equation (1.13) using standard methods. 

For Orthonormal Basis Parameterization, the procedure is the same except the basis matrices are 

orthonormalized first using SVD, just as done in the one-dimensional case. For both small basis and 

orthonormal basis cases, the result is a matrix of coefficients stored in the spectral matrix. 

For autoregressive methods in general, Equation (1.13) can be solved uniquely for a chosen rank because  

c
B  and 

r
B  are required to have a very limiting and specific (Vandermonde) form, or a least-squares 

approximation of that form. Recent work (Fricke et al., 2020) describes successful use of the matrix pencil 

method for analyzing two-dimensional relaxometry data sets. In this report, output parameters are 

refined using least-squares optimization, as was done for the one-dimensional case. Complications arise 

for certain two-dimensional protocols including the longitudinal-transverse (T1-T2) measurement, 

where relaxation towards non-zero magnetization occurs in one or both dimensions. In these cases, rows 

(or columns) of the spectral matrix are overtly linearly dependent. Equation (1.13) must be appropriately 

modified in these cases.  

For two-dimensional data, uncertainty analysis of ARM+LSQ results using the Fisher Information Matrix 

approach is possible in principle. However, Monte Carlo methods are used in this report for parameter 

uncertainty analysis in two-dimensional measurements. 
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Figure 4 shows analysis of a T1-T2 measurement applied to a mixture of ground roasted coffee beans and 

water (1:1 by weight). Panels A and B show the four components recommended by component selection 

heuristics for each dimension. The dotted lines show the decay curves calculated from parameters 

generated by the Matrix Pencil method. The colored lines show the corresponding matrix rows and 

columns that the algorithm generates during its factorization of the data matrix. The very slowly 

decaying components correspond to the expected behavior of the offset and equilibrium magnetization 

for the measurement. To perform the analysis, spacing between increments in the indirect dimension 

must be even, but in the interest of experimental efficiency, the spacing between time increments was 

spaced geometrically. Interpolation (cubic) of the values in the indirect dimension was performed to 

create regularly incremented time values in the indirect dimension. The interpolated curves are shown in 

Panel C, along with the residuals.  

Following two-dimensional ARM, least-squares refinement and MC explorations was performed to 

generate Panel D. Intensities for each step were summed in a matrix of bins, each bin encompassing a 

small range of relaxation rate values around those labeling the bin. A contour plot of the results is given 

in Panel D. Note that one of the cross peaks is negative, a not uncommon finding in this laboratory. A 

more careful study involving models and simulations is necessary to fully interpret these results. The MC 

calculations did include variation of the offset and the equilibrium magnetization, as well as the flip angle 

(see discussion in Part 2). These parameters can contribute to marginalized uncertainties since they may 

vary from sample-to-sample due to experimental circumstances. They are not included in such plots 

because they offer no insight into the sample itself. 
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Figure 6. Analysis of longitudinal-transverse two-dimensional relaxation data using ARM+LSQ. 
Transverse (A) and longitudinal (B) decay components extracted from the Vandermonde matrices 
determined using the Matrix Pencil method. Based on the component selection heuristics, four 
components including offsets were computed for each dimension. Dotted lines are based on the ARM-
derived relaxation rates, noisy lines are corresponding components that emerge from data matrix 
factorization using that algorithm. (C) Interpolated original data with offset applied, and residuals after 
ARM+LSQ analysis. (D) Distributions of rates and intensities displayed by a contour plot calculated 
using Monte Carlo explorations of probable parameter values. The dotted line shows R1=R2, and 
signals above this line must arise from exchange or cross relaxation. Positive and negative intensities 
are shown in black and red, respectively. For the two-dimensional data set, in contrast to the one-
dimensional measurement in Figure 5, fewer points were obtained, and a different sample was used 
under less optimal conditions, so only 3 non-zero rate components could be obtained. 
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PART 2: DETAILS AND JUSTIFICATIONS OF THE PROTOCOLS 

Fisher Information and Sloppy Models in relation to multicomponent 

exponential relaxation data 

Definitions of Sloppy Models and Fisher Information 
Multi-exponential fitting exemplifies a common occurrence in models of complex systems. In detailed 

descriptions of complex systems, numerous parameters are often used to fully describe the underlying 

behavior. When examined by a non-specific measurement, many combinations of the detailed 

parameters become mutually compensatory, and only a few parameter combinations remain relevant to 

describing the measurement results. Models exhibiting this type of behavior have been denoted sloppy 

(Transtrum et al., 2015). In the context of sloppy models, parameter combinations that make little or no 

difference to predicting or fitting the data are also called sloppy. The few remaining stiff parameter 

combinations capture the experimentally available information and serve as useful descriptors of the 

measurement. Sometimes, stiff parameter combinations correspond to familiar macroscopic descriptors 

and properties of systems (Machta et al., 2013). For example, a diffusion coefficient is a stiff parameter 

that can result from underlying molecular dynamics whose detailed description may be enormously 

complicated. As one of these sloppy models, multicomponent exponential relaxation can be approached 

through identification of stiff parameter combinations, determination of stiff parameter values that 

capture the information available from the data, and determination of the physical meaning of those stiff 

parameter combinations. Recognition of the sloppy parameter combinations is also valuable, allowing 

them to be appropriately handled. 

Sloppy model publications offer a useful approach for finding the stiff and sloppy parameter 

combinations based on Fisher Information. Fisher information is well known and used in several fields 

but, to the knowledge of the author, is not currently used in magnetic resonance relaxation analysis. 

Useful properties of Fisher Information have been concisely summarized (Coe, 2009) and didactic 

introductions are found via the sloppy model citations given above, and elsewhere (Caticha, 2015). Since 

Fisher Information can be used as a unique metric defining distances between probability distributions, 

it is a foundational concept in the field of Information Geometry (Amari, 2016). Here, only a simplified 

view of Fisher Information can be provided, and a few of the key results used in this report are listed.  

Optimized parameters lie in minima of plots of 
2  vs. parameter values. For a single parameter problem, 

if a minimum is steep, characterized by a relatively high second derivative, then the parameter can be 

considered well-defined, and the information content of data concerning that parameter is large. When 

a minimum is shallow, characterized by a relatively low second derivative, then the parameter can be 

considered poorly defined, and the information content of the data concerning that parameter is small. 

For a single parameter, the Fisher Information I  is defined as the second derivative of 
2  with respect 

to that parameter. Since the variance in the distribution of a parameter value will be low if it lies in a steep 

minimum, it is reasonable that the reciprocal of the Fisher information gives the parameter variance.  

For multiparameter problems, the matrix of mixed second partial derivatives of 
2  with respect to the 

parameters (the Hessian of 
2 ) characterizes the information content of the data and is called the Fisher 

Information Matrix, I , with elements 
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 

.  (2.1) 

When the parameter values covary, then the mixed partial derivatives are non-zero, and I  has off-

diagonal elements. Another, usually equivalent, expression for Fisher information matrix elements is  
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  =
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=

 
   (2.2) 

This form follows from Equation (2.1) if it is assumed that the expressions for iy  can be approximated 

linearly over relevant parameter ranges. 

As noted, the inverse of I  predicts the parameter covariance matrix assuming that 
2  depends linearly 

on parameter values. However, if the dependence is not linear over a sufficiently large span of parameter 

values, or if other conditions hold, then the inverse of I  gives only a lower bound on the marginalized 

variances and covariances, called the Cramér-Rao lower bound. The qualifier marginalized is important—

it implies that the method gives variances that are larger than they would be if the parameters were 

varied independently because couplings and mutual compensatory behaviors among parameters are 

considered.  

Eigenvalue decomposition of I  identifies the stiff and sloppy parameter combinations. Eigenvectors 

corresponding to the large eigenvalues define stiff parameter combinations, while those with small 

eigenvalues define sloppy parameter combinations. 

 
T

I = VΓV   (2.3) 

Here, Γ  is a diagonal matrix containing the eigenvalues of I , and V  is an orthonormal matrix of 

eigenvectors. The coefficients of the raw parameters that combine into orthogonal parameter 

combinations are provided by elements of these eigenvectors. It is assumed throughout this report that 

the eigenvalues, and the corresponding eigenvectors, are sorted from largest to smallest. It will be seen 

below that the eigenvalue decomposition of I  also leads to the Orthogonal Basis Parameterization 

strategy advocated in this report. 

Fisher Information expressions for multi-component relaxation analysis 

To explore the use of I  for the multi-component relaxation analysis problem, first consider a basis 

matrix B  for the amplitude-only case. This consists of mono-exponential decay curves whose relaxation 

rates are fixed and spaced geometrically between a lower and upper limit. Using this basis matrix and 

solving Equation (1.5) gives an estimate of the spectral vector. We can evaluate I  using either Equation 

(2.1) or (2.2), which both give 

 ( ) ( ), 2
1

1
exp exp

dN

i i

i

I r t r t   
 =

= − −   (2.4) 

Note that when applied to the amplitude-only problem, this matrix is independent of the amplitudes 

assigned to the components. I  can therefore be written for the amplitude-only case in matrix notation 

as 
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2

1



T
I = B B   (2.5) 

A continuous limit expression for the elements of I  can be obtained by replacing the discrete sums in 

(2.4) with continuous functions that extend to infinity, and by integrating symbolically, giving 

 
, 2

1 1
Î

r r
 

 

 
=   + 

  (2.6) 

The carat emphasizes that matrix elements are determined symbolically rather than from discrete 

sampling. Î  is very similar to the notorious Hilbert matrix, whose elements are given by 

( ), 1/ 1H   = + − , where   and   are row and column indices. The Hilbert matrix is a prototypical 

example of a severely ill-conditioned matrix, so Î  is expected and observed  to be similarly ill-

conditioned when large numbers of basis curves are used. 

Next consider the case wherein both the amplitudes and the logarithms of rates are adjusted. (Different 

expressions are obtained when the rates are varied linearly.) For this case it is convenient to arrange the 

Fisher matrix block-wise. The two diagonal blocks give derivatives involving amplitude-amplitude cross 

terms, 
,

,

s sI  , and rate-rate cross terms, 
,

,

r rI  , while the non-diagonal blocks mix derivatives with respect 

to amplitudes and rates, 
,

,

s rI   . 

The resulting expressions for Fisher matrix elements are 
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Truncated Singular Value Decomposition of the basis matrix in relation to Fisher Information 
Singular Value Decomposition (SVD) is a widely used matrix factorization algorithm that frequently plays 

a critical role in solving ill-posed problems like Equation (1.5). SVD is also theoretically related to 

eigenvalue decomposition of the Fisher information matrix. This enables practical algorithms for finding 

stiff parameter combinations in the context of Sloppy Models and underlies the orthonormalization 

strategy suggested here for OBP.  

SVD factorizes the basis matrix into a product of three other matrices, traditionally written as 

 
SVD

⎯⎯⎯→ T
B UΣV   (2.10) 
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The columns of U  form an orthonormal basis set that spans the column space of B , while the rows of 
T

V  form an orthonormal basis set that spans the row space of B . Σ  is a diagonal matrix whose 
elements are the singular values. The singular values weigh the importance of the singular vectors in 

reproducing B . The singular values are sorted from largest to smallest, and the corresponding vectors in 

U  and V are sorted accordingly. 

Orthogonality properties of SVD matrix factors allow construction of a pseudo-inverse which can be used 
to solve (1.5) 

 
-1 -1 T

B = VΣ U   (2.11) 

In the present case, since the columns of B  have a low degree of linear independence, only a limited 
number of the singular values are numerically significant. This is illustrated in Figure 3, where the singular 
values (which correspond to square roots of the eigenvalues of the Fisher Information Matrix as 
demonstrated below) are shown to decay approximately geometrically. For singular values that are very 

small, elements of the matrix -1
Σ  become unmanageably large, and their use in data fitting becomes 

overly sensitive to noise. 

A simple and powerful way to deal with reciprocals of vanishingly small singular values recognizes that 
smaller singular values and the corresponding singular vectors, corresponding to sloppy parameter 
combinations, refer to the (effective) null space of the basis matrix. Sloppy, null space components make 
no discernable contribution to the quality of the fit. Their fitted magnitudes give no useful information 
about the relaxing system. SVD allows these components to be handled appropriately. The simplest way 
to handle them is to discard them. If one keeps only the first k  numerically relevant columns of W  and 

V , and keeps the upper left k -by- k  sub-matrix of Σ  to create the truncated matrices ( )k
U , ( )k

V , and 

( )k
Σ , then the product 

 ( ) ( ) ( ) ( )k k k k
= T

B U Σ V   (2.12) 

is the best least-squares rank- k  representation of the original matrix B . Based on this, a naive method 
for solving Equation (1.5) for a large, finely incremented basis set involves the inverse of this truncated 
singular value decomposition. The result is 

 ( ) ( ) ( ) ( ) ( )k k k k k
= -1 -1 T

s B d = V Σ U d .  (2.13) 

The subscript k  emphasizes that only k  independent parameters make their way into the analysis, even 

if the results are conveyed using a quasi-continuous spectrum- or chromatogram-like display with ( )k
s  

having hundreds or thousands of points. This expression was used to generate the green curve in Figure 

1A. In this report, the amount of truncation applied to SVD is always stated in context. Therefore, the 

subscript k  is dropped throughout. 

There is a useful connection between the Fisher Information Matrix I  and SVD of the basis matrix B . 

Theory shows that, upon singular value decomposition of B , the matrix V  contains the eigenvectors of 
T

B B , while the diagonal elements of Σ  are the square roots of the corresponding eigenvalues, so 
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2
Γ = Σ  . According to Equation (2.3), I  is proportional to the same product 

T
B B . For the amplitude-

only fitting problem, the eigenvalue decomposition of I  is therefore related to the SVD of B  as follows 

 2

2 2

1 1

 

T T
I = VΓV = VΣ V .  (2.14) 

The V matrices are identical in eigenvalue decompositions and in singular value decompositions of 

Fisher information matrices in cases where those matrices are sufficiently well-conditioned. This 

observation is useful because SVD can be used in practice for orthonormalizing basis sets, even when 

they are ill-conditioned. 

Orthonormal Basis Parameterization interpretation and relation to Fisher Information 
For the amplitude-only case, the Fisher Information Matrix is given by Equation (2.5). 

Orthonormalization of the basis set B  to get O
B  gives another Fisher information matrix in that new 

basis 

 
2 2

1 1

 
=T

O O OI = B B E   (2.15) 

where, since O
B  is orthonormal, E  is the identity matrix. Thus, for an orthonormal basis, the inverse of 

the Fisher Information Matrix gives the same Cramér-Rao lower bound, 2 , for all orthonormalized 

parameters. 

Considering Equations (2.5) and (2.15) for the Fisher Information Matrix in the two basis sets, and finding 

a transformation that converts I  to O
I , shows that O

B  can be obtained from B   

 O
B = BO   (2.16) 

 
1
2

- -1
O = VΓ = VΣ   (2.17) 

Equivalently, when B  is subjected to SVD according to Equation (2.12), the orthonormalized version is  

 O
B = U  . (2.18) 

Though other orthonormalization strategies are possible, such as QR decomposition, using Equation 

(2.17)  seems most natural given its relation to the Fisher Information Matrix and the Sloppy Model 

perspective adopted in the report. In terms of O
B  the spectral vector O

s  is found by optimizing the 

following expressions 

 O O
y = B s   (2.19) 

 O O
d = B s + ε   (2.20) 

Parameterizations using either B  or O
B  convey identical information because the bases and 

parameters can be transformed one into the other. 
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It is worthwhile to consider if the orthogonal basis parameters have a physical interpretation. Figure 3 

plots orthogonal basis functions and parameters to illustrate their properties. Panel A shows the shapes 

of the orthonormalized basis vectors stored in the rows of O
B . As the number of pure exponential basis 

curves in B  increases, the shapes of the orthogonalized basis curves in O
B approach a limit for finely-

spaced basis curves. This limiting shape is already approximated very well using a relatively small 

numbers of basis curves. Figure 3 Panel C shows that the importance of the orthonormal basis functions 

decreases rapidly, and the behavior is quite similar regardless of the number of basis functions used.  

Figure 3, Panel B shows the corresponding orthonormal vectors that weigh the basis curves to give curves 

in Panel A. These basis weightings suggest that the different orthogonal basis functions can be ascribed 

qualitative physical meaning relative to the underlying distribution. Because it has no zero crossings (blue 

curve), the first rate-domain coefficient integrates intensity from the entire distribution. Because it has 

one zero crossing (orange curve), the second parameter is related to the difference between 

contributions of fast and slow contributions. Third and higher parameters reflect contributions from 

three and more regions. By invoking increasing numbers of orthogonal basis parameters, the underlying 

distribution of components is described with increasing precision. This is somewhat analogous to the way 

increasing the number of Fourier basis functions increases the fineness with which frequencies of an 

oscillating signal can be localized. When Fourier weightings (not shown) are overtly used to weigh the 

basis decay curves, they lead to time domain weighting functions shown in Figure 3 Panel D. These 

functions are not simple and have the disadvantage of not being orthogonal along the time axis. They 

have advantages, however, for regularization as discussed below. 

Monte Carlo Exploration of Component Selection Heuristics and Uncertainty 

in Parameters Estimated using Autoregressive Methods 
Monte Carlo (MC) explorations of likely parameter values under different assumptions about the number 

of definable components have been reported (Prange and Song, 2010) to gain insight into the best ways 

to evaluate multicomponent exponential decay data. In this report, MC is used to validate and illuminate 

predictions of ARM+LSQ analysis with component selection heuristics. The approach can also help 

describe parameter uncertainties. To explore this, a decay curve was created using the starting 

distribution shown in Figure 1, and Gaussian random noise was added to the level of 0.3% of the first 

point.  

The ARM+LSQ analysis suggests that three components are appropriate for parameterizing these 

synthesized noisy data. For the case of three components, the starting parameter values in the MC 

calculations were taken from the ARM+LSQ analysis. Local minima for four- and five-component cases 

are not available from the methods applied to noisy data because the additional components are 

oscillatory and unphysical. Initial guesses were therefore taken from analysis of the decay curve prior to 

adding noise, and these parameters were used as starting values in Monte Carlo analysis of the noisy 

data. This allows exploration of situations where, by hypothesis or inspiration, values of parameters 

beyond those available from ARM+LSQ are considered. 

Figure 7 displays parameter values and their uncertainties determined using MC explorations compared 

to the Cramér-Rao lower bounds on the parameters given by ARM+LSQ. The orange curves were 

generated using Gaussian components having positions and integrated amplitudes coming from the 

ARM+LSQ fits. Widths of the components are the marginalized standard deviations of the rates from the 

Cramér-Rao bounds given by the inverse Fisher information matrices. The blue curves are determined 
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from binning the MC calculations. Amplitudes of the components for each step are added in the bin 

corresponding to the relaxation rate sampled by the algorithm. For both types of curves, the total 

amplitude was normalized to unity prior to plotting. 

 
Figure 7. Parameter uncertainties depend on the number of parameters extracted. Three (A), four (B) 
and five (C) parameters were fitted to noisy decay curves generated using the starting distribution 
described in Figure 1. Orange lines use Gaussian distributions to convey uncertainties determined from 
Fisher Information Matrices. Blue lines convey uncertainties as amplitude-weighted distributions of 
relaxation rates sampled during Monte Carlo explorations. 

 

Using three-components as suggested by ARM+LSQ using component selection heuristics, the 

components appear mono-modal in both types of display. For this example, the MC method found 

slightly different maximum likelihood values compared to ARM+LSQ, though that is not always the case. 

Monte Carlo also finds higher uncertainties compared to the Cramér-Rao lower bound. This is not 

surprising if the response of 
2  to parameter variations is slightly non-parabolic. For the four-

component case, MC methods find several different parameter combinations that are similarly likely to 

account for the data. Standard deviations from the Cramér-Rao lower-bound do not accommodate this 

behavior because of the underlying assumption of a locally parabolic 
2  surface. For the five-component 

case, the covariances of the parameters lead to Cramér-Rao lower-bound uncertainties that are very 

large relative to the differences in the optimized relaxation rates. This is supported by broad but jagged 

distributions from MC. Inspection of the parameter value trajectories from MC (not shown) indicate that 

the parameter values do not settle into well-defined ranges, but instead appear to be diffusing in a very 

large parameter space. This indicates that only a small region of the available likely parameter space is 

explored by the algorithm in the allotted number of steps (25,000). 

Taken together, results of the MC calculations and the Cramér-Rao lower bound suggest that ARM+LSQ, 

in conjunction with physically defensible component selection heuristics, gives an appropriate 

parameterization of the data (Fricke et al., 2020). Using fewer components gives inferior fit quality, while 

using more components opens large regions of parameter space, allowing mutual compensation and 

giving ambiguous parameter values.  

Quasi-Continuous Rendering via Fourier Domain Regularization 
A regularization protocol that builds on the parsimonious parameterization methods described above, 

and that meets reasonable user expectations, was introduced qualitatively in Part 1 of this report. The 
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approach can be further justified and understood through consideration of the distortion and resolution 

loss that results from truncated SVD analysis starting with a known, sharp distribution.  

 
Figure 8. Fourier analysis of a spike distribution and the distribution determined using truncated SVD 
to analyze the single-component decay curve. (A) Spike distribution (orange) in the spectral domain 
leads to sinc-like baseline oscillations after fitting the decay curve using t-SVD. (B) Fourier index 
domain representation of the curves in panel A. (Only real components are shown.) In the Fourier index 
domain, the fitted distribution is abruptly truncated and distorted for high-index components. This 
suggests that regularization can be easily achieved in the Fourier index domain by controlling phases, 
amplitudes, and fall-off of the coefficients. 

 

Figure 8A shows the result of using truncated SVD to fit a single component spike distribution. The spike 

(orange) was used to generate a noiseless decay curve. Analyzing that decay curve using a geometrically 

incremented (256 components) amplitude-only basis set in conjunction with the truncated (k=15) SVD 

algorithm gives the result plotted in blue. The result appears much like the convolution of the starting 
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spike with a sinc ( ( )sin x x ) function. Since sinc-like distortions are frequently caused by truncation of 

signals in a Fourier domain, this suggests that truncated SVD processing has roughly the same effect as 

calculating the inverse Fourier transform of the input spike, truncating that representation sharply at a 

cutoff, and then performing the forward Fourier transform to regenerate the original spectral domain.  

In the following, domains shown in Figure 8 will be denoted as the spectral domain (Panel A), and the 

Fourier index domain (Panel B). In the Fourier index domain, inspection of the spectral vector from 

truncated SVD compared to that of the spike confirms that truncation is a good approximation to the net 

effect of the analysis protocol. Besides near truncation, higher index but small components are found in 

the Fourier index representation. In NMR spectroscopy, artifacts like these are readily repaired using 

known techniques. This suggests that it would be simpler and more physically meaningful if 

multicomponent exponential relaxation data are fitted and/or regularized in the Fourier index domain. 

The Fourier regularization approach is formally described starting with Equation (1.6), and replacing Q  

and its inverse with the unitary matrix F  that performs Fourier transformation, and its inverse 

(Hermitian transpose) †
F , giving 

 F F
y = B s ,  (2.21) 

were F
B = BF  and 

†

F
s = F s . This rearranges to 

 
-1

F F
B d = s .  (2.22) 

 

Working in the Fourier index domain enables simple manipulations to directly suppress oscillations and 

unphysical features, and to introduce desired features, before converting back to the relaxation rate 

domain. Conventional regularization methods also suppress oscillations and create smoothness in the 

spectral domain. This is achieved, for example, by imposing non-negativity. Also, instead of truncating 

the singular values and vectors, Tikhonov regularization imposes smoothness and suppresses baseline 

distortions using a regularization constant   and by replacing reciprocals of singular values in Equation 

(2.11) by 

 1

2

i
i

i 

− 
 →

 +
.  (2.23) 

Regularization in the Fourier index domain is more versatile and easier to design, and the consequences 

are easier to understand physically. For example, phases of components can be fixed at 0˚ or 180˚ to 

accommodate negative intensities that arise in some measurements. Amplitudes in the Fourier index 

domain might be extended or damped at high indices using a function that conveys the resolution 

appropriate to the measurement. Resolution might even be chosen specifically for individual rate 

components if appropriate prior knowledge is available. The use of Equation (2.23) could also be 

examined in this context. From the sloppy model perspective, the proposed regularization protocol 

achieves desired behavior of sloppy parameter combinations in the spectral domain by imposing a 

smooth decay and eventual full zeroing of components in the Fourier index domain.  
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Uncertainty Analysis for Two-Dimensional Measurements 
The Fisher Information Matrix can be defined for a two-dimensional data set using a double summation 

 
, ,

, 2
,

1 i j i j

i j

Y Y
I 

  

 
=

 
   (2.24) 

The only difference from the one-dimensional case is that the sum is over all elements of the predicted 

data matrix rather than over a vector. Note, however, that the indices in Equation (2.24) are   and   

which refer to variables, not   and   which refer to components. For example   may refer to an 

amplitude associated with component  , while   may refer to the relaxation rate belonging to the 

same component  . Symbolic expressions for Fisher information matrix elements can in principle be 

found using computer algebra packages. However, this report explores parameter uncertainties from 

two-dimensional measurements using Monte Carlo explorations rather than symbolically. Within the 

assumptions that lead to the usefulness of the Fisher Information Matrix, this is equivalent to exploring 

its inverse. 

Special Case: T1-T2 Measurement 
For some circumstances, including the common T1-T2 measurement where equilibrium magnetization 

and the preparation flip angle must be determined from the data, the spectral matrix components ,S   

are not linearly independent. This leads immediately to a rank-deficient Fisher information matrix, or to 

unbounded covariances in its reciprocal. Though SVD analysis can identify interdependent parameters, 

it is also possible to examine the measurement protocol directly to see the origin of the parameter 

interdependencies. Doing this gives physical insight and defines a set of parameters that can be 

determined using ARM+LSQ and explored using Monte-Carlo calculations. 

To analyze the T1-T2 measurement, consider a case with two spin systems labeled   and  . Assume 

that each spin system has unique relaxation rates in the longitudinal relaxation period, 1,r   and 1,r  , as 

well as in the transverse relaxation period 2,r   and 2,r  . Magnetization can exchange between the spin 

systems during the experiment. For the magnetization component that begins on spin system   and 

that is destined to end on spin system  , denoted  →  , the behavior during the longitudinal 

relaxation time period as the magnetization decays towards its equilibrium value is described by 

( )1,

, 1 ir t
A f e 

 

−
− , where the flip angle factor ( )1 cosf = −  is a parameter that varies between 0 and 

2, and   is the net flip angle that depends on the instrument and its adjustments. In the subsequent 

transverse relaxation time period, further relaxation proceeds towards zero according to 2, jr t
e −

. The net 

behavior of magnetization from this subset of spin systems is 

 2, 2,1,

, , ,
j jr t r tr

Y A e f A e e 

     

− −−
= −   (2.25) 

We refer to coefficients like ,A   as component matrix amplitudes. Similar expressions hold for the 

 → ,  →  and  →  pathways. 

These expressions can be put into the form of Equation (1.12) if fictitious spin systems having zero 

relaxation rates are included in each dimension. For the longitudinal relaxation dimension, this zero-

relaxation rate component accommodates the non-zero equilibrium magnetization. For the transverse 
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relaxation dimension, this zero-relaxation rate component can accommodate an offset that is often 

added to the data to facilitate numerical analysis. In the implementation of the Matrix Pencil Method 

used here, ambiguities sometimes arise when decay curves cross zero. The difficulty originates within 

the Matrix Pencil implementation during a singular value decomposition step, where zero crossings in 

the data sometimes lead to problematic cusps in numerically identified singular vectors. Adding an 

otherwise inconsequential shift so the entire data set is non-negative eliminates this effect. 

For T1-T2 data, using   and   to enumerate components in the longitudinal and transverse relaxation 

dimensions, respectively, the elements of the spectral matrix are as follows. 

 
0,0 0,0S A=   (2.26) 

 
,0 0S =   (2.27) 

 
0, 1 ,2S A  



=   (2.28) 

 
, 1 ,2S f A   = −   (2.29) 

The adjustable parameters are the component matrix amplitudes 
,A  , the flip angle factor f , and the 

relaxation rates 1r   and 2,r  . Subscripts 1 and 2 refer to longitudinal and transverse relaxation periods, 

respectively. The sum of all elements in the zeroth row, excluding the offset, gives the sum of all the 

component transfer amplitudes. The sum of all the elements of the matrix except the zeroth row and 

column gives the sum of all the component transfer intensities scaled by the flip angle factor f . The flip 

angle factor is an independent parameter because it can, for example, be found from the two sums. 

Analysis of T1-T2 data can therefore determine coefficients for all resolvable component transfer 

amplitudes. 

In practice, it is quite convenient to use this format with the matrix pencil method applied to inversion-

recovery T1-T2 data. The component selection heuristics reliably find components that accommodate 

the non-decaying basis curves and assign negligible relaxation rates to those components. The resulting 

analyses give expected offset and zeros to within the uncertainty. As with the one-dimensional case, the 

parameters yielded by autoregressive methods can be refined using least-squares fitting. 

DISCUSSION AND CONCLUSIONS 
All the information in a multicomponent exponential relaxation curve having signal-to-noise ratios 

reasonably achievable in magnetic resonance measurements can be captured in a small number of 

parameters. Different parameterization protocols may present that information in different forms, each 

having its own advantages, disadvantages, and sometimes hazards, with respect to the various purposes 

of the measurement. 

A measure of the resolution of noisy multicomponent exponential decay data can be expressed as a 

geometric interval between relaxation rates used to construct a basis matrix. Using a larger increment 

than defined by the resolution may not capture all the information in the data, whereas using a smaller 

increment does not capture any additional information. The resolution of a data set depends on the 
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sampling rate, the duration of the acquisition, the range of possible decay rates contained in the data, 

and the noise. 

Small, geometrically incremented basis parameterizations can easily be obtained numerically without 

regularization or concern for problems associated with ill-conditioned matrices. The geometric 

increment to be used can be determined using the resolution determined from plots such as Figure 2. 

When a small basis set is orthonormalized using eigenvalue decomposition of the Fisher information 

matrix or singular value decomposition of the exponential decay basis set, it establishes a unique set of 

functionals for generating parameters with many uses and advantageous properties. Beyond being 

statistically independent, these parameters have physical meaning. As their index increases, the 

distribution of relaxation rates in the source is defined more precisely. Once a rate range and resolution 

are set, these parameters can be calculated automatically and rapidly for an unlimited number of 

measurements and samples. The parameters can, in turn, be used for automated data interpretation 

tasks like classification, automated screening and control, diagnostics, and more. Their versatility and 

robustness arise because they capture the available information regardless of the underlying distribution 

of relaxation rates that lead to the measured data, they are commensurate from measurement-to-

measurement, and they have useful statistical properties including equal uncertainty ranges and 

uncorrelated values. 

Autoregressive analysis, in conjunction with component selection heuristics and least-squares 

refinement, here called ARM+LSQ, leads to parameterizations that are optimal in the following sense. 

Empirical Monte Carlo investigation of simulated data sets shows that using fewer components than 

determined by the heuristics ignores some information in the data since the parameterizations cannot 

fit the data within the noise. Using larger numbers of components than suggested by the heuristics leads 

to multiple local minima, or wide parameter ranges, all giving comparable agreement with the data. 

Similarly, the Cramér-Rao uncertainty bound shows that the parameters overlap extensively when too 

many components are considered. Physical meaning can be ascribed to the resulting parameters as 

follows. A relaxation component represents an underlying distribution of components whose width is no 

larger than the resolution of the experiment. That distribution may be sharp or broad up to the resolution 

limit, and it is not possible to distinguish these possibilities from the ARM+LSQ parameterization or any 

other method without additional knowledge or assumptions. 

Recipients of the analyzed data frequently expect pseudo-continuous, spectrum-like renderings. 

Constructing these renderings requires assigning values to more parameters than can be determined 

from the data. From the sloppy model perspective, some parameter combinations, classified as stiff, can 

be well determined. However, most parameter combinations are classified as sloppy, and their values 

can vary widely, having negligible or no effect on the quality of the fit of the parameters to the data but 

having very large effects on the appearance of the rendered distributions. Creating meaningful 

spectrum-like renderings requires assigning values to these sloppy parameter combinations by using 

regularization methods. Examination of the parameterizations in a Fourier index domain underlies a 

regularization method that assigns values to these sloppy parameter combinations in a way that 

generates a useful pseudo-continuous representation. These plots satisfy a reasonable set of user 

expectations concerning what information is conveyed and how it is to be interpreted from the 

representations.  

Results of ARM+LSQ, Cramér-Rao uncertainties, and pseudo-continuous renderings can be conveyed on 

a single plot to provide a great deal of useful information in a form easily understood by expert and non-
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expert audiences. Uncertainties in parameters from a discrete analysis method such as ARM+LSQ, the 

resolution of the measurement, and the nature and width of the underlying distribution, are all different 

concepts. Representations generated using superimposed spike plots, parameter uncertainty 

distributions, and quasi-continuous renderings convey what is knowable—the parsimonious parameter 

set from ARM+LSQ, the parameter uncertainties, and the resolution of the measurement—in a familiar 

format. The precise nature of the underlying distribution cannot be determined and should not be 

implied without additional considerations. 

All the methods described for one-dimensional measurements apply with minor and obvious 

modifications to two-dimensional measurements. 
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