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Abstract 
 

In the past few years, we have witnessed a renaissance of the field of molecular de novo drug 

design. The advancements in deep learning and artificial intelligence (AI) have triggered an 

avalanche of ideas how to translate such techniques to a variety of domains including the field of 

drug design. A range of architectures have been devised to find the optimal way of generating 

chemical compounds by using either graph or string (SMILES) based representations. With this 

application note we aim to offer the community a production-ready tool for de novo design, called 

REINVENT. It can be effectively applied on drug discovery projects that are striving to resolve 

either exploration or exploitation problems while navigating the chemical space. It can facilitate 

the idea generation process by bringing to the researcher’s attention the most promising 

compounds. REINVENT’s code is publicly available at https://github.com/MolecularAI/Reinvent  

mailto:atanas.patronov@astrazeneca.com
https://github.com/MolecularAI/Reinvent


 

Introduction 
 

The main goal of de novo drug design is to identify novel active compounds that can 

simultaneously satisfy a constellation of essential optimization goals such as activity, selectivity, 

physico-chemical and ADMET properties. Because of the sheer number of possible solutions, it is 

a non-trivial task to optimally satisfy such a multitude of requirements which makes the search 

process slow and costly even when it is only conducted in silico. Therefore, having an efficient 

solution which enables the navigation of chemical space and generation of relevant ideas is 

essential. To address such needs the research community has recently turned its focus towards 

artificial intelligence (AI) based generative models that are capable of proposing promising small 

molecules. The potential of generative models for chemical space exploration has been 

demonstrated in numerous studies 1–13. Various neural network architectures have been 

engineered and a plethora of AI training strategies have been employed in the race to device 

more efficient methods for the generation of compounds. A number of architectures, such as 

Variational Autoencoders (VAEs) 7,14, Recurrent Neural Networks (RNNs) with Long Short-Term 

Memory (LSTM) cells 15, Conditional RNNs or Generative Adversarial Networks have been proven 

successful in generating molecules by using data representation of molecules either as molecular 

graphs or SMILES 8,16–18.  

Most tools for de novo drug design, regardless of the specifics of their implementation, can be 

generalized to three main components: search space (SS), search algorithm and a search 

objective19. In this context we can refer to the generative models as the search space. We also 

observe two main trends of using generative models for de novo design: distribution-learning and 

goal-directed generation. Distribution-learning efforts are mostly focused on generating ideas 

that resemble a particular set of molecules. Goal-directed generation methods are typically using 

search algorithms while aiming to suggest molecules that satisfy the given objective (or 

objectives) without having to sample the entire search space. In both cases results are ultimately 

filtered by user defined scoring function (search objective) either during the generation in the 

goal-driven case or after sampling the entire set of solutions in the distribution-learning scenario. 



While a common issue of using goal-directed approach is the narrow set of solutions the opposite 

approach of using distribution learning leads to screening through a vast variety of irrelevant 

suggestions. These two extreme scenarios represent the attempt to achieve either exploration or 

exploitation of the search space.  

There is an increasing variety of open-source solutions based on generative models aiming to 

address these two aspects of de novo design separately 2,9,20,21. Ideally, users should be allowed 

to navigate the chemical space efficiently in both exploration and exploitation mode while using 

the same de novo design tool. For exploitation, users define an area of interest and focus on 

generating compounds that share similar structural features. In contrast, the exploration mode 

enables them to obtain compounds that share less structural similarity but still satisfy other 

desired features. To achieve this in a fashion different from plain distribution-learning approach 

we need the goal-directed learning to store in memory and adapt to the suggested solutions that 

have been produced in the course of a single search run. This implies the necessity to utilize not 

only predictive models and structure similarity/dissimilarity but also various rule-based scoring 

components to push towards or pull away from specific areas of the chemical space. Moreover, 

to be able to adapt appropriately to any given drug discovery project at hand, the ability to fine-

tune each of these potential scoring function components is paramount. 

In this application note we are describing REINVENT 2.0 which is a tool for de novo design of small 

molecules. REINVENT 2.0 draws inspiration from the works of Olivecrona et al. and Sutton et al. 

for the use of Reinforcement Learning (RL), Arus-Pous et al. for the architecture and the 

implementation of the generative model, Cummins et al. for the scoring function formulation, 

and Blaschke et al. for the use of Diversity Filters (DF) in the RL loop to enforce exploration  22–26. 

As a de novo design application REINVENT 2.0 covers both distribution-learning and goal-directed 

scenarios. The goal-directed use case uses a generative model as a SS, RL as a search algorithm 

and flexible scoring function that can combine the scores from different components to form a 

reward as a score objective. The calculations in the individual components can be run in parallel.  

Scores can be also modulated by a diversity filter which penalizes redundancy and rewards 

diversity in the found solutions thus stimulating exploration. Comprehensive logging is 

implemented for each use case. Additionally, the option to send logs to a remote REST endpoint 



is also available which allows to put the application behind a web interface. REINVENT 2.0 can be 

also used to build generative models from scratch. For details on the generative model, please 

refer to Arus-Pous et al. 23. To facilitate the users we supplement the code with pre-built 

generative model and a range of examples that aim to illustrate some of the most common use-

cases. These examples are provided in a separate repository: 

https://github.com/MolecularAI/ReinventCommunity .  

More details on these features are provided in the sections below.  

  

Application Overview 
 

In its core, REINVENT is using a generative model. The generative model has an architecture 

derived from the work of Arus-Pous et al 23 which in turn is inspired by Segler et al 6and Olivecrona 

et al 22. The model is trained on a dataset derived from ChEMBL 27 and capable of generating 

compounds in the SMILES format. The architecture of the model is illustrated with figure S1. 

REINVENT provides different running modes listed in table S1. Different combinations of the 

running modes allow the users to achieve either exploitation or exploration of the chemical space, 

see table S2. Further discussion on the general use cases can be found in the supporting materials. 

One of the key features that allow achieving an exploratory behavior are the Diversity Filters. 

 

Diversity Filters 
 

DF can be regarded as a collection of buckets that are used for keeping track of all generated 

scaffolds and the compounds that share those scaffolds. A bucket is a collection of compounds 

that share the same scaffold. Obviously, not all generated compounds are of interest and only 

those that are ranked by the multi-parameter objective (MPO) score above a certain user-defined 

threshold will enter the scaffold buckets. When the average score settles above this threshold we 

have reached state of productivity. This means that the majority of the compounds from each 

https://github.com/MolecularAI/ReinventCommunity


step (the ones that score above threshold) will be collected and stored in the memory. Once a 

compound with a score above the threshold has been generated, its scaffold is extracted and 

stored in a scaffold registry and the compound enters the corresponding bucket. The buckets 

have limited capacity and once the limit of compounds in a given bucket has reached the allowed 

threshold, any subsequent bucket affiliation will be penalized. Every new compound that enters 

a full bucket will be assigned a score of zero thus informing the agent that this area of chemical 

space has become unfavorable. It is important to note that compounds will be added to the 

bucket even if the bucket limit has been exceeded. The only impact will be on the agent, since it 

will be constantly discouraged from producing similar compounds that share a given scaffold. This 

will enforce the agent to seek alternative solutions thus achieving in effect chemical space 

exploration and will prevent the agent from becoming stuck in local minima and generating the 

same compounds repeatedly. All collected compounds are kept and stored until the end of the 

RL run and become available as a csv formatted file. 

Users can select their diversity strategy by using Topological DF 28, Identical Murcko DF or a 

Scaffold Similarity DF 29. The Topological DF is the most restrictive since it is agnostic of the atom 

types. It is created by removing all side chains and subsequently converting all atoms in the 

structure to sp3 carbons. The other two DF also remove all side chains but retain the atom types. 

Identical Murcko DF only checks if there is a bucket with exactly the same scaffold while Scaffold 

Similarity is more permissive and can include compounds into the bucket if they satisfy a certain 

threshold of scaffold similarity. The threshold is user defined and is sensitive to the discrete 

definition of the scoring function. Setting it to higher values would clearly result in less 

compounds passing the threshold. 

 

 

Reinforcement Learning 
 

It is often necessary to direct the generative model towards relevant areas in the chemical space 

that contain compounds of interest. We achieve this by subjecting it to a RL 25 scenario while 



aiming to satisfy a set of user-defined requirements that reflect the most important features of 

the desired compounds. In other words, the generative model will try to maximize the outcome 

of a scoring function that contains multiple components/parameters, thus computing an MPO 

score 30. To generate compounds from a specific part of the chemical space, REINVENT employs 

a composite scoring function consisting of different user-defined components. Each component 

is responsible for a simple target property. The feedback from the scoring function is used in a RL 

loop with a policy iteration as described by Olivecrona et al. 22.  

The components of the RL loop used in REINVENT are shown in figure S2. Commonly the RL setup 

consist of an actor and an environment in which the actor takes a set of actions and receives a 

reward. The reward reflects how well the actor solved the problem at hand. The set of actions is 

referred to as policy, and the reward after completing the policy is known as a policy iteration. In 

our case, the actions are the individual steps necessary for building sequences of tokens which 

translate into SMILES. The role of the environment is played by the score modulating block in 

figure S2 and the actor is denoted as an “agent”. After the agent samples a batch of smiles the 

reward is influenced by several components: scoring function, “prior” and a diversity filter.  

The “prior” is a generative model which shares identical architecture and vocabulary with the 

agent. It possesses a great generative capacity and the potential to sample compounds from a 

comparably vast area of the chemical space. Essentially, the prior is the same as the agent at the 

beginning of the RL. There is, however, a use case where the agent might be subjected to initial 

transfer learning in which case the models will have different weights. Further details are 

described in workflow “E” table S2. The role of the prior is to serve as a reference point for the 

likelihood of sampling a given SMILES. For every batch of SMILES generated by the agent, the 

prior calculates the negative log-likelihood denoted as NLL (eq. 1). NLL reflects how likely it is to 

sample a sequence S from the model. 𝑃(𝑋𝑖 =  𝑇𝑖|𝑋𝑖−1 =  𝑇𝑖−1 … 𝑋1 =  𝑥1) is the probability of 

sampling a token Ti at step Xi given the previously sampled tokens. The minus sign is to account 

for the fact that large positive values are actually corresponding to a low probability. 

𝑁𝐿𝐿(𝑆) =  − ∑ 𝑙𝑛 𝑃(𝑋𝑖 =  𝑇𝑖|𝑋𝑖−1 =  𝑇𝑖−1 … 𝑋1 =  𝑥1)

𝑁

𝑖=1

 



(1) 

Analogously the NLL(S) for the given string S is also calculated by the agent. The SMILES string is 

also evaluated by the scoring function which we denote as a multi-parameter objective (MPO). 

MPO is a value in the range [0,1]. At this step the DF is used to evaluate whether the SMILES string 

has been sampled before or whether it satisfies the DF policy. The MPO score will be set to 0 if 

the DF filters determine that the provided compound already exists or if there are too many 

compounds of the same scaffold and their number exceeds the user defined threshold. For more 

details on the types of DF please consult with the supporting materials table S4. The resulting 

MPO score is combined with the prior’s likelihood and used to form the augmented likelihood (eq 

2). The MPO score is multiplied by σ which is a scalar value used for scaling up the scoring function 

output to the same order of magnitude as the NLL. Otherwise, the low MPO score ranging 

between [0,1] will have no impact whatsoever. The higher MPO score translates into higher 

augmented likelihood values. Ultimately, the loss is calculated as the squared difference between 

the agent’s likelihood and the augmented likelihood (eq 3). 

𝑁𝐿𝐿(𝑺)𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝑁𝐿𝐿(𝑺)𝑃𝑟𝑖𝑜𝑟 − 𝛔 ∗ 𝑀𝑃𝑂(𝑺)𝑠𝑐𝑜𝑟𝑒 

(2) 

𝑙𝑜𝑠𝑠 = [𝑁𝐿𝐿(𝑺)𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 − 𝑁𝐿𝐿(𝑺)𝐴𝑔𝑒𝑛𝑡]
2
 

(3) 

The final component of the RL loop as shown on figure S2 is inception. The purpose of inception 

is to keep track of previously well scored compounds and to randomly expose a subset of them 

to the agent thus helping to direct the learning. More details about inception are provided in the 

supporting information. Finally, after including the compounds from inception’s memory to the 

batch the loss is propagated back and only the agent is updated thus receiving the feedback from 

its interaction with the environment. The environment is represented by the score modulating 

block on figure S2. The prior on the other hand does not undergo any changes. 

The duration of RL is pre-defined by the user in terms of number of RL steps to be performed. 

This is very case specific and is normally determined by the complexity of the problem at hand. In 



terms of computational cost the scoring function is the costliest element of the RL loop since it 

may contain a variable number of components including slow predictive models, docking and/or 

pharmacophore similarity (the latter two are not included in the current release). 

 

 

Scoring Functions 
 

REINVENT offers two general scoring function formulations (eqs 4 and 5). The individual 

components of the scoring function can be either combined as a weighted sum or as a weighted 

product 24. The individual score components can have different weight coefficients reflecting their 

importance in the overall score. Score contribution from each component can vary in a [0,1] 

range. As a result, the overall score is also within the same [0,1] range. In the equations below 

the score for sequence x is denoted S and is either a weighted product (eq 5) or a weighted sum 

(eq 4). The user-selected components are denoted as p in both equations and the corresponding 

weights are denoted as w. Weights can vary in the range of [1, +∞). 

𝑆(𝑥) = [∏ 𝑝𝑖(𝑥)𝑤𝑖
 

𝑖

]

1
∑ 𝑤𝑖𝑖

⁄

 

(4) 

 

𝑆(𝑥) =  
∑ 𝑤𝑖 ∗ 𝑝𝑖(𝑥)𝑖

∑ 𝑤𝑖𝑖
 

(5) 

Both formulations are provided for user convenience and flexibility. More details on the scoring 

functions and a full list of components included in this release is provided in table S3 and in the 

supporting materials.  

 

Transfer Learning (TL) 
 



As an alternative to the goal-directed generation, distribution-learning is also supported in 

REINVENT. This approach requires a pre-trained generative model with the generative capacity 

and the potential to sample compounds from a rather vast area of the chemical space. We refer 

to this generative model as the prior. This prior is subjected to  transfer learning with a smaller 

set of compounds which are relevant for a given project. For example, if we aim to maximize a 

predictive model among the other components we would use all the compounds that are 

considered as active by this model. If we aim towards certain subseries of compounds we would 

only use those that share the series-specific features (for example scaffold). This will result in a 

model that produces compounds similar to the target dataset with a higher probability. We refer 

to that model to as “focused prior”. The user can subsequently sample this model and score the 

generated compounds by using the scoring mode in REINVENT.  

As an alternative we could also use the resulting “focused prior” as an agent in the RL loop. The 

resulting generative model from distribution-learning is a suitable starting point for goal-directed 

generation 31. This pre-focusing of the prior can speed up the overall RL process since the chance 

of producing compounds of relevance will be much higher compared to using a general, 

unfocused prior as an agent. Once focused, the agent will have an increased probability of 

sampling a chemical subspace of interest thus reaching a state of productivity sooner. Both use 

cases are further illustrated in figure S3 and table S2 within the supporting information.  

 
 

 

Logging 
 

Essential for monitoring of the learning process is the availability of a comprehensive logging 

system. In REINVENT we utilize Tensorboard 32 to provide information about the evolution of the 

agent during TL by sampling after each step and displaying the likelihood distribution for the 

sampled data. Stats on validity of the smiles and the most frequently encountered molecules are 

also shown. For RL we are plotting the evolution of the scoring function and the individual scoring 

component contributions to the overall score. We are also displaying the highest scoring 



compounds after each RL step. As an alternative, we also provide the implementation used by us 

for remote logging which can be set up to post the logging results to a custom REST endpoint. 

 

Implementation 
 

REINVENT is an open-source Python application. It uses PyTorch 1.3.0 33 as a deep learning engine 

and RDKit version 2019.03.3.0 34 as a chemistry engine. It works exclusively with scikit-learn based 

machine learning models and for the detailed logging of the chemical space navigation process, 

it makes use of Tensorboard’s implementation in PyTorch. 

Conclusion 
 

We have described a production-ready, open-source application for de novo generation of small 

molecules. It can be used to address both exploration and exploitation type of problems while 

allowing a flexible formulation of complex MPO scores. Examples of various use cases are 

provided with the code repository and in https://github.com/MolecularAI/ReinventCommunity. 

Apart from providing a ready-to-use solution, with releasing the code, we are hoping to facilitate 

the research on using generative methods for drug discovery. We also hope that it can be used 

as an interaction point for future scientific collaborations. 
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