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The motion of nanoparticles near surfaces is of fundamental impor-

tance in physics, biology, and chemistry. Liquid cell transmission

electron microscopy (LCTEM) is a promising technique for studying

motion of nanoparticles with high spatial resolution. Yet, the lack of

understanding of how the electron beam of the microscope affects

the particle motion has held back advancement in using LCTEM for

in situ single nanoparticle and macromolecule tracking at interfaces.

Here, we experimentally studied the motion of a model system of

gold nanoparticles dispersed in water and moving adjacent to the sil-

icon nitride membrane of a commercial liquid cell in a broad range

of electron beam dose rates. We find that the nanoparticles exhibit

anomalous diffusive behavior modulated by the electron beam dose

rate. We characterized the anomalous diffusion of nanoparticles in

LCTEM using a convolutional deep neural network model and canon-

ical statistical tests. The results demonstrate that the nanoparticle

motion is governed by fractional Brownian motion at low dose rates,

resembling diffusion in a viscoelastic medium, and continuous time

random walk at high dose rates, resembling diffusion on an energy

landscape with pinning sites. Both behaviors can be explained by

the presence of silanol molecular species on the surface of the sil-

icon nitride membrane and the ionic species in solution formed by

radiolysis of water in presence of the electron beam.

Liquid cell electron microscopy | Single particle tracking | Anomalous
di�usion | Deep neural network

Understanding the motion of nanoparticles in boundary
layers is of fundamental importance in scientific fields

such as biophysics and colloidal self-assembly, and of practical
importance in technological applications such as drug delivery
and additive manufacturing. The physics behind the motion of
nanoparticles is particularly challenging to understand due to
the multitude of e�ects including particle-particle interactions,
particle-surface interactions, and changes in the rheological
properties in boundary layers close to a liquid-solid interface.

The common technique to study the motion of particles
has been optical microscopy, which has limitations in terms of
spatial resolution. The advent of in situ liquid cell transmis-
sion electron microscopy (LCTEM) has now made it possible
to visualize the motion of nanoparticles near a surface with
an unprecedented spatial resolution at the nanometer length
scale (1–3). However, the electron beam of a transmission elec-
tron microscope (TEM), which is the key acquisition tool to
enable nanoscale visualization, can significantly influence both
interactions and dynamics of nanoparticles (4–6). Previous lit-
erature has reported that the motion of nanoparticles near the
surface of a liquid cell and in the presence of the electron beam

is subdi�usive (i.e., non-Brownian, or “anomalous”) (7–15).
Such subdi�usive motion suggests that the nanoparticle mo-
tion is significantly influenced by interactions with the nearby
substrate or interface, but what precisely is the nature of these
interactions and the forces that create them? Are they stable
or fluctuating? Do they arise because of the electron beam
or are they native to the system? How do the changes in
rheology within a few nanometers of the interface figure into
the picture? The nature of the observed anomalies are still
very much under debate as the new technique of LCTEM
continues to be developed (7–15).

Two canonical processes that describe anomalous motion
are continuous time random walk (CTRW) and fractional
Brownian motion (FBM) (16–19). In the context of particle
di�usion, each of these types of subdi�usive motions imply a
distinct physical picture of the environment. CTRW indicates
a random energy landscape of potential wells, where the time
a particle spends in any well diverges when averaged over all
well depths. FBM, on the other hand, indicates a viscoelastic
environment such as those found in crowded fluids (20–23).
The goal of this work is to identify the type of anomalous
motion of nanoparticles near the surface in LCTEM, elucidate
the nanoscopic physical features in the system that give rise
to this motion, and understand how the electron beam can
influence them.

A key challenge in studying the motion of nanoparticles
under the e�ect of the electron beam is that one needs to resort
to a limited number of short trajectories from a single in situ
LCTEM experiment. This is because achieving high spatial
resolution requires a relatively small field of view, which limits
the number of nanoparticles accessible (experiments are done
in dilute solutions to avoid interactions between nanoparti-
cles). Moreover, state-of-the-art cameras on TEM microscopes
are limited by lower bounds on time resolution (hundreds of
frames per second) and upper bounds on measurement time
(minutes long trajectories) (24). This limitation creates a
challenge for canonical methods used to characterize di�u-
sive particle dynamics such as the mean-squared displacement
(MSD) analysis. These methods often rely on features of
the trajectory that converge upon averaging over very long
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Fig. 1. Representative trajectories of 5 gold nanorods as a function of dose rate varying between 2 to 49 e≠/Å2s, a) in their first 30 seconds and scaled to the same size
showing that the diffusivity increases upon increasing the dose rate, b) diffusing for a longer time and magnified to show the change in the diffusive behavior upon increasing
the dose rate.

single-particle trajectories (for systems obeying ergodicity) or
hundreds of medium-length trajectories collected under the
same experimental conditions (19, 25, 26). Here, we show
that computational and theoretical tools can be developed to
extract hidden features that exist in short trajectories of sin-
gle nanoparticles in order to elucidate the type of anomalous
di�usion.

In this study, we collected 30 trajectories of a model system
of gold nanoparticles dispersed in water and di�using near a
silicon nitride (SiNx) membrane of a commercial liquid cell
irradiated by a broad range of electron beam dose rates. In-
spired by the recent advances in using machine learning tools
to study the di�usion of single microparticles in biological
media (25–28), we developed a convolutional deep neural net-
work (CNN) model, dubbed MotionNet (MoNet), which solves
an inverse problem of determining the underlying di�usion
mechanism behind the anomalous motion of nanoparticles in
LCTEM. The architecture of the neural network employed in
MoNet is designed based on classical tests in statistics (29)
and is trained on thousands of simulated short trajectories
from three classes of di�usion, i.e. Brownian, FBM, and
CTRW. Guided by MoNet, our analysis reveals that at low
dose rates the anomalous di�usive motion of nanoparticles
in LCTEM is governed by viscoelasticity-dominated FBM,
while at high dose rates the motion is governed by a pinning
site-mediated CTRW process (23). The prediction results were
benchmarked against the statistical p-variation test (29) to
confirm the behavior in low and high dose rate limits.

The dose rate-dependent transition can be explained by
the existence of silanol molecular groups on the surface of the
SiNx membrane, which act as pinning sites and exhibit a broad
distribution of restoring forces (14, 30). At low dose rates, the
binding strength of these pinning sites is high compared to the
thermal energy and their e�ective restoring force acts similar
to the e�ect of a viscoelastic environment. This results in
nanoparticle motion confined to the local vicinity of a pinning

site. Upon increasing the dose rate and thus passivating the
charges on the pinning sites, the binding strength decreases,
making nanoparticles more mobile, which allows them to dif-
fuse across the SiNx membrane only making intermittent stops
on randomly distributed pinning sites. This understanding
provides us with important insight into the mechanism of
nanoparticle motion near a substrate in LCTEM and opens
up the path to use in situ LCTEM as a technique for studying
motions of nanoparticles in complex systems at the nanoscale.

Results and discussions

Anomalous diffusion of gold nanorods. To study the e�ect of
electron beam dose rate on the motion of nanoparticles near
a surface, we chose a simple and tunable model system of
60 nm long gold nanorods (AuNRs) dispersed in water and
probed their dynamics near the SiNx membrane of a commer-
cial TEM’s liquid cell (see Methods for details of synthesis).
We collected trajectories of 30 AuNRs for electron beam dose
rates ranging from 2 to 49 e≠/Å2s (see Figure S1 for all trajec-
tories collected). Figure 1a shows the first 30 seconds of five
representative trajectories. Plotted at the same scale, these
trajectories indicate that the e�ective di�usivity of AuNRs
increases with increasing dose rate of the electron beam. Fig-
ure 1b shows the same trajectories as Figure 1a in their entirety,
magnified to reveal details of the dynamics. In addition to
the increase in e�ective di�usivity, a qualitative change in the
dynamics is observed as the dose rate is increased from 2 to 49
e≠/Å2s. At low dose rates, AuNR dynamics are dominated by
motion confined to the vicinity of a local point. This motion
is punctuated by infrequent, relatively long-distance jumps.
At high dose rates, long-distance jumps between short periods
of confinement become the dominant behavior at observation
timescales.

To identify the underlying di�usive behavior and to under-
stand how the electron beam changes the local environment



and the local interactions, we first calculated the MSD. In the
framework of anomalous di�usion, the MSD is described by
the power law (19):

È”x(t)2Í ≥ D–t
–

. [1]

Here, brackets denote an ensemble average, and accordingly we
refer to this as the ensemble averaged or e-MSD. If – = 1 the
process is characterized by Brownian motion, and if – < 1 or
– > 1 the process is subdi�usive or superdi�usive, respectively.
The MSD may also be computed by window averaging over
a single trajectory, which we refer to as a time averaged or
t-MSD, and is defined by

”x2(�) = 1
T ≠ �

⁄ T ≠�

0
dt (x(t) ≠ x(t + �))2

. [2]

Here, T is the total measurement time, � is the time delay
window, and ( · ) indicates an average over time. For ergodic
processes, the e-MSD and t-MSD are equal in the long time
limit as T æ Œ. In case of non-ergodic subdi�usive processes,
the e-MSD contains more information about the underlying
anomaly mechanism; however, it is not practically accessible
in many experimental systems, including LCTEM as it is
available today. The t-MSD measurements as a function of
� for all thirty trajectories are presented in Figure S2. We
also measured the related time-averaged di�usion constant
D– = ”x2(�)/�–, using Eq. [2], which varies between 10 and
104 nm2/s for values of � Æ 0.25 s and for all dose rates
studied across 30 trajectories in three experiments; see Figure
S3. This shows that the motion of AuNRs near the surface is
orders of magnitude slower than what is theoretically estimated
for a Brownian nanoparticle in bulk water outside of TEM
based on the Stokes-Einstein relation (D = kBT/(6fi÷L) ¥
4 ◊ 106 nm2/s with ÷ the viscosity of the medium and L the
characteristic size of the di�using nanoparticle). The slow
motion of AuNRs observed here is consistent with previous
reports on the suppressed di�usive motion of nanoparticles
in LCTEM experiments (8, 9, 11, 13, 14). Figures S2 and
S3 also show that D– increases as the dose rate is increased,
consistent with the observations from Figure 1a. However, it is
not possible to identify the type of di�usion as well as whether
it is anomalous or not based solely on the t-MSD curves. This
can be explained by a closer look at two common anomalous
di�usion models, subdi�usive CTRW and subdi�usive FBM,
and their corresponding MSDs.

Models of anomalous diffusion. Di�usion processes in which
particles move with stop-and-go motion on an energy land-
scape with heterogeneous pinning sites are well described as a
continuous time random walk (CTRW) (19). In a CTRW pro-
cess, a particle moves by making random jumps in space and
time (see SI Appendix for details). The particle remains immo-
bile for a random “waiting time” · , drawn from distribution
Â(·), before jumping in the distance and direction �x, drawn
from the distribution ⁄(�x) (22). If Â(·) is heavy-tailed, i.e.,
the asymptotic behavior at large · decays as Â(·) ≥ 1/·

1+–

with 0 < – < 1, the mean waiting time È·Í diverges (È·Í æ Œ)
and the resulting process is subdi�usive (21). The diverging
È·Í also indicates that ergodicity is broken; no matter how
long the measurement time T is, the t-MSD and the ensemble
averaged t-MSD (average of t-MSDs over an ensemble of par-
ticles, or et-MSD) will not be the same (21). It can be shown

that the et-MSD for a CTRW process can be written as (see
SI Appendix for mathematical derivation) (31, 32)

È”x2(�)Í ≥ D–
�

T 1≠–
. [3]

Eq. [3] shows that for a CTRW process, the et-MSD is a linear
function of time delay, �. The e-MSD is obtained from the
et-MSD in the limit � æ T , recovering the anomalous form of
Eq. [1]. This property of the subdi�usive CTRW process makes
it extremely di�cult to identify and to estimate its inherent –

value, when only a limited number of short trajectories from
an experiment is accessible since no anomaly can be detected
by measuring the t-MSD.

Another canonical model of subdi�usion is Fractional Brow-
nian Motion (FBM) (17). Subdi�usive FBM can be qualita-
tively described as a random process in which the direction of
each step is anti-correlated with the previous step, resulting
in the next step having a higher probability than random to
be in the opposite direction (30). This correlation of positions
at two di�erent points in time, t1 and t2 along the trajectory
can be expressed as:

Èx(t1)x(t2)Í = D–(|t1|– + |t2|– ≠ |t1 ≠ t2|–), [4]

where as before, – < 1 corresponds to subdi�usion. Unlike
the CTRW model, a FBM process is ergodic, and thus t-MSD
and its ensemble average, i.e. et-MSD, are the same and
follow È”x2(�)Í = D–�– (see SI Appendix for mathematical
derivation of a FBM process).

Deep learning analysis. To identify the underlying anomalous
di�usion process for a limited set of short trajectories in a
LCTEM experiment, we developed a convolutional neural net-
work model which we have named MoNet (shown in Figure 2a).
We trained MoNet on 10, 000 simulated trajectories from three
classes of di�usion: Brownian, subdi�usive FBM, and sub-
di�usive CTRW. Each simulated trajectory was 300 frames
in length; short enough to cover the shortest experimental
trajectories collected and long enough to achieve more than
90% validation accuracy (see Figure S6). For consistency, the
model was then applied to 300-frame intervals of all nanoparti-
cle trajectories. The final results are reported as the predicted
probability for each di�usion class, averaged over the entire
length of the trajectory (see Figure S6 for validation accuracy
on an independent set of test data). As shown in Figure 2a,
MoNet receives input data in the form of a matrix comprising
the x and y coordinate of the locations of the nanoparticle
throughout the trajectory and outputs the probability of the
predicted di�usion class, i.e. FBM, CTRW, and Brownian.
The architecture of MoNet is inspired by previous literature
for temporal sequence type data such as particle trajecto-
ries (26, 33). See the Methods section and SI Appendix for
details of the architecture of MoNet.

Figure 2b presents the predicted probability of the di�usion
class for all 30 trajectories as a function of dose rate, increasing
from top to bottom in the first column and left to right across
the table; see Figure S7 for the probability values associated
with each class. Interestingly, there is a crossover from FBM to
CTRW as the electron beam dose rate is increased, consistent
with the qualitative picture of Figure 1b. The crossover occurs
around the dose rate of 15 e≠/Å2s, where 7 trajectories have
been collected.



Fig. 2. a) Deep neural network pipeline for anomalous diffusion classification on in situ LCTEM data using our nanoparticle motion classifier MoNet. b) Neural network
analysis results for all trajectories studied as a function of dose rate (increasing from top to bottom in the first column and left to right across the table). Pie charts show the
diffusion class probability where at low dose rates, there is a higher probability associated with a fractional Brownian motion (FBM) (green) and at high dose rates there is a
higher probability associated with a continuous time random walk (CTRW) (blue).

To verify the results we compared MoNet against a sta-
tistical method, known as the p-variation test, V

p
n (see the

Methods section for definition). p-variation has been successful
in distinguishing FBM from CTRW for medium length trajec-
tories (29). Here, we have analyzed the quadratic variation
(p-variation for p = 2), which measures the sum of squares of
increments of a trajectory of length T = 2Nmax , divided into
2n segments. For a FBM process, the quadratic variation must
diverge as n æ Œ (i.e., the size of time increment �t æ 1
frame), while for a CTRW process, the quadratic variation
must stabilize with increasing n (29, 34). Comparison of our
predictions with the quadratic variation results presented in
Figure S8 confirms that there is indeed a crossover from FBM
to CTRW while increasing the dose rate. Figure 3 shows
the quadratic variation results for two example trajectories of
Figure 1b at dose rates 15 and 49 e≠/Å2s. The unbounded
increase in the slope of the quadratic variation vs. measure-
ment time curve as n æ Nmax (i.e., �t æ 1 frame) confirms
that at dose rate 15 e≠/Å2s, the trajectory is predominantly
characterized by a FBM behavior. However, for a higher dose
rate of 49 e≠/Å2s, the quadratic variation curve does not show
any specific dependence as n æ Nmax, suggesting that the
anomaly does not stem from a FBM process.

Another characteristic of FBM and CTRW processes in
terms of displacement, ”x, is their probability distribution of
displacements P (”x) (19, 30). Comparison of the distribution

of displacements collected over time delays of 0.0125 s in
Figure 4a for two example trajectories at dose rates 15 and
49 e≠/Å2s, (same trajectories as Figure 3), also confirms the
presence of a FBM process at low dose rates with a Gaussian
distribution and a CTRW process at high dose rates with a
power-law tailed distribution. The power-law exponent of this
tail is estimated to be about ≠2.0 (see Figure 4a). Figure S9
shows that this power-law value of ≠2.0 is consistent for all
high-dose rate trajectories studied here.

The power-law decay of the probability distribution P (”x)
for large values of displacement, ”x, at high dose rates does
not necessarily mean that the underlying CTRW process
is subdi�suive (35). However, it suggests that there is a
broad distribution of binding sites on the surface of the
SiNx membrane. It is known that for harmonic energy po-
tentials with equal binding sti�ness k, the resulting proba-
bility distribution of displacements must follow a Gaussian
form, P (”x) = exp(≠k(”x)2

/kBT ) (30, 36). Hence, the non-
Gaussian and heavy-tailed probability distribution of displace-
ments observed for all high-dose rate trajectories indicates
that binding sites with various binding a�nities exist over the
surface of the SiNx membrane, suggesting that an underlying
CTRW process could be subdi�usive. To confirm that the
CTRW process observed at high dose rates is subdi�usive,
we used MoNet trained on three thousand simulated CTRW
trajectories with – values between 0.1 and 0.99, and predicted



Fig. 3. Quadratic-variation test results vs. measurement time, t, for trajectories
collected at dose rates a) 15 and b) 49 e≠/Å2s selected from Figure 1b. a) The
slope of the quadratic-variation curve increases as n increases (i.e., size of time
increments �t decreases to 1 frame) indicative of a FBM process, b) the slope of the
quadratic-variation curve converges as n increases, indicative of a CTRW behavior at
high dose rates.

the – exponent for all trajectories collected (see Figure S10).
The results show that the underlying mechanism at high dose
rates is subdi�usive with – exponents ranging from 0.7 ≠ 0.8.

We also did a similar analysis using MoNet to predict –

exponents of FBM processes (commonly known as the Hurst
exponent H = –/2 in the literature (37)); see SI Appendix and
Figure S10. The – exponent obtained from this analysis is very
similar to the values of – extracted from t-MSD curves (see
Figure S10). Figure 4b shows the t-MSD curves calculated for
trajectories of dose rates 15 and 49 e≠/Å2s with – exponents of
0.48 and 1, respectively. As shown in Eq. [3], the t-MSD curve
of a CTRW process grows linearly in time delay �, consistent
with our measurements shown in Figure 4b. For subdi�usive
FBM processes, the t-MSD curves grows sublinearly in time
delay �. Therefore, the t-MSD curve can only provide us
with a value of – at low dose rates, where the process is
predominantly characterized by a FBM model and et-MSD
measurements are further required to estimate the value of
– for CTRW processes. Using MoNet predictions for the –

exponent for both low and high dose rate trajectories, we
showed that at all dose rate studied the underlying di�usive
process is subdi�usive.

Nanoscopic interpretation. The physical picture governing the
di�erent di�usive behavior at low and high electron beam dose
rates may be explained by the molecular groups existing on

the surface of the SiNx membrane of the TEM liquid cell,
which in turn are influenced by the electron beam. It has been
previously suggested that the surface of the SiNx membrane
is decorated with silanol Si≠O molecular groups (14). These
silanol groups that are randomly distributed across the mem-
brane create pinning sites and can locally trap nanoparticles,
which are positively charged with cetyltrimethylammonium
chloride (CTAC) ligands. At low electron beam dose rates
(Æ 15 e≠/Å2s), the thermal energy of AuNRs is smaller than
the binding strength of these pinning sites resulting in parti-
cles being trapped for significant periods in the vicinity of a
local pinning site, with membrane restoring forces and solvent
interactions acting as a viscoelastic medium. This viscoelastic
picture may be explained by the hydrogen bonding of the
water molecules with the Si≠O species on the surface of the
SiNx that may result in a gel-like viscoelastic water layer next
to the membrane at low dose rates, leading to the FBM be-
havior at this dose rate. We note that a close inspection of the
trajectories of Figure 1b and Figure S1 shows that for some
of our low dose rate experiments, the immobility in pinning
sites is punctuated by a few relatively long-distanced jumps.
Yet, these jumps are smaller than 50 nm which is smaller than
the body length of the AuNRs studied (≥ 60 nm) and could
be explained as the head or tail of the same AuNR being
trapped in the same pinning site. Upon increasing the dose
rate, radiolysis of water occurs, changing the local pH value of
the solution close to the membrane. This change in pH results
in free H+ ions in solution that passivate the Si≠O groups
on the membrane’s surface, reducing their binding strength.
Therefore, at high dose rates, AuNRs can occasionally de-trap
and move with long distance jumps until they get trapped in
another pinning site associated with a waiting time · drawn
from a heavy tailed distribution function Â(·).

While this interpretation could explain this set of obser-
vations, we note that alternative scenarios may exist such as
coexistence of both FBM and CTRW behavior. A close look
at the predictions of Figure 2b shows that for certain low dose
rates (see 15 e≠/Å2s) classified as FBM by MoNet, there is a
non-negligible probability associated with the CTRW class. By
tracking the predicted di�usion class along the entire length
of the trajectory for each window of 300 frames separately, we
can observe that windows including long distance jumps of
> 50 nm are more likely to be classified as CTRW (see Figure
S12).

The presence of these jumps, even at low dose rates, also
shows up in the t-MSD curves. The t-MSD curve for the dose
rate of 15 e≠/Å2s presented in Fig. 4b has an – exponent
of 0.48 at short time delays, while at long time delays the
exponent increases to 1. This is in contrast to high dose rates,
where throughout the t-MSD curve, the – exponent remains
constant at a value of 1. The change in the – exponent as well
as the non-negligible probability associated with the CTRW
class at dose rates of 15 e≠/Å2s suggests that both FBM and
CTRW behavior could potentially coexist at this dose rate
but at di�erent timescales. Furthermore, the scatter in t-MSD
curves for all dose rates in Figure S2 shows that that ergodicity
might be broken even at low dose rates where the di�usion class
is predominantly characterized by FBM, which is by definition
an ergodic process. This is reminiscent of the subordinated
di�usion processes reported in biological systems as well as
single molecule tracking experiments in water (30, 38–40). This



Fig. 4. a) Probability distribution of the absolute value of displacement for trajectories
collected at the dose rates 15 and 49 e≠/Å2s for time intervals of 0.0125 s, compared
to a Gaussian fit (solid green line) and a power-law tail fit with power-law exponent of
≠2 (solid blue line). b) Time averaged mean squared displacement vs. time delay
calculated for the same trajectories of panel (a). Solid gray lines show the fit to the
MSD curves at short time delays with the slope of 0.48 for the low dose rate and
slope of 1 for the high dose rate.

type of subordinated di�usion is complex to capture through
canonical methods and indeed requires data spanning multiple
timescales both on short and long time delays. Therefore,
while the current data is insu�cient to support or nullify
this hypothesis (especially at high dose rates), our analysis
suggests the possibility of such a scenario. Regardless, the
presence of predominantly FBM behavior at low dose rates
and CTRW at high dose rates supports the interpretation that
the di�usive motion at low dose rates is mostly influenced by
the local viscoelasticity of the fluid next to the surface and at
high dose rates the motion is governed by the heterogeneous
pinning sites in the timescales studied (� = 0.01 s to 100 s).
Therefore, the electron beam dose rate not only increases the
di�usion coe�cient, but also it fundamentally alters the fluid
and the dominant di�usive behavior of nanoparticles near the
membrane.

This understanding of how the electron beam can a�ect the
local environment near the membrane, which in turn governs
the di�usive motion of nanoparticles near the surface, can be
used in applications of nanoparticles in LCTEM as nanoscale
probes to study the local material properties of the fluid near
the surface. Similar analysis can also be performed on un-
damped motion of nanoparticles in bulk in LCTEM, (41, 42)
to investigate the e�ect of electron beam on the bulk material

properties. Furthermore, the change in the local material
properties of the fluid next to the surface in presence of the
electron beam may play a role in other LCTEM studies such
as in situ growth of nanocrystals (43–45). The knowledge base
developed here can be also extended to study the motion of
nanoparticles in LCTEM near surfaces with various combina-
tions of nanoparticles, fluids, and surfaces with high spatial
resolution.

Materials and Methods

Chemicals and materials. Hexadecyltrimethylammonium bromide
(CTAB, > 98.0%), hexadecyltrimethylammonium chloride (CTAC,
> 95.0%) and sodium oleate (NaOL, > 97.0%) were purchased
from TCI America. Acetone (99.5%) was purchased from Fisher
Scientific. Hydrogen tetrachloroaurate trihydrate (HAuCl4·3H2O, Ø
99.9%), L-ascorbic acid (BioXtra, Ø 99.0%), silver nitrate (AgNO3,
Ø 99.0%), sodium borohydride (NaBH4, 99.99%), and hydrochloric
acid (36.5%≠38.0% wt.%) were obtained from Sigma Aldrich (USA).
NaBH4 powder was stored in an argon glovebox. HAuCl4 · 3H2O,
L-ascorbic acid, and AgNO3 were stored in a vacuum desiccator at
room temperature. Deionized water (DI-water, Milipore, Milford,
MA, USA) was used for all aqueous solutions. All the glassware was
thoroughly cleaned using freshly prepared aqua regia (3 : 1 volume
ratio of HCl and HNO3, respectively) followed by fully rinsing with
copious amounts of DI-water. All chemicals were of reagent grade
and used without further purification.

Liquid cell preparation. Commercially available silicon nitride liquid
cell top (EPT≠52W≠10) and bottom (EPB≠52DNS) microchips
(Protochips Inc.) with electron transparent membranes and a 150
nm static spacer, were cleaned by being immersed in a clean petri
dish filled with acetone to remove the protective resist coating and
immediately transferred to a second petri dish filled with high purity
ethanol. The microchips were then dried by blotting them on a filter
paper to remove the excess ethanol. The microchips were fully dried
by blowing gently nitrogen gas parallel to their surface. Following
that they were plasma-treated for 3 minutes to remove any residual
organic material and to improve their surface hydrophilicity. The
microchips were then assembled in a Poseidon 200 holder according
to the Protochips Inc. protocols with 0.75 µL of the AuNR solution
containing an extra 5 mM of CTAC ligands.

TEM imaging. in situ experiments were performed on a FEI Tecnai
T20 S-TWIN TEM operating at 200 KV with a LaB6 filament.
Time series of images were collected using a Gatan Rio 16 IS
camera in Digital Micrograph format at nominal magnifications
of 25.3 kx and 38.1 kx with various exposures of 0.1, 0.05, 0.0125,
and 0.00625 seconds corresponding to frame rates of 10, 20, 80,
and 160 frames per seconds with 4096 ◊ 4096, 2048 ◊ 2048, and
1024◊1024 pixels by pixels readout, resulting in 0.355208, 0.710415,
and 1.42083 nm/pixels resolutions, respectively. Prior to imaging,
the electron beam dose rate was calibrated at each magnification
using a custom digital micrograph script as described in the previous
literature by converting counts to electrons with a conversion value
of 124 (46). The range of dose rates accessible after calibration at
this magnification spans from 2 to 49 e≠/Å2s. Data were collected
in three sets of experiments using the same dose rates to assure
the consistency of the outcomes. Furthermore, dose rates were
increased and decreased to verify the reversibility of the process.
Time series of high dimensional images were processed in MATLAB
using custom scripts to obtain trajectories of nanoparticles presented
in Figure S1 by tracking the centroid of AuNRs in each frame.

Synthesis of gold nanorods. Homogenous AuNRs were synthesized
by a facile seed-mediated growth involving a binary surfactant
mixture (47). The seed solution was prepared as follows: 10 mL of
0.1 M CTAB solution was mixed with 100 µL of 25 mM HAuCl4
in a 20 mL scintillation vial under vigorous stirring. 600 µL of
ice cooled 10 mM NaBH4 was rapidly injected into the Au-CTAB
solution and stirred for 2 minutes. Upon the addition of NaBH4,
the color of the seed solution turned yellow-brownish. Afterward,



the seed solution was left undisturbed at 28¶C for 30 minutes prior
to use in the following step.

The growth solution was obtained by first mixing 3.6 g of CTAB
and 0.4936 g of NaOL in 196 mL of DI-water in a 500 mL Erlenmeyer
flask. The solution was heated with occasional agitation until all
the CTAB was dissolved. The mixture was allowed to cool down
to 30¶C and 1.45 mL of 10 mM AgNO3 was then added under stir
at 700 rpm for 15 min. Afterward, 4 mL of 25 mM HAuCl4 was
added to the mixture and kept undisturbed at 28¶C for 90 min.
The yellowish color of growth solution turned to colorless. 840 µL
of HCl was added to the solution and the mixture was stirred at
400 rpm for 15 min. Finally, 500 µL of 0.064 M ascorbic acid was
injected into the growth solution, and the mixture was vigorously
stirred at 1200 rpm for 30 s. 80 µL of the seed solution was then
injected, and the solution was stirred for 30 s before left undisturbed
at 28¶C for 12 hr to complete the growth process. 40 mL of the
final products were isolated by centrifugation at 8, 000 rpm for
15 min followed by careful removal of the supernatant. 50 mL of
DI-water was added to the pellet and the mixture was sonicated
briefly to disperse the pellet for long-term storage. For the sample
preparation of the liquid cell experiment, a second centrifugation
step was performed at 5, 500 rpm for 10 min followed by removal of
the supernatant and adding 50 mL of DI-water. 1 mL of the stock
solution was centrifuged at 5, 500 rpm for 8 min and the supernatant
was carefully removed. 1 mL of 50 mM CTAC solution was added
and sonicated for 10 min. The solution was centrifuged again at
5, 500 rpm for 8 min followed by removal of the supernatant and
adding 1 mL of the DI-water.

Deep learning. MoNet architecture consists of 6 convolution layers
(including 5 dilated convolution layers) followed by 3 dense layers.
The dilated layers have 32 filters of sizes k = 2, 3, 4, 10, and
20 with a combination of dilation factors of 2n for n = 0, 1, 2,
and 3 (inspired by p-variation method) to capture long distance
correlations existing in increment of 2n along the trajectory. See
Figures S4 and S5 for the schematic of the neural net architecture.
The validation accuracy of MoNet has been tested on simulated
trajectories of di�erent length (Figure S6). For a 300-frame long
trajectory the prediction accuracy of the di�usion class is 90%. The
mean squared error associated with the task of – prediction in
CTRW and FBM models are 0.02 and 0.003, respectively. See SI
Appendix for more details.

p-variation test. To distinguish between subdi�usive FBM and
CTRW dynamics, Magdiarz et al. proposed the p-variation
test (29, 34). This test generalizes the concept of the total variation
V , in which the increments (i.e., particle displacements) are summed
over the entire trajectory. The p-variation V

(p)
n (t) generalizes the

concept of total variation by exponentiating each increment by p
before summing (48)

V
(p)

n (t) =
(2n)tÿ

j=1

--x
!

j/2n
"

≠ x
!

(j ≠ 1)/2n
"--p

. [5]

Given a trajectory with a length of 2N , in case of p = 2 (quadratic
variation) V 2

n (t), we sum up the square of the increments which are
spaced 2N≠n in time. See SI Appendix and Figure S4a for more
details.
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Supporting Information Text

Anomalous Diffusion Models

Fractional Brownian Motion. A FBM process x(t) is characterized by the following properties

• is a zero mean process Èx(t)Í = 0.

• starts at x(0) = 0.

• has stationary increments
x(t) ≠ x(0) d= x(t + �) ≠ x(�) ’� , [1]

where d= denotes equality in distribution. A consequence is that the expectation of any function f of an increment is
invariant to time translation of that increment; that is,

+
f

!
x(t) ≠ x(0)

",
=

+
f

!
x(t + �) ≠ x(�)

",
. [2]

Together with the previous property, this implies
+!

x(t1) ≠ x(t2)
"2,

=
+!

x(t1 ≠ t2)
"2,

, [3]

an identity which will be used shortly.

• has the probability density function (PDF) of the form (1)

P (x, t) = 1Ô
4fiDHt2H

exp(≠ x
2

4DHt2H
). [4]

with Èx(t)Í = 0, and Èx(t)2Í = 2DHt
2H . Here, H is known as the Hurst exponent that is related to the anomalous di�usion

exponent – as H = –/2. If 0 < H < 1/2 the process is subdi�usive, if H = 1/2 the process is fully Brownian, and if
1/2 < H < 1 the process is super-di�usive. The second moment or the ensemble-averaged mean-squared displacement (e-MSD)
of the FBM process is then

Èx2(t)Í = 2DHt
2H

. [5]

With this definition and using a binomial expansion and using stationarity and zero mean properties of the last term on the
second line (Èx2(t1) ≠ x

2(t2)Í = Èx2(t1 ≠ t2)Í = 2DH(t1 ≠ t2)2H), and finally using Eq. (5) for each term, the FBM process x(t)
has a covariance� of the form (2)

Èx(t1)x(t2)Í = 1
2 Èx(t1)2 + x(t2)2 ≠ (x(t1) ≠ x(t2))2Í

= 1
2 Èx(t1)2 + x(t2)2 ≠ (x(t1 ≠ t2))2Í

= DH(t2H

1 + t
2H

2 ≠ |t1 ≠ t2|2H).

[6]

It can be concluded from the covariance of equation Eq. (6) that the FBM process is self-similar

x(⁄t) d= ⁄
H

x(t) . [7]

Note that H is also known as the self-similarity parameter. The FBM process (of which ordinary Brownian motion can be
considered a subset with H = 1/2) is the only Gaussian process that is both self-similar and stationary.

The time evolution of x(t) can be assumed to have the general form

x(t) =
⁄

t

0
dt

Õ
›(tÕ) , [8]

where ›(tÕ) is called fractional Gaussian noise. Equivalently, in di�erential form

d

dt
x(t) = ›(t) . [9]

�
Note È.Í denotes expectation E(.) and since this is a zero-mean process that equals the covariance E(x(t1)x(t2)) = cov(x(t1), x(t2))
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This implies that the time correlation of the fractional Gaussian noise can be obtained by di�erentiating equation Eq. (6) with
respect to each of the time variables

È›(t1)›(t2)Í = d

dt1

d

dt2
Èx(t1)x(t2)Í

= ≠DH

d

dt1

d

dt2
|t1 ≠ t2|2H

= DH

d

dt1

3
2H|t1 ≠ t2|2H≠1sgn(t1 ≠ t2)

4

= DH

3
2H(2H ≠ 1)|t1 ≠ t2|2H≠2 + 4H|t1 ≠ t2|2H≠1

”(t1 ≠ t2)
4

= 2DHH(2H ≠ 1)|t1 ≠ t2|2H≠2
,

[10]

where ”(x) is the Dirac delta function and sgn(x) is the sign function. Here we have used the properties

d

dx
|x| = sgn(x) , [11]

d
2

dx2 |x| = d

dx
sgn(x) = 2”(x) , [12]

sgn2(x) = 1 . [13]

Finally, note that in the final line of equation Eq. (6) we have assumed that 2H ”= 1 to eliminate the second term in parentheses
of the previous line. If instead we examine the case 2H = 1, only the second term remains, leaving

È›(t1)›(t2)Í = 2DH”(t1 ≠ t2) , [14]

which is the expected delta-correlated noise characterizing Brownian motion.

Discrete time FBM. Here we reconsider the above analysis from the perspective of a discretized time variable, as will be made use
of in the following section. From equation Eq. (6) the covariance for discrete-time increments of xt2 ≠ xt1 and xs2 ≠ xs1 is (3, 4)

È(xt2 ≠ xt1 )(xs2 ≠ xs1 )Í = DH((t2 ≠ s1)2H ≠ (t1 ≠ s1)2H ≠ (t2 ≠ s2)2H + (t1 ≠ s2)2H). [15]

Hence, assuming that particle is at x = 0 at time zero, the covariance of increments (xk+1 ≠ xk) and (x1 ≠ x0) is

È(xk+1 ≠ xk)(x1 ≠ x0)Í = DH(|k + 1|2H + |k ≠ 1|2H ≠ 2|k|2H). [16]

Note that for H = 1/2 (i.e., Brownian case) these increments are non correlated and the process is not self-similar as we
expect. The increments of the FBM process are also called fractional Gaussian noise ›, where ›(k + 1) = xk+1 ≠ xk defined on
increment of ˆt = 1 ( ˆx

ˆt
= ›(t)). Therefore, Eq. (16) is indeed the covariance of the fractional Gaussian noise È›(k + 1)›(1)Í.

One can rewrite Eq. (16) by factoring the k
2H term

È›(k + 1)›(1)Í = DHk
2H

f(1/k), for k Ø 1 [17]

where f(x) = (1 ≠ x)2H + (1 + x)2H ≠ 2 (4). Using the Taylor expansion of f(x) at the origin (x = 1/k æ 0) the covariance of
the fractional Gaussian noise is

“(k) = È›(k + 1)›(1)Í = 2DHH(2H ≠ 1)k2H≠2
, [18]

with k œ {0, ..., N ≠ 1} and “(0) = 1. This is true only if t1 ”= t2 (4).

Simulating a FBM process. A FBM process can be simulated using a circulant matrix embedding algorithm and using fractional
Gaussian noise › = (›1, ›2, ..., ›N )T and its covariance matrix:

� = cov(›) =

Q

cccccca

1 “(1) “(2) . . . “(N ≠ 2) “(N ≠ 1)
“(1) 1 “(1) . . . “(N ≠ 3) “(N ≠ 2)
“(2) “(1) 1 . . . “(N ≠ 4) “(N ≠ 3)

...
...

...
. . .

...
...

“(N ≠ 2) “(N ≠ 3) “(N ≠ 4) . . . 1 “(1)
“(N ≠ 1) “(N ≠ 2) “(N ≠ 3) . . . “(1) 1

R

ddddddb
.
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In order to simulate a FBM process x(t), we need to find the square root of the � matrix. Finding square roots of this
matrix is hard. Hence, a more convenient method often used is to embed this matrix � in a larger circulant matrix called C of
size 2M ◊ 2M with M = 2N :

C =

Q

ccccccccccca

1 “(1) . . . “(N ≠ 1) 0 “(N ≠ 1) “(N) . . . “(2) “(1)
“(1) 1 . . . “(N ≠ 2) “(N ≠ 1) 0 “(N ≠ 1) . . . “(3) “(2)

...
...

. . .
...

...
...

...
. . .

...
...

“(N ≠ 1) “(N ≠ 2) . . . 1 “(1) “(2) “(3) . . . “(N ≠ 1) 0
0 “(N ≠ 1) . . . “(1) 1 “(1) “(2) . . . “(N ≠ 2) “(N ≠ 1)

“(N ≠ 1) 0 . . . “(2) “(1) 1 “(1) . . . “(N ≠ 3) “(N ≠ 2)
...

...
. . .

...
...

...
...

. . .
...

...
“(1) “(2) . . . 0 “(N ≠ 1) “(N ≠ 2) “(N ≠ 3) . . . “(1) 1

R

dddddddddddb

,

where the red box indicates the � matrix. Since the matrix C is circulant, it can be decomposed into C = F�Fú using Fourier
transform, where F is a unitary matrix and � is a diagonal matrix of eigenvalues of matrix C. Fú denotes the conjugate
transpose of F and FFú = I. Therefore, FCFú = �. We can generate the matrix � using the eigenvalues (i.e., FFT coe�cients
of C) (4):

� = diag(⁄0, ⁄1, . . . , ⁄2N≠1) ⁄m =
2N≠1ÿ

j=0

Cj exp 2fii
jm

2N
, j, m = 0, . . . , 2N ≠ 1 [19]

with Cj the (j + 1)th elements of the first row if C matrix, i =
Ô

≠1, and F defined as:

F (j, m) = 1Ô
2N

exp ≠2fii
jm

2N
. j, m = 0, . . . , 2N ≠ 1 [20]

To find the square roots of matrix C, we can write C = SSú with S = F�1/2Fú and �1/2 = diag(⁄1/2
0 , ⁄

1/2
1 , · · · , ⁄

1/2
2N≠1) (5).

The last step to simulate a FBM process is to multiply matrix S with a vector V with i.i.d. standard normal elements and take
the first N elements corresponding to the fractional Gaussian noise vector ›.

Continuous Time Random Walk. A continuous time random walk (CTRW) process is a class of anomalous di�usion with a
combination of random walks in space and time. Consider a test particle di�using with a CTRW behavior where x(t) denotes
the position of the particle at time t. The particle will make a random jump of distance �xi = x(ti) ≠ x(ti≠1) after a waiting
time of ·i = ti ≠ ti≠1 in its previous site. After the jump, the process is renewed. For a CTRW process, we assume (6)

• The spatial step length �xi, i = 1, 2, · · · are i.i.d. random variables drawn from the PDF ⁄(�x)

• The waiting times ·i, i = 1, 2, · · · are i.i.d. random variables drawn from the PDF Â(·)

• The waiting times ·i, i = 1, 2, · · · and step lengths �xi, i = 1, 2, · · · are independent

Therefore, the joint probability distribution function Ï(�x, ·) (known as the jump PDF) can be written as Ï(�x, ·) =
Â(·)⁄(�x) (6), where the distribution of the spatial jump and waiting times are (7):

⁄(�x) =
⁄ Œ

0
dt Ï(�x, ·), [21]

Â(·) =
⁄ +Œ

≠Œ
dx Ï(�x, ·). [22]

We will now focus only on the subdi�usive CTRW process which is more relevant to the anomalous di�usion of gold nanorods
in the liquid cell environment. For a subdi�usive CTRW process, the waiting times · are drawn from a heavy-tailed power-law
distribution with the asymptotic behavior

lim
·æŒ

Â(·) = ·
–

0
·1+–

. [23]

Here, ·0 is a scaling factor with the dimension of time. The average waiting time in the subdi�usive case (– < 1) diverges; that
is È·Í =

s Œ
0 ·Â(·)d· æ Œ. The power-law distributed waiting times can be thought of as a physical picture where tracer

particles are continually caught in potential wells with various depths (8, 9). The spatial step lengths are assumed here only
to have zero mean and finite variance.

As mentioned in the main text, for a Brownian particle, the ensemble-averaged MSD (e-MSD) Èx2(t)Í grows linearly in time.
However, for a subdi�usive CTRW process of total duration T , the e-MSD is (10)

Èx2(T )Í ≥ T
–

. [24]
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To obtain this form, we begin by considering the ensemble average of time averaged of MSD (et-MSD), È”x2Í, over an ensemble
of independent trajectories of duration T

È”x2(�; T )Í = 1
T ≠ �

⁄
T ≠�

0
È(x(t + �) ≠ x(t))2Ídt. [25]

The integrand can be expressed in terms of the variance of the jump length È”x
2Í and the average number of jumps n(t, t + �)

in the time span of (t, t + �) as (10, 11):

È(x(t + �) ≠ x(t))2Í = È”x
2ÍÈn(t, t + �)Í

= È”x
2Í

#
Èn(0, t + �)Í ≠ Èn(0, t)Í

$
.

[26]

For a subdi�usive CTRW process, the average number of jumps for a specified time interval corresponds to a fractional Poisson
process with Èn(0, t)Í ≥ t

–. Therefore,

È”x2(�; T )Í ≥ È”x
2Í

T ≠ �

⁄
T ≠�

0
dt

Õ #
Èn(0, t

Õ + �)Í ≠ Èn(0, t
Õ)Í

$

= È”x
2Í

T ≠ �

⁄
T ≠�

0
dt

Õ #
(tÕ + �)– ≠ t

Õ–$

= È”x
2ÍT

1+– ≠ �1+– ≠ (T ≠ �)1+–

(1 + –)(T ≠ �) .

[27]

In the limit � π T :
È”x2(�; T )Í ≥ D–

�
T 1≠–

, [28]

which shows a linear dependence on time delay � despite the nonlinear anomalous di�usive behavior with the measurement
time T . The e-MSD of eq. Eq. (24) corresponds to the limit � æ T . The fact that the measurement time T shows up in the
eq. (28) shows the aging behavior of the subdi�usive CTRW process. This suggests that as the CTRW process goes on in time,
the t-MSD becomes smaller, meaning that it is more likely that longer trapping times would happen, which stalls the progress
of x(t) (1). Moreover, we observe a drastic di�erence between the subdi�usive CTRW and Brownian motion: that the t-MSD
”x2(�; T ) and e-MSD Èx2(T )Í do not converge towards agreement even in the limit of infinite sampling, a condition known as
weak ergodicity breaking

Èx2(T )Í ”= lim
T æŒ

”x2(�; T ). [29]

This ergodicity-breaking nature of the CTRW process results in scatter in t-MSD ”2(�) vs. time delay � curves.

p-Variation Test

The p-variation test introduced in the Methods section generalizes the concept of the total variation V , in which the increments
(i.e., particle displacements) are summed over the entire trajectory

V [x(t)] = lim
næŒ

2nÿ

j=1

--x
!
j/2n

"
≠ x

!
(j ≠ 1)/2n

"-- . [30]

Here we have expressed the total variation as a functional of the trajectory x(t) and rescaled the duration of this trajectory to
the interval t œ [0, 1]. The total variation V [x(t)] measures the total length of the path traced out by x(t). It is defined in the
limit of n æ Œ. In this limit, the total variation of Brownian motion is infinite as will be shown momentarily. This is a simple
example of the “coastline paradox” described by Benoit Mandelbrot in the context of self-similarity and fractal dimension: the
total length of a continent’s coastline depends on the size of the ruler used to measure it and, in principle, can be infinite for an
infinitesimal ruler (12).

The p-variation V
(p)

n (t) generalizes the concept of total variation by exponentiating each increment (see Fig. S4 for the
increments size at each n) by p before summing (13)

V
(p)

n (t) =
(2n)tÿ

j=1

--x
!
j/2n

"
≠ x

!
(j ≠ 1)/2n

"--p

. [31]

Note that V
(p)

n (t) is defined for finite n and on any interval of the trajectory [0, t].
We consider now the p-variation of fractional Brownian motion (FBM). The variance of FBM in Eq. (5) can be rewritten as

x(t + ”) ≠ x(t) ≥ ”
H

, [32]
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where the symbol “≥” indicates expectational proportionality of the Euclidean norm. Together with the the stationarity
property of FBM, this allows equation Eq. (31) to be evaluated to

V
(p)

n (t) ≥
(2n)tÿ

j=1

(2≠n)pH = t(2n)1≠pH
. [33]

Thus, in the limit of n æ Œ the p-variation falls into three regimes depending on the choice of p.

lim
næŒ

V
(p)

n (t) =

Y
]

[

+Œ if p < H
≠1

t if p = H
≠1

0 if p > H
≠1

. [34]

Earlier it was stated that the total variation of Brownian motion is infinite. This can be identified with the first case above, in
which H = 1/2 for Brownian motion and p = 1 for the total variation. We can also see that the quadratic variation (p = 2) of
Brownian motion is finite and proportional to t; that is, limnæŒ V

(2)
n (t) Ã t.

Waiting Time Distribution

Subdi�usive behavior in the context of a CTRW process arises as a consequence of a heavy-tailed waiting time distribution,
characterized by the asymptotic behavior described in Equation Eq. (23). In Fig. S11 we have plotted the distribution of waiting
times for one of the trajectories at a dose rate of 49 e≠/Å2s, counting the time required for displacements larger than a radial
threshold, where displacements below this radius are considered immobile. This figure shows the waiting time distributions for
radial thresholds of 20 and 100 nm. The choice of the cut-o� radius has a significant e�ect in the power-law exponent of the
waiting time distribution. For small values (Æ 20 nm) the distribution has a power law tail of ≥ ≠2.0, suggesting that the
– æ 1 corresponding to a Brownian case. However, as discussed in the text, displacements smaller than the length of the
nanorods (Æ 60 nm) could also mean that the nanorods got trapped with the head or tail on the same pinning site. Therefore,
we have also plotted the distribution for a radial threshold value of 100 nm. However, the number of data points are insu�cient
to draw any firm conclusions, but the apparent asymptotic behavior in the 100 nm case may be an indication of subdi�usive
behavior.

MotionNet (MoNet) Architecture, Training, and Inference

Input. For di�usion classification, MoNet is trained on 10, 000 simulated trajectories from three classes of Brownian, subdi�usive
FBM, and subdi�usive CTRW. The steps on how to sample trajectories from these processes have been discussed in the previous
sections. For FBM, the range of – considered was 0.2 Æ – Æ 0.96. For CTRW the range of – considered was 0.1 Æ – Æ 0.99.
For – prediction for both FBM and CTRW processes, MoNet is trained on 3, 000 simulated trajectories for each task.

For the task of classifying the trajectories into their di�usion class and predicting the – exponent for CTRW process,
the input to MoNet is the vector of discrete-time increments of the simulated trajectories. Given a batch of N simulated
trajectories {x1, x2, · · · , xN }, where xi = (xi,0, xi,1, · · · , xi,299)|Ni=1, the vector of discrete-time increments is defined as
dxi = (xi,1 ≠ xi,0, · · · , xi,299 ≠ xi,298) = (dxi,1, dxi,2, · · · , dxi,299). It has been reported previously that for the – prediction
task (in case of FBM processes) learning the velocity autocorrelation of a trajectory is more e�ective that the trajectory
increments (14). Hence, we followed the same procedure and used the velocity autocorrelation of the discrete-time increments
vector as the input for the MoNet with autocorrelation defined as dxi ú dxi

T , where ú denotes convolution and dxT

i is the
transpose of vector dxi.

Architecture. Fig. S4 and S5 show the architecture of MoNet, adapted from Granik et. al. (14) and modified based on the
p-variation method introduced in the previous section. We use the same architecture universally regardless of the task
(regression/classification). The architecture of MoNet comprises of 4 layers where the first layer consists of 6 convolutional
sublayers (f11, f12, f13, f14, f15, f16) that are applied on the input data in parallel. The first 5 convolutuonal sublayers are
three layers deep with relu activation units (relu(·) = max(·, 0) for rectification of the feature map), batch normalization
(normalizing the responses across features map), and max pooling (finding the maximum over a local neighborhood). The
number of filters applied in all of these sublayers are set to 32. After training, each of these filters capture a certain distinct
pattern along the trajectory (e.g., descending, ascending patterns). The diversity among the filters are typically ensured via
random initialization of the filters and regularization techniques such as batch normalization and drop out. The filter sizes
are k = 3, 4, 2, 10, and 20 respectively for the five convolutional sublayers to capture the local dynamics of trajectories in
several spacial resolutions. The convolutional sublayers also di�er in their dilation factor (i.e., the number of steps that filters
skip). Following p-variation we chose dilation factors that span the trajectory via steps of size 2n. The last convolutional
sublayer, f16 augments the model using large filter sizes of length 20 without any dilation. The output of the convolutional
sublayers are fed into two fully connected layers of size 512 and 128 (f2 and f3, respectively). The final layer of MoNet (f4) is
set based on the prediction task. For the anomalous classification task, the last layer is a dense layer of size 3 (corresponding to
the three classes of di�usion) with a Softmax activation. Softmax function maps the output of the layer 3 after applying the
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linear transformation g(dxi; W) = [g1(dxi; W), g2(dxi; W), g3(dxi; W)], where W denotes all the parameters in MoNet, to
the predicted probability of output classes P defined as:

P(dxi; W) = e
g(dxi;W)

q
C

c=1 egc(dxi;W)
, [35]

where C = 3 is the number of classes and P(dxi; W) = [P1(dxi; W), P2(dxi; W), P3(dxi; W)].
For the regression task of finding the – exponent, a dense layer of size 1 with a Sigmoid activation is used in the last layer

to capture the output. Sigmoid function maps the output g(dxi; W) to a variable between 0 and 1 (i.e., the predicted value of
–), and is defined as:

S
p(dxi; W) = 1

1 + e≠g(dxi;W) . [36]

The overall architecture of the neural net shown in fig. S4 can be written as F(dxi; W) = f4 ¶ f3 ¶ f2 ¶ f1(dxi; W) where
f1 = [f11, f12, f13, f14, f15, f16] is the concatenation of the output of all the 6 convolutional sublayers applied in the first layer
(Fig. S5).

Loss Function. For classification task, the loss function is a categorical cross-entropy loss function, L, defined as:

L(W) = 1
N

Nÿ

i=1

DKL(Qi||P(dxi; W)) = ≠ 1
N

Nÿ

i=1

Cÿ

c=1

qi,c log Pc(dxi; W), [37]

where Qi = [qi,1, qi,2, qi,3] is the ground truth probability of each class for a trajectory xi. Note that qi,c is 1 if the sample i is in
class c and 0 otherwise. Pc(dxi; W) is the output predicted probability that sample i is in class c. DKL is the Kullback-Leibler
divergence between two distributions Pi and Qi.

For – prediction, the loss function is a mean squared error (MSE) L defined as:

L(W) = 1
N

Nÿ

i=1

(Si ≠ S
p

i
)2

, [38]

with S
p

i
, the predicted value of – by MoNet (the output) and Si, the ground truth value of – for sample i.

Training. All the parameters of the network including the filters in the first layer and the weight matrices in the following layers
were trained by back-propagating the derivative of the loss function with respect to the parameters W using a stochastic
gradient descent (15). MoNet is trained using the ADAM optimizer with an adaptive learning rate that starts from 10≠5.

Validation. The validation accuracy and validation MSE are evaluated on a set of hold-out unseen simulated data with the
same size as the training data (i.e., 10, 000 for classification and 3, 000 for – prediction).

Inference. For testing our experimental data (30 trajectories shown in Fig. S1), we treated x and y coordinates independently.
For all trajectories (xi,1, xi,2, · · · , xi,Ti )|30

i=1, we tested each 300-frame intervals separately by dividing the trajectory into
m = ÂT/300Ê segments. The final results where then reported as the mean value of the output (probability in case of
classification and – value in case of – prediction) averaged over all 300-frame segments and x and and y coordinates. See
Fig. S9 and S12 for the prediction outcomes for the 30 trajectories presented in Fig. S1.

Performance of MoNet in classification and – prediction

In order to show the e�ect of trajectory length on the performance of MoNet in both classification and – prediction tasks, we
have plotted Fig. S6 where we report validation accuracies and MES’s averaged over 320 hold-out simulated trajectories. Fig. S6
shows that the accuracy increases and the MSE decreases, with increasing the trajectory length. However, the validation
accuracy of MoNet for classification saturates around 88.5% ± 2.3 and validation MSE saturates over 0.02 ± 0.002 for CTRW,
and 0.002 ± 0.0002 for FBM – prediction, for trajectories longer than 300

In case of – prediction, estimating – based on a single trajectory and without having an ensemble average is a challenging
task for CTRW processes. Therefore, as expected, the error associated with – prediction for CTRW processes is higher than
the case of FBM processes (Fig. S6a).
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Fig. S1. Trajectories of 30 gold nanorods in a range of dose rates from 2 to 49 e
≠

/Å
2

s over time (shown as color bar). Scale bars show 50 nm. Electron beam dose rate

values are shown on the top left corner of each trajectory.
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Fig. S2. Time-averaged mean squared displacement (t-MSD) vs. time delay, �, for all trajectories of Fig. S1 in range of dose rates from 2 to 49 e
≠

/Å
2

s.
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Fig. S3. Anomalous diffusion coefficients obtained from t-MSD curves of Fig. S2 fitted to a power law of D–�–
for time delays � Æ 0.25 s.
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Fig. S4. a) Illustrative description of increments size for each given n in p≠variation method, V
p

n (t) b) Schematic showing the Motion Net (MoNet) neural network architecture.

c) An example of a dilated causal convolution sublayer f11 used in MoNet with a filter size of k = 3 and dilation factors of d = 20
, 21

, 22
similar to the p-variation concept

shown of panel (a).
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Fig. S5. Architecture of the 4-layered MoNet model with 3 example convolutional sublayers (out of the 6 sublayers used in the first layer) with filter sizes of 3, 2, and 20. The

input of the network is the increments of a trajectory, dx = (dx1, dx2, · · · dx299). In the first layer (f11, · · · , f16) this input is convolved with 32 different filters of different

sizes and different dilation factors (see Fig. S4). Here, we showed the example for filters of sizes: k = 3 with dilations of d = 1 (red), 2 (blue), and 4 (green), k = 2 with

dilations of d = 1 (red), 2 (blue), and 4 (green), and k = 20 with dilation of 1 (red). The output of each dilation is normalized using batch normalization. The resulting feature

tensors are then pooled (maximum row within tensor), resulting in 32 ◊ 1 vector. Similar operation is performed on all sublayers of the first layer shown in Fig. S4. The result of

all convolutional sublayers f11, f12, f13, f14, f15, and f16 were then concatenated into a vector of size 192 ◊ 1 which is the input for the second layer. The second and third

layers are dense fully connected layers, taking features from the first layer. The final layer is chosen based on the prediction task; dense layer of size 3 with softmax activation

function for the classification and dense layer of size 1 with sigmoid activation function for the – prediction.
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Fig. S6. a) Validation accuracy of MoNet in classifying the diffusion behavior on simulated test data. b) Validation mean squared error (MSE) associated with the – prediction

for CTRW (gray) and FBM (black) processes. Error bars indicate standard deviation.

12 of 19 Vida Jamali, Cory Hargus, Assaf Ben-Moshe, Amirali Aghazadeh, Hyun Dong Ha, Kranthi K. Mandadapu, and A. Paul Alivisatos



Fig. S7. Pie charts showing the predicted probability of three classes of diffusion by MoNet for trajectories shown in Fig. S1.
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Fig. S8. Quadratic variation test, V
2

n (t), results for trajectories shown in Fig. S1.
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Fig. S9. Distribution of displacements, ”x(tfr) (where tfr is equal to 1/frame rate) for the trajectories shown in Fig. S1 with a power-law tail fit with an exponent of ≠2.0.
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Fig. S10. Anomalous exponent – predicted by MoNet for CTRW processes and FBM processes (– = 2H, where H is the Hurst exponent of FBM processes) plotted as a

function of dose rate and compared to the – values estimated from the t-MSD curves of Fig. S2 for time delays � Æ 0.25 s.
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Fig. S11. Distribution of waiting times, · , for an example trajectory at a dose rate of 49 e
≠

/Å
2

s for two different cut-off radius’s of 20 and 100 nm. The black line indicates a

power-law tail fit with an exponent of ≠2.
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Fig. S12. Predicted probability of a) FBM, B) CTRW, and C) Brownian classes across the trajectory length captured at the electron beam dose rate of 10 e
≠

/Å
2

s.
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