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Abstract 

The development of computational methods to explore crystalline materials has received significant 

attention in the last decades. Different codes have been reported to help researchers to evaluate and 

learn about the structure of materials and to understand and predict their properties. Here, we 

present an updated version of PoreBlazer, an open-access, open-source Fortran 90 code to calculate 

structural properties of porous materials. The article describes the properties calculated by the code, 

their physical meaning and their relationship to the properties that can be measured experimentally. 

Here,  we reflect on the methods in the code and discuss features of the most recent version. First, 

we demonstarte the capabilities of PoreBlazer on the prototypical metal-organic framework (MOF) 

materials, HKUST-1, IRMOF-1 and ZIF-8, and compare the results to those obtained with other codes, 

Zeo++ and RASPA. Second, we apply PoreBlazer to the recently assembled database of MOF materials 

– the CSD MOF subset – and compare properties such as accessible surface area and pore volume 

from PoreBlazer and the two other codes, and reflect on the possible sources of the differences. 

Finally, we use PoreBlazer to illustrate how correlations between various structural characteristics can 

be mined using interactive, dynamic data visualization and how material informatics approaches – 

including principal component analysis and machine learning – can accelerate the discovery of new 

materials and new functionalities. The results of these calculations, along with the PoreBlazer code, 

documentation, and case studies are available online from 

https://github.com/SarkisovGroup/PoreBlazer. The data visualization tool is available at https://aaml-

explorer-geo-prop.herokuapp.com), and the principal component analysis is available at https://aaml-

pca-geo-prop.herokuapp.com. 

 

1. Introduction 

Structure determines property. This simple and powerful concept in chemistry has been the 

cornerstone of modern computational approaches to drug discovery, where millions of candidate 

small organic molecules are screened based on their ability to bind to the therapeutic target. Organic 

chemistry provides the building blocks for metal-organic frameworks (MOFs)1. Combined with the 

large number of topologies into which these building blocks can be arranged, this implies a virtually 

infinite number of possible MOF structures. As a result, computational screening has become a new, 

essential tool for porous, crystalline material discovery and optimization, and in particular, for MOFs, 

zeolitic imidazolate frameworks (ZIFs)2, covalent organic frameworks (COFs)3, and other classes of 

materials. 

The first example of a virtual MOF designed for a specific application was provided by Duren et al.4 

They explored how adsorption of methane at 35 bar and room temperature (conditions relevant for 
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the adsorbed natural gas vehicle technology) depended on the properties of porous materials, such 

as the specific surface area and MOF-methane interaction strength. Using insights obtained from 

computer simulations, the authors proposed new, hypothetical MOFs, with enhanced methane 

storage capabilities. In the study, the authors also posed a question on how various structural 

characteristics of a MOF, such as surface area and pore volume, define their functionality in a 

particular application. Other characteristics of the porous morphology of a MOF include the shape and 

size of the pores, shape and size of the windows between the pores, access to specific active sites, and 

so on. Some of these properties have also a particular importance as they can be measured 

experimentally (e.g. surface area, pore volume, and window size). Collectively, these characteristics – 

the textural properties of materials – form a geometric identity of a MOF, its unique fingerprint.  

The tinker-toy nature of MOFs, i.e. the fact that they are assembled from basic building blocks, led 

to a new, profound idea: we can build databases of virtual MOF materials, following some assembly 

algorithms, and explore their properties in silico with a view of identifying the most promising 

candidates for a particular application. These ideas were put together by Wilmer et al.5, who 

constructed a database of 137,953 hypothetical MOFs and investigated their capability to store 

methane at the target conditions (35 bar, room temperature) as a function of their surface area, void 

fraction, largest pore diameter, etc. Later, this led to a burgeoning area of computational material 

screening in application to a number of problems, from carbon capture to toxic gas and warfare 

chemical detection6. 

For systematic comparison of the materials in computational screening, for their classification and 

to reveal structure-property relations it is important to have computational tools, which would 

produce the geometric identity of a MOF. The development of these tools to obtain structural 

characteristics of porous materials has been a result of many contributions scattered over the years. 

For example, the algorithms adopted by Duren et al.4, 7, have been originally applied to characterize 

molecular models of porous glasses by Gelb and Gubbins8-10, which in their turn originate from the 

methods developed in the field of stereology. Application of Voronoi tessellation in the context of 

random heterogeneous media can be tracked down to the early eighties11. In the last 10 years, several 

software packages and web platforms have emerged that, given coordinates of the atoms or particles 

constituting the material, produce a comprehensive set of geometric characteristics. Let us briefly 

review these codes here before we formulate the objectives of the article. 

Chronologically, PoreBlazer, developed by Sarkisov, was the first simulation package of this kind 

for computational characterization of crystalline and amorphous materials12, 13. The code, written in 

Fortran 90, is based on the grid (or lattice) representation of the porous space and calculates pore 

volume, accessible surface area, largest pore diameter, pore limiting diameter, pore size distribution 

and other properties. ZEOMICS and MOFomics, by Floudas and co-workers, represent an alternative 

approach.14, 15 There, the porous space of the material is parsed into geometric objects (portals, 

channels, cages) using Delaunay triangulation and complementary geometric methods. Then, the 

connectivity between these objects is determined and the properties of the structure (accessible 

surface area, accessible volume) are calculated. These tools are presented in the form of a web portal, 

where users can submit their structure files and receive the final results by email. Zeo++, developed 

by Haranczyk and co-workers, is a C++ package for high-throughput analysis of porous materials based 

on Voronoi tessellation16-18. With Voronoi network being a dual graph of the Delaunay network, this 

approach is closely related to that of Foster et al.19. The program is downloadable from the website of 
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the developers, with the source code available upon request. RASPA simulation package, developed 

by Dubbeldam and co-workers, is a powerful, open-source suite of classical simulation tools (e.g. 

molecular dynamics, Monte Carlo simulations)20. Within RASPA, there are options to obtain the 

surface area and pore volume of the material, using the computational helium porosimetry approach, 

as well as a pore size distribution. 

These software programs differ in their methodology, accessibility, operation, and performance, 

and we encourage the readers to use a program suited for their specific research needs. However, we 

believe what is important to do, is to compare properties calculated by these packages to each other. 

This would ensure consistency across various calculations and methods and would allow us to reflect 

on the differences in the obtained values as a result of different algorithms and definitions employed. 

This is prompted by the aspirations of the computational scientific community to improve the 

consistency of the simulations and reproducibility of the published results21. Hence, the objectives of 

the article can be formulated as follows: 

1) To provide a review of the most recent version of PoreBlazer (from now on, PB v4.0), including setup 

examples, input files, properties it calculates and the algorithms behind these calculations.  

This objective is dealt with in Sections 2 on the Properties and Algorithms. We also use this section as 

an opportunity to establish a clear link between the geometric properties and the actual properties of 

materials that can be directly or indirectly inferred from the experiments.  

2) To establish consistency of the properties calculated across various codes, PB v4.0, Zeo++, and 

RASPA*.  

For this, we first consider three specific cases of well-known MOFs (HKUST-1, IRMOF-1 and ZIF-8) to 

provide a detailed comparison of the properties produced by different codes. We guide the reader on 

how to set up PB v4.0 simulations and interpret them and also provide the reader with the complete 

setups used to obtain this data in PB v4.0, Zeo++ and RASPA. We then focus on the recently developed 

database of MOF structures, the Cambridge Structural Database (CSD) MOF subset. To assemble this 

database, Moghadam et al. sieved through the CSD to identify entries that satisfy certain criteria 

characteristic for MOFs22. Using this set of MOFs (see additional details below in Section 3), we apply 

PB v4.0, Zeo++ and RASPA to obtain key structural characteristics, compare the data produced by the 

codes and provide an interpretation of the trends. The complete database of the geometric properties 

obtained for CDS MOF using PB v4.0 is also available for download from 

https://github.com/SarkisovGroup/PoreBlazer. 

3) Provide the reader with a case study of how geometric characterization tools and data can be used 

in the context of material informatics. 

The data produced by PoreBlazer for CSD MOF subset structures form a multidimensional space of 

values, with the dimensions being the geometric properties. Although interesting functional and 

topological relations may exist between structures, they are not often easy to reveal and visualize due 

to the complexity of the space. The set of python codes developed in the Fairen-Jimenez group 

provides an interactive way to visualize these properties and relations between them23-25. In the final 

                                                           
*Unfortunately, at the time of writing this article, the MOFomics and ZEOMICs platforms were not available for use. 
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part of this article, we consider how the application of these visualization tools can reveal trends, 

which help to accelerate the discovery and design of materials with specific adsorptive behavior.  

2. Properties and algorithms 

In this section, we define the geometric properties of interest and their connection to experimentally 

measured characteristics. We then provide additional details on the algorithms to calculate these 

properties and how these algorithms have been implemented in PB v4.0.  

2.1 Surface area and pore volume  

Consider the schematic illustration in Figure 1A. The system consists of a porous material, shown as 

the grey area, and a channel spanning the system from left to right. Atoms of the structure forming 

the channel are shown as striped circles. Consider now a probe particle of zero size (a point) moving 

on the surface of the atoms of the structure. In a three-dimensional system, this will create the so-

called van der Waals surface, delineating the boundary of the spherical atoms. In the two-dimensional 

schematic we use, this property is represented by the red line (Figure 1B). The volume enclosed by 

this surface is called the geometric pore volume, 𝑉𝐺, which is the volume accessible to a point probe, 

and it is shown as the light red shaded area in Figure 1B. 

 
Figure 1. Schematic depiction of a porous material and its properties. (A) A model system consists of a 

material, shown as the area shaded in grey, and a pore spanning the system in the horizontal direction. Atoms 

of the material at the boundary between the shaded area and the pore are shown as striped circles. (B) The 

geometric pore volume is defined as the region of the system not occupied by atoms (shown in light red). The 

boundary between the occupied and empty space is the van der Waals surface, shown in B as the red line. 

(C) Schematic depiction of the accessible surface: it is the surface formed by the center of the probe particle 

rolling over the surface of the atoms of the structure, shown as the green line. A region of space enclosed by 

the accessible surface corresponds to the probe-center accessible probe volume, shown as the green shaded 
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area. (D) Schematic depiction of the Connolly surface: it is the surface formed by the tip of the probe particle 

rolling over atoms of the structure, shown as the dark blue line. A region of space enclosed by the Connolly 

surface corresponds to the probe-occupiable volume, shown as the blue shaded area. The difference between 

the geometric volume and the probe-occupiable volume is shown as residual red-shaded areas in panel D (see 

the inset for more details). 

 

In Figures 1C, D we consider the same process for a probe of finite size. In this case, we generate 

two surfaces (again, in the case of the 2D schematic, it is two lines): one by the center of the particle, 

shown as the green line in Figure 1C, and the one by the tip of the particle, shown as the blue line in 

Figure 1D. The first property has been traditionally called solvent-accessible, or accessible surface in 

biomolecular studies. The second surface is called the solvent-excluded surface in the biomolecular 

community, or the Connolly surface. In this article, we are going to use subindex AC for the solvent-

accessible definition of the surface area (𝑆𝐴𝐶) and subindex C for the Connolly surface area (𝑆𝐶).  

The physical meaning of the first property, 𝑆𝐴𝐶, is that it is most closely related to the nitrogen or 

argon adsorption surface area if we use a probe particle representing properties of these molecules. 

Indeed, gas-adsorption experimental methods for the determination of the surface area, such as BET, 

are based on the notion of a layer of molecules forming on the surface (where the capacity of this 

layer can be extracted from the adsorption isotherms depending on the method) and, given the cross-

sectional area of the probe molecule, the specific surface area of the material can be determined. 

Multiple studies have been published on the correlation between the computed areas of a porous 

material and surface areas extracted from experimental data on real crystals or simulation data on 

perfect crystals7, 26-28. Correspondingly, the volume enclosed by this accessible surface is the volume 

accessible to the probe of a specific size. Following the terminology of Ongari and co-workers29, we 

call this property the probe-center accessible volume, 𝑉𝑃𝐶. In Figure 1C, this is shown schematically as 

the green-shaded area. 

The second property, the Connolly surface, is important for yet another definition of the pore 

volume. Indeed, in this definition, the pore volume is the volume enclosed by the Connolly surface, 

shown the blue area in Figure 1D. The physical meaning of this volume is that any point that belongs 

to any part of the probe atom (not just the center) constitutes the pore volume. It has been argued, 

that it is this volume that is most consistent with the volume obtained from the experimental nitrogen 

and argon adsorption and the Gurvich rule, which assumes that the density of the confined liquid in 

the porous material is equal to the density of the bulk liquid at the same temperature29. To distinguish 

it from the probe-center accessible volume enclosed by the accessible surface, we need to give it a 

separate name. In the study by Ongari and co-workers and in Zeo++ this volume is called the probe-

occupiable (PO) pore volume, 𝑉𝑃𝑂
29. For consistency, we will use the same terminology. 

The next property we wish to introduce is the helium pore volume. To understand the nature of 

this property and its relevance, it is useful to take a brief detour into experimental measurements of 

adsorption. The property that is determined and, typically, reported in experiments is the excess 

amount adsorbed (𝑛𝑒𝑥):  

𝑛𝑒𝑥 = 𝑛𝑎 − 𝑉𝑑𝑒𝑎𝑑∙𝜌𝑏𝑢𝑙𝑘 (1) 

which is the difference between the actual amount of adsorbing species present in the system 𝑛𝑎 and 

the amount of gas that would occupy the available space 𝑉𝑑𝑒𝑎𝑑, as if there was no effect of adsorption. 
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Here, 𝜌𝑏𝑢𝑙𝑘 is the bulk gas density at the temperature and pressure of the experiment. This available 

space, traditionally called dead volume, consists of the volume of the pores (𝑉𝑝𝑜𝑟𝑒) in the material and 

the volume external to the material sample (𝑉𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙):  

𝑉𝑑𝑒𝑎𝑑 = 𝑉𝑝𝑜𝑟𝑒 + 𝑉𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 (2) 

To obtain (1), in experiments, the dead volume of the system is determined using a preliminary 

calibration step based on the helium expansion. For this, helium is introduced in the system at ambient 

temperature and low pressure. Using the ideal equation of state and the amount of helium in the 

system, 𝑉𝑑𝑒𝑎𝑑 is determined. The absolute amount adsorbed (𝑛𝑎𝑏𝑠)  is the total number of adsorbing 

species present in the porous material:  

𝑛𝑎𝑏𝑠 = 𝑛𝑒𝑥 + 𝑉𝑝𝑜𝑟𝑒 ∙ 𝜌𝑏𝑢𝑙𝑘 (3) 

It has been argued on a number of occasions that the absolute amount adsorbed provides a rigorous 

basis for the adsorption thermodynamics30, 31. Moreover, this is also the property used in the process 

modeling of adsorption and calculated in molecular simulations31. Hence, comparison between 

experimental and simulation studies requires consistent conversion between the excess and absolute 

properties and the definition of the pore volume, 𝑉𝑝𝑜𝑟𝑒, of the sample. So far, in this section, our 

definition of pore volume has been based on purely geometric considerations and on some rational 

way to draw the boundary between what, colloquially speaking, belongs to the solid structure and the 

remaining empty space. The helium expansion experiment offers another definition of the pore 

volume:  

𝑉𝑝𝑜𝑟𝑒 =
𝑛𝐻𝑒

𝜌𝐻𝑒,𝑏𝑢𝑙𝑘
 (4) 

where 𝑛𝐻𝑒 is the amount of helium present in the pores and 𝜌𝐻𝑒,𝑏𝑢𝑙𝑘 is the density of the bulk helium 

gas at ambient temperature and pressure. Let us hypothesize that helium is weakly interacting with 

the porous material and therefore it is not adsorbing. Therefore, inside the pores of the material, it 

behaves as an ideal gas; applying the ideal gas equation of state to the amount of helium present in 

𝑉𝑝𝑜𝑟𝑒 will give us a value that is reasonably consistent with our expectation of what pore volume 

should be as outlined by some boundary between the solid and the pore space. This is, however, not 

the case, and particularly in materials with very narrow porosity: several studies have demonstrated 

that helium does interact with the porous material, although weakly (for a review and discussion of 

this issue see Brandani et al.31). As a result, the volume obtained according to Eq. 4 will likely have 

values not consistent with the alternative definitions of the pore volumes based, for example, on the 

geometric methods. Ongari et al.29, demonstrated that depending on the interactions with the pores 

of the material, the value of the pore volume estimated in this fashion may be lower or higher than 

the values of the pore volume defined using the geometric methods.  

Hence, as has been argued by Neimark and Ravikovitch32, consistent conversion between the 

experimental and simulation studies requires a consistent definition of the pore volume, regardless of 

its true physical meaning. In other words, if the calibration with helium expansion was used to obtain 

𝑛𝑒𝑥 in experiments (Eq. 1), then Eq. 3 to obtain absolute amount adsorbed requires 𝑉𝑝𝑜𝑟𝑒 also 

obtained according to the helium porosimetry and Eq. 4. Similarly, conversion of the simulation values 

for absolute amount adsorbed to the excess amount adsorbed would require some computational 

analog of helium porosimetry:  
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𝑛𝑠𝑖𝑚
𝑒𝑥 = 𝑛𝑠𝑖𝑚

𝑎𝑏𝑠 + 𝑉𝐻𝑒,𝑠𝑖𝑚 ∙ 𝜌𝑏𝑢𝑙𝑘 (5) 

where 𝑛𝑠𝑖𝑚
𝑎𝑏𝑠  is the absolute amount adsorbed in the simulations and 𝑉𝐻𝑒,𝑠𝑖𝑚 is the simulated helium 

pore volume. Indeed, this approach to obtain and report simulated excess adsorption isotherms has 

been adopted in many previous publications33, 34.  

The essence of the computational helium porosimetry is to obtain 𝑉𝐻𝑒,𝑠𝑖𝑚 in simulations. In 

principle, we could use the standard grand canonical Monte Carlo simulation to obtain the amount of 

helium adsorbed at the specified temperature and pressure of the bulk phase. However, the fact that 

at ambient temperature and low pressure we are located in the Henry’s regime of adsorption for 

helium simplifies the analysis. In the Henry’s law regime, the amount adsorbed is:  

𝑛𝐻𝑒 = 𝜌𝐻𝑒,𝑏𝑢𝑙𝑘 ∫ 𝑒−
𝑈(𝒓)

𝑘𝑇 𝑑𝒓
𝑉

 (6) 

where 𝑈(𝒓) is the interaction potential experienced by a helium atom at location 𝒓 within the system 

and the integration takes place over the volume of the simulation cell. From Eqs. 4 and 6, the 𝑉𝐻𝑒,𝑠𝑖𝑚 

becomes: 

𝑉𝑝𝑜𝑟𝑒 = ∫ 𝑒−
𝑈(𝒓)

𝑘𝑇 𝑑𝒓
𝑉

= 𝑉 ∙ 〈𝑒−
𝑈(𝒓)

𝑘𝑇 〉 (7) 

where 𝑉  is the volume of the system. The property in the angle brackets is the average Boltzmann 

factor, which is estimated by placing a probe helium atom in random locations throughout the system 

and estimating its interactions with the material. From this analysis, it is clear that the helium pore 

volume estimated according to Eq. 7 will depend on temperature (although weakly when close to the 

ambient range), and on the interaction parameters of the helium atom used and the atoms of the 

material. It is also important to note that the Eqs. 6 and 7 can be also easily linked to the Henry’s 

constant of adsorption. Using ideal gas equation of state for helium, one obtains: 

𝑛𝐻𝑒

𝑉
=

𝑃

𝑅𝑇
〈𝑒−

𝑈(𝒓)

𝑘𝑇 〉 (8) 

leading to the Henry’s constant: 

𝐾𝐻 =
〈𝑒

−
𝑈(𝒓)
𝑘𝑇 〉

𝑅𝑇
  (9) 

From the expressions above it is clear, that the calculation invoved in obtaining the helium pore 

volume can be equally used to obtain the Henry’s constant of adsorption for other gases of interest, 

using appropriate interaction parameters.  

The final property we wish to introduce is the pore size distribution (PSD). Crystalline and 

disordered porous materials (such activated carbons) can be seen as a system of pores of different 

sizes. The total volume of all pores is equal to the cumulative pore volume of the system. PSD and how 

pores are topologically arranged governs adsorption and transport properties of a porous material, 

and it is vital in the characterization of their structure. In experiments, a PSD is obtained by 

interpreting the nitrogen or argon adsorption isotherms measured at cryogenic conditions as a 

cumulative result of adsorption in a system of independent cylindrical, slit, or spherical pores of 

different sizes. In the modern approaches to characterization, the classical Density Functional Theory 

(DFT) is employed to generate a kernel of isotherms for individual pores of specific width or diameter. 

This kernel of the isotherms, combined with the experimental adsorption isotherm, is then used to 
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obtain the frequency with which pore of each size is present in the system, or, in other words, the 

pore size distribution. Although it is now a standard approach in the characterization of porous 

materials using physical adsorption experiments, it comes with several challenges. Firstly, the link 

between adsorption in the whole sample and adsorption in individual pores is established through the 

so-called Adsorption Integral Equation (AIE). The AIE corresponds to a Fredholm integral equation of 

the first kind, commonly known to be both an ill-posed and ill-conditioned problem. This leads to 

either no solution or to an infinite number of possible solutions which in turn are extremely sensitive 

to small changes in the input. Therefore, to obtain reliable PSD by solving the AIE, advanced 

techniques, based for example on regularization, need to be employed. Secondly, the current kernels 

have been derived predominantly for the systems reflecting chemistry and properties of activated 

carbons and certain zeolites. Direct application of these kernels to other classes of materials such as 

MOFs should be approached with caution and the development of more specialized kernels for MOFs 

is an ongoing area of research35. Finally, only for a few materials, a picture of independent pores of 

simple geometry is realistic, and most of the materials would feature a network of pores. 

Interpretation of adsorption isotherms and in particular adsorption hysteresis in terms of network 

connectivity of pores is still an ongoing area of research, although significant progress has been 

achieved in recent twenty years. For a more comprehensive review of the adsorption characterization 

methods and application of DFT, we refer the reader to the excellent articles by Neimark and co-

workers36 and by Thommes and co-workers37.  

For modeling porous materials we have two options to obtain PSD. We can simulate a nitrogen or 

argon adsorption isotherm and interpret the results using the existing methods based on the AIE 

inversion (using either DFT kernels or bespoke kernels from additional molecular simulations). 

Alternatively, we can use geometric methods, which will attempt to allocate each point of the porous 

space to a pore of a particular size. One particular method implemented in PB v4.0 has been originally 

employed by Gelb and Gubbins in the characterization of model porous glasses8-10. We will describe 

the method in more detail in section 2.3 on the algorithms. Here, it suffices to say that for the case of 

mesoporous materials, Gelb and Gubbins observed surprisingly reasonable correlation between the 

geometric PSDs and the PSDs from the physical adsorption characterization, although, clearly, the 

methods are based on completely different principles. 

In the case of MOF and other crystalline materials, the geometric methods are expected to identify 

pores of a specific well-defined size and the PSD should look like a collection of discrete peaks. This 

information is useful to understand the dimensions of the existing channels and cages and as a part 

of the digital identity of a MOF – we can envision that selection and screening of MOFs within a 

database can be done to identify MOFs with a profile of cages and channels of a certain size. Attempts 

to connect geometric PSDs to specific adsorption behavior (for example, presence of cages of a certain 

size should lead to the corresponding number of steps in the adsorption isotherm) proved to be, 

however, difficult for microporous materials and it is still research in progress38. In section 2.3, we will 

illustrate how geometric methods would tend to interpret cage-like porous space of MOFs, and in the 

results section, we will provide several examples of this function for materials in the case studies.  

2.2 Network accessible and network non-accessible properties 

Consider a model network of pores shown in Figure 2. It consists of a single pore spanning the system 

in the horizontal direction and also two spherical cavities. One cavity is completely isolated from the 

outside space (i.e. closed porosity) and another one is connected to the main pore via a narrow 
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channel. This simple pore network allows us to introduce the notion of network accessibility and 

several other related concepts. Indeed, depending on the size of the probe, various subregions of the 

pore space shown in Figure 2 will be available for the probe to explore. A point-size probe entering 

the system on the left through the main pore will be able to traverse the system from left to right and 

also explore the side channel and the spherical pore connected to it. The pore in the top left corner of 

the system cannot be reached via a continuous, physically meaningful walk by a probe of any size. A 

probe of small size may be able to go to the side cavity in the top right corner via the channel if the 

channel is wide enough. The region of space accessible to the center of the probe via physically 

connected space is shown in yellow in Figure 2A. For a probe of a larger size, as shown in Figure 2B, 

the side channel may be too narrow to pass and the side pore is not accessible for it to explore. The 

regions that the center of the blue particle can reach via a physically meaningful walk are shown as 

the light blue shaded areas in Figure 2B. The largest probe that can cross the simulation cell in at least 

one dimension via a diffusive pathway is said to correspond to the Pore Limiting Diameter (PLD), as 

illustrated in Figure 2D. Hence, we can define regions of porous space as network-accessible to a probe 

of a particular size if they form a percolated network spanning the system in at least one dimension. 

In other words, network-accessible space is formed by all pores inside the material, which a probe 

molecule can reach and diffuse through if it was an actual experiment.  

 

 
Figure 2. Schematic illustration of the network-accessible and non-accessible properties. (A) For a small 

probe particle, shown as the yellow sphere, the area shaded light yellow is network-accessible to the center 

of the probe. The spherical cavity in the top left corner of the system is not network-accessible to the probe. 

(B) For a probe of a different (in this case, larger) size, the network-accessible regions will be different, here 

shown as the light blue shaded area. (C) This panel illustrates the total probe-center accessible volume for 

the blue particle. (D) This schematic illustrates the concepts of the Pore Limiting Diameter (PLD) and Largest 

Cavity Diameter (LCD).  
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Each of the properties defined in 2.1 can be calculated considering either all the pores in the 

system, even the ones that are isolated or inaccessible to a probe of a particular size, or only using the 

percolated network – in other words, network-accessible regions. For example, consider the 

accessible surface area, 𝑆𝐴𝐶. For this property, we use a molecular probe corresponding to an atom of 

nitrogen. As has been discussed before, this is the surface enclosing the probe-center accessible 

volume. If we take network accessibility of the porous space into account, it is the blue shaded area 

in Figure 2B as discussed before. However, if the network accessibility is not taken into account, it 

leads to a different picture: the volume accessible to the center of the probe, in this case, is shown in 

Figure 2C. It includes regions within the two spherical cavities, which are large enough to 

accommodate the blue particle, but are not reachable by a diffusive pathway. The surface area will 

correspond to the boundaries between the blue regions and the white regions in the two schematics 

and it will have different values depending on the approach (network-accessible vs. not network-

accessible).  

In experiments, obviously, all properties measured via gas adsorption correspond to the network-

accessible regions of the porous space. Therefore, for consistent comparison of the properties, we 

need to distinguish between network-accessible and not network-accessible properties. Often, these 

have been referred to as open and closed porosity, respectively. We note that in defining these 

properties, it is important to state with respect to what probe the accessibility is considered. Not all 

combinations of properties actually are physically relevant or can be compared to the experimental 

counterparts. For example, for the surface area, it makes sense to define 𝑆𝐴𝐶,𝐴(𝑁2) as accessible 

surface area obtained specifically for a nitrogen-accessible network (Figure 2B), as this is what would 

be measured in the actual gas adsorption experiments, and 𝑆𝐴𝐶,𝑇(𝑁2) as the total accessible surface 

area (Figure 2C).  

Table 1 summarizes the properties reported by PB v4.0. Each property can be either of the total 

(second subindex T) or network-accessible type (second subindex, A). In these definitions, we use a 

specific combination of the property and the probe, and therefore additional information on the 

nature of the probe is not needed: for example,  𝑆𝐴𝐶,𝐴(𝑁2) is simply 𝑆𝐴𝐶,𝐴. To avoid cumbersome full 

name for “network-accessible accessible surface area”, we make a convention here that, unless 

specified otherwise, the surface area term describes the accessible surface area. This convention 

allows us to call 𝑆𝐴𝐶,𝐴 property the network-accessible surface area and 𝑆𝐴𝐶,𝑇 the total surface area, 

respectively. 

Table 1. Properties reported by PB v4.0.  

Property Probe Network Notation 

Accessible surface area Nitrogen Nitrogen 𝑆𝐴𝐶,𝐴; 𝑆𝐴𝐶,𝑇 

Geometric volume Point Point 𝑉𝐺,𝐴; 𝑉𝐺,𝑇 

Probe-occupiable volume Nitrogen Nitrogen 𝑉𝑃𝑂,𝐴; 𝑉𝑃𝑂,𝑇 

Helium pore volume Helium Helium 𝑉𝐻𝑒,𝐴; 𝑉𝐻𝑒,𝑇 

 

In addition to the properties in Table 1, PB v4.0 also reports the PLD, the number of dimensions in 

which the system is percolated and the PSD. If the PLD is smaller than the size of the nitrogen probe, 

naturally the code will deem this material is not accessible to nitrogen and report zero values for 𝑆𝐴𝐶,𝐴 

and 𝑉𝑃𝑂,𝐴. Similarly to the properties in Table 1, the PSD is reported for the network-accessible 
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subvolume of the system and for the total volume accessible to the center of the nitrogen probe. 

Finally, the largest pore in the structure can be characterized by the largest cavity diameter (LCD), also 

illustrated in Figure 2D. In Zeo++, this property is called the largest included sphere (LIS). Also, in 

Zeo++, an additional property is identified, which is the largest included sphere along the percolated 

pathway. The LCD should be consistent with the largest pore size reported in PSD.  

 

2.3 Methods and algorithms 

In this section, we turn our attention to the methods and algorithms involved in the calculation of the 

properties defined above. In the first step of the PB v4.0 code, the system is divided into small cubelets 

and, in the preliminary calculation, the distance between the centers of all cubelets and centers of the 

atoms of the structure is calculated and stored for later use. Using this lattice of cubelets, we can 

explore pore volume accessible to a center of a particular probe. For this, we first identify all the 

cubelets, such that if the probe particle is placed in the center of the cube, it does not overlap with 

any atoms of the structure. Mathematically, this condition can be expressed as: 

|𝑟𝑖 − 𝑎⃗𝑗| > 𝜎𝑖𝑗/2 for ∀ 𝑗 ∈ 𝐉 (10) 

where 𝑟𝑖 is the coordinate of the center of cube i, 𝑎⃗𝑗 is the location of atom j, J is a set of all atoms in 

the system, and 𝜎𝑖𝑗 is the collision diameter between the probe i and atom j of the structure. Within 

the same lattice subroutine, the code also calculates and stores the distance between the center of 

the cube and the surface of the atoms: 𝑟𝑖𝑗,𝑆 = |𝑟𝑖 − 𝑎⃗𝑗| + 𝜎𝑗/2. This property will be employed later 

in the section. 

Using a lattice representation of the porous space, PB v4.0 invokes the Hoshen-Kopelman 

algorithm39 to explore the percolation of the porous space with respect to the probes of different 

types (e.g. point probe, nitrogen atom, helium atom). This is schematically depicted in Figure 3. In 

panel B, the system shown in panel A is divided into a lattice of small cubelets. Cubelets shaded in grey 

are accessible to the blue probe particle as this leads to no overlaps with the atoms of the structure, 

shown as the striped grey particles. The cluster of lattice sites in the middle of the system in panel B 

forms a percolated pathway for the blue probe particle in the vertical direction – this cluster 

corresponds to the network-accessible probe-center volume 𝑉𝑃𝐶,𝐴, whereas the whole set of cubelets 

shaded grey forms the total probe-center volume 𝑉𝑃𝐶,𝑇. Pore limiting diameter is identified as the 

largest probe for which a percolating lattice cluster exists, spanning the system in at least one 

dimension. Along with the PLD, PB v4.0 will also return in how many dimensions percolation with the 

current PLD has been detected (1, 2 or 3). If in Figure 3B the blue particle is the largest probe that can 

traverse across the system, it is the size of this probe that corresponds to the PLD. In the case of the 

model material shown in Figure 2D, it is the constriction of the main pore that defines the PLD. The 

fortran maxval function applied to the array storing the distances between the centers of the cubelets 

and the surfaces of the atoms identifies the site corresponding to the largest value of the distance 

stored. This value corresponds to the Largest Cavity Diameter (LCD), also shown in Figure 2D, 

schematically.  

To calculate the accessible surface area, typically, a Monte-Carlo algorithm is invoked. This is 

schematically depicted in Figure 3C, with the probe particle shown as a dashed green circle and the 

atoms of the structure shown as grey striped circles as before. Points are generated randomly on a 
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surface of a sphere of radius 𝑟 = 𝑘 (
𝜎𝑖+𝜎𝑝

2
), shown in Figure 3C as the green circle, where 𝜎𝑖 is the 

diameter of atom i, 𝜎𝑝 is the diameter of the probe particle and 𝑘 is a coefficient which by default is 

equal 21/6 in PB v4.0 . This value of the coefficient makes the distance 𝑟 correspond to the location of 

the Lennard-Jones potential minimum. Although other conventions are possible (e.g., 𝑘 = 1, 

corresponding to the location where the Lennard-Jones potential between the two particles is equal 

to zero), however, we believe the approach adopted here more accurately reflects the physical 

location of a monolayer adsorbed on the surface of the material. For each point, the test is then 

performed to check whether it is within the collision distance 𝑟 with any other atoms of the structure, 

and if it is not, it counts as a point on the accessible surface, shown in Figure 3C as green dots. Points 

that fail this test are shown in red. The accessible surface area associated with the adsorbent atom i 

under consideration is then given by: 𝑎𝑖 = 𝑓 ∙ (4𝜋𝑟2) where 𝑓 is the fraction of green points in the 

trial. Schematically, the proportion of the surface area that is not accessible to the probe particle is 

shown as the red arc in Figure 3C. This is indeed the algorithm implemented within PB v4.0. The lattice 

site representation of the space offers two additional functionalities: firstly, the check on whether a 

point on the test sphere belongs to an accessible surface does not require an additional distance 

calculation, just a look-up in the table for the cubelet to which the generated point belongs. 

Furthermore, as we discussed before, the accessible surface is the boundary between the probe-

center accessible volume and the rest of the space. In principle, the area of this boundary can be 

simply estimated from the surface area of the cubelets belonging to the probe-center volume. For 

this, one simply needs to count all the faces of the cubelets within 𝑉𝑃𝐶 that are not shared with other 

cubelets within 𝑉𝑃𝐶 (i.e., they are exposed, as the cubelet sits on the boundary). This should provide 

a significant speed-up of the code, however, this has not been implemented yet.  

 

 
Figure 3. Schematic illustration of some of the concepts involved in the PB v4.0 algorithms. (A, B) A model 

system consisting of atoms, represented as striped circles (A), is divided into cubelets (B), with the grey 
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cubelets representing accessible cubelets to the center of the probe. Percolation algorithms are then used to 

identify a set of cubelets forming a continuous pathway across the system, as shown in (B) for the blue 

particle. (C) Illustration of the Monte Carlo algorithm to calculate the surface area of the structure. For each 

atom, the algorithm obtains the proportion of the points sitting on the accessible surface of the atom (green 

circle), without overlapping with other atoms of the structure. (D) Geometric PSD calculation. A point “a” 

belongs to the pore shown as the red dashed circle: this is the largest pore containing the point without an 

overlap with the atoms of the structure.   

 

Calculation of the Connolly-surface enclosed volume 𝑉𝑃𝑂 is closely related to the calculation of the 

pore size distribution, and therefore it would be logical to introduce this property and the algorithm 

first. The algorithm effectively consists of two nested loops of random trials. First, a random point in 

space not overlapping with the atoms of the structure is generated (point “a”, in Figure 3D). In the 

second cycle, another set of random points space is generated. Each of these points is the center of a 

sphere, which is assigned the maximum diameter possible without overlapping with the structure of 

the atoms. Figure 3D shows two dashed circles as examples of this trial. The largest diameter identified 

in the second trial that contains the first random point corresponds to the largest pore to which the 

point belongs (the red dashed circle in Figure 3D). All pores of this and smaller diameter contain this 

point, which upon completion of the cycle produces the cumulative pore size distribution. The 

derivative of this function with respect to the radius or diameter of the pore produces the 

conventional pore size distribution.  

The lattice representation of the space offers few simplifications of this algorithm. A cubelet is 

selected at random from the geometrical subset, 𝑉𝐺, this is equivalent to randomly choosing a point 

in space in the off-lattice version. The distance between this cubelet and all other cubelets has been 

already pre-calculated (or can be easily looked up simply using the lattice indices). As has been already 

mentioned, in the preliminary calculations, we also computed the distances between the lattice sites 

and the positions of the atoms constituting the structure of the material. Therefore, using a simple 

sorting algorithm, it is easy to find the cubelet, the center of which is also the center of the largest 

sphere that contains the center of the original cubelet from the 𝑉𝐺 lattice. The total volume of the 

pores identified in this fashion corresponds to the volume included by the Connolly surface formed by 

the tip of the nitrogen probe, as we defined earlier, the probe-occupiable volume, 𝑉𝑃𝑂. If we restrict 

the sorting algorithm to only cubelets belonging to the network-accessible probe-center accessible 

volume, 𝑉𝑃𝐶,𝐴, then the pore size distribution will also correspond to the network-accessible region of 

the porous space and the total volume of these pores will correspond to the network-accessible, 

probe-occupiable volume, 𝑉𝑃𝑂,𝐴.  

What are then the PSDs one might expect for the MOF materials? To understand this, it is useful 

to explore the structure of the PSDs that the algorithms described above would generate for simple 

pore geometries such as a spherical cage, a slit, or a square pore. This is schematically depicted in 

Figure 4. Indeed, the PSDs for the spherical cage and the slit pre would produce an expected δ-function 

located at the diameter of the pore. A square pore represents a more interesting case. An intuitive 

guess would suggest also a PSD with a single peak corresponding to the largest pore that can be 

inscribed in a square. This however neglects the existence of the regions in the corners of the pore, 

which according to the algorithms described above would be assigned to pores of a smaller size. The 

corner of a square represents a wedge geometry and this should give rise to a continuous tail of 

diminishing pore sizes in the PSD. Many of the MOF materials feature cube-like and square like pores 
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(e.g., IRMOF series of materials) and therefore similar trends for PSDs would be observed for these 

MOFs as well.  

 

 
Figure 4. Schematic illustration of the geometric Pore Size Distribution in model structures. 

 

3. Analysis of the textural properties of MOFs 

3.1 Case studies: HKUST-1, IRMOF-1, ZIF-8 

Let us now consider the application of PB v4.0, Zeo++ and RASPA to three quintessential and well-

known MOF materials: HKUST-1, IRMOF-1 and ZIF-8. In the S1 section of the Electronic Supplementary 

Information (ESI) file prvide complete description of the files and parameters required to setup PB 

v4.0 simulations. Figure 5 shows molecular structures of the materials under consideration. Table 2 

summarizes the results for PB v4.0 and Zeo++. Overall, they exhibit a high level of agreement and 

consistency with each other. This is very reassuring for the community working on the material 

informatics and computational screening studies and do rely on these two codes. 
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Figure 5. Molecular visualizations of HKUST-1 (left), IRMOF-1 (center), and ZIF-8 (right). This image was 

made with VMD software40.  

 

Table 2. Comparison of the results from PB v4.0 and Zeo++ for HKUST-1, IRMOF1, and ZIF-8. Showing 

density, pore-limiting diameter (PLD), largest cavity diameter (LCD), network-accessible surface area (𝑆𝐴𝐶,𝐴), 

total surface area, (𝑆𝐴𝐶,𝑇), network-accessible probe-occupiable volume, (𝑉𝑃𝑂,𝐴), total probe-occupiable 

volume, (𝑉𝑃𝑂,𝑇) and CPU time. 

 HKUST-1 IRMOF-1 ZIF-8 

Property PB Zeo++ PB Zeo++ PB Zeo++ 

Density [g/cm3] 0.884 0.884 0.593 0.593 0.923 0.924 

PLD [Å] 6.380 6.337 7.800 7.773 2.860 3.073 

LCD [Å] 12.86 12.99 15.03 15.03 11.42 11.40 

𝑆𝐴𝐶,𝐴  [m2/g] 1808.09 1801.02 3400.07 3448.82 0.00 0.00 

𝑆𝐴𝐶,𝑇 [m2/g] 1860.87 1853.46 3459.99 3448.82 1168.58 1156.51 

𝑉𝑃𝑂,𝐴 [cm3/g] 0.759 0.72 1.30 1.27 0.00 0.00 

𝑉𝑃𝑂,𝑇 [cm3/g] 0.762 0.722 1.304 1.270 0.517 0.501 

CPU time [s] 116.847 683.857 92.104 672.437 347.058 2714.391 

 

In addition, Table 3 compares the results from PB v4.0 and RASPA. Using RASPA, it is possible to 

calculate the accessible surface area and helium pore volume fraction, 𝐹𝐻𝑒,𝑇 = 𝑉𝐻𝑒,𝑇/𝑉. Network 

connectivity analysis is not performed in RASPA and, therefore, all the properties reported are total 

properties, and not network-accessible properties. On a further note, in the case of Zeo++, the helium 

pore volume is not calculated according to Eq. 7. Instead, it is based on the hard-sphere helium atom 

probe, making this volume helium probe-center volume in our definition (either total or network-

accessible). Hence, we do not provide a comparison of this property between PB v4.0, RASPA, and 

Zeo++, as it should not be expected to produce an agreement. We will, however, return to this 

comparison in the next section for the complete set of MOF materials in this study. In the case of CPU 

time, the results provided for RASPA correspond to the summative time required to obtain properties 

listed in Table 3. It is important to emphasize that the CPU times listed in Tables 2 and 3 are setup-

specific, and they depend on the actual size of the unit cell used and the number of cycles involved for 

sampling the properties. On https://github.com/SarkisovGroup/PoreBlazer, we provide complete 

setups used to obtain the results in Tables 2 and 3, so the reader knows precisely under what 

conditions this performance is observed. Section S2 in the ESI provides a more additional analysis of 

the performance of the code and the sensitivity of the PB v4.0 results to the size of the grid. 

Table 3. Comparison of the results from PB v4.0 and RASPA for HKUST-1, IRMOF1, and ZIF-8. Showing 

density, Helium pore volume fraction (𝐹𝐻𝑒,𝑇), Total surface area (𝑆𝐴𝐶,𝑇) and CPU time. 

 HKUST-1 IRMOF-1 ZIF-8 

Property PB RASPA PB RASPA PB RASPA 

Density [g/cm3] 0.884 0.884 0.593 0.593 0.923 0.924 

𝐹𝐻𝑒,𝑇 [-] 0.739 0.751 0.820 0.831 0.527 0.538 

𝑆𝐴𝐶,𝑇  [m2/g] 1860.87 1857.54 3459.99 3435.09 1168.58 1166.09 

CPU time [s] 116.847 420.33 92.104 202.12 347.058 5183.21 

https://github.com/SarkisovGroup/PoreBlazer
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Figure 6 shows the PSDs for three structures. Although there are some variations in the details of 

the curves, the three codes return the same number of peaks and the same location of peaks within 

0.2 Å, the lattice precision of PB v4.0. These PSDs show the expected profiles of distinct peaks, with a 

tail at lower pore sizes. 

 

 
Figure 6. PSDs for HKUST-1 (left), IRMOF-1 (center),and ZIF-8 (right). Red lines are the Zeo++ results; black 

lines are the PB v4.0 results. For HKUST-1 and IRMOF-1, PSD is the network-accessible property; for ZIF-8 

the network-accessible probe-occupiable volume is zero, and therefore PSD is calculated on the whole 

porous space (total property).  

 

3.2 Geometric analysis of the CDS MOF database 

We now turn our attention to the calculation of MOFs stored within the CSD MOF subset. The non-

disordered CSD MOF subset v5.40 (May 2019) contains ca. 70,000 MOFs22. From this subset, we 

filtered out MOFs with structural disorder, partial occupancy issues or missing framework hydrogens, 

using the bash script and methodology provided by Fairen-Jimenez and co-workers.25, 41 For the 

complete tutorial about how to use the CSD MOF subset, we refer the reader to the work from Li et 

al.38  The filtering step produced ca. 57,000 structures. In the next step, we removed the non-bonded 

solvent molecules as well as those bonded to open metal sites using the CSD Python API, according to 

the procedure by Li et al.41 Calculations on these ca. 57,000 structures revealed that only ca. 12,000 

MOFs have non-zero surface area (in other words, they are porous). Therefore, the structure analysis 

presented here was performed on this subset of structures – 12,052 MOFs for PB v4.0 vs. Zeo++ 

comparison, and 12,081 MOFs for PB v4.0 vs. RASPA comparison. The difference in numbers is due to 

the fact that 29 MOFs from the larger set of 12,081 structures had technical issues/errors in Zeo++.  

When comparing the results from PB v4.0, Zeo++ and RASPA, we did expect the existence of a 

subgroup of MOFs for which these codes do not produce a consistent picture. Our philosophy in this 

section is to first present the results for all the properties of interest (section 3.3.1) in the same way 

they emerged from our calculations, giving some preliminary comments on the observed trends, 

distribution of properties and differences in the predictions; then, to provide a more in-depth analysis 

on what properties exhibit the most significant deviations, possible scenarios that may lead to the 

disagreements in the predictions, further investigation of the characteristics of the MOFs in the set 

for which the agreement is acceptable and in the set of MOFs for which results are not consistent.  



17 
 

3.2.1 Results and comparison for ca. 12,000 MOFs 

Figure 7 shows the parity plots for the different textural properties – pore limiting diameter, PLD; 

largest cavity diameter, LCD; total and network-accessible surface area, 𝑆𝐴𝐶,𝑇 and 𝑆𝐴𝐶,𝐴; and the and 

network-accessible total probe-occupiable volume, 𝑉𝑃𝑂,𝑇 and 𝑉𝑃𝑂,𝐴 calculated from PB v4.0 and Zeo++ 

and they distribution from PB v4.0. Figure S3 in the ESI shows a similar comparison between PB v4.0 

and RASPA. With the color bar, we indicate the population of the properties in the different range of 

values. First, for PLD and LCD, overall, the results show a high level of consistency across the database 

of materials. From the color bars and from the distribution of the properties, it is evident that only a 

few materials exhibit PLDs and LCDs above 20 Å (not shown), while the majority of the materials 

exhibit both PLDs and LCDs below 10 Å (Figs. 7a-b).  

When looking at the total surface area, there is again a high level of consistency between the three 

codes  (Fig. 7c and Fig. S3 in the ESI). A different picture, however, emerges for the network-accessible 

surface area (Fig. 7d). This property depends on how the accessibility of the pore network is calculated 

and, given the differences in the algorithms between Zeo++ and PB v4.0, it is not surprising that this 

property is more sensitive to the code used. Interestingly, there is a set of MOFs (~2,000) showing 

zero network-accessible surface area in Zeo++ and non-zero values in PB v4.0; it manifests itself as a 

horizontal line of points in the figure. We will return to a more comprehensive analysis for the reasons 

for these deviations in section 3.2.2 once we present the results on the remaining properties (pore 

volumes and their distributions). The differences in the distribution of the total and network-

accessible surface areas obtained from PB v4.0 is remarkable. The most striking feature is the large 

number of MOFs that have a surface area close to zero (they are not strictly zero as materials with 

strictly zero surface area have been already eliminated in the preliminary screening of the 57,000 

MOFs). This implies that the CSD MOF subset, i.e. the database compiling all the reported MOFs from 

the literature, is dominated by materials with low surface areas and porosities. Even within this smaller 

subset of 12,052 porous MOFs, more than 3,000 have total surface areas below 50 m2/g, and only 

2,455 MOFs have total surface areas above 1000 m2/g – i.e. only about 20% of ca. 12,000 MOFs. 

However, we also need to be aware that some materials will appear in this analysis as non-porous, 

whereas in reality, they are porous, with windows close to the size of the nitrogen molecules. A certain 

degree of structural flexibility, not considered in the methods based on the assumption of the rigid 

framework, allows nitrogen to adsorb in the actual experiments. ZIF-8 is one of the most prominent 

examples of the materials belonging to this category42.  
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Figure 7. Comparison between results obtained from Zeo++ and PB v4.0. a. The pore limiting diameter, PLD; b. largest cavity diameter, LCD; c. total surface area, 𝑆𝐴𝐶,𝑇; 

d.  network-accessible surface area, 𝑆𝐴𝐶,𝐴; e. total probe-occupiable volume, 𝑉𝑃𝑂,𝑇; f. network-accessible probe-occupiable volume and 𝑉𝑃𝑂,𝐴. Left panels show the parity 

plots, right panels show data distribution within 12,052 MOFs.  
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We now turn our attention to the comparison of the pore volumes obtained using the three codes. 

Specifically, we focus our discussion on the network-accessible probe-occupiable 𝑉𝑃𝑂,𝐴 and the total 

probe-occupiable volume 𝑉𝑃𝑂,𝑇. In the case of the total probe-occupiable volume, PB v4.0 and Zeo++ 

are in a reasonable agreement with each other. At the same time, for the network-accessible probe-

occupiable volume, we see again more scattering, particularly in the region of very dense materials 

with very small pore volumes (Fig. 7e-f). When looking at the the data distribution within the set of 

12,052 porous MOFs, it is clear that the vast majority of structures is very microporous. In fact, more 

than 7,000 structures out of 12,052 have 𝑉𝑃𝑂,𝑇 below 0.25 cm3/g. In the case of the network-accessible 

volume, 𝑉𝑃𝑂,𝐴, we notice a large number of structures having near-zero values. This subset of materials 

contains some materials with very low porosity and surface areas, in general, but also some materials, 

with appreciable total pore volume and surface area, but with PLDs smaller than the size of the probe 

nitrogen particle. These materials can be promising candidates for kinetic gas separations, based on 

the fine differences in sizes of the diffusing molecules. 

In the case of RASPA, we can also obtain the helium pore volume and, therefore, we also explore 

this property using the helium volume fraction 𝐹𝐻𝑒,𝑇 = 𝑉𝐻𝑒,𝑇/𝑉 (for a more convenient 

representation). Figure 8 shows the parity graphs. There is a very good agreement between PB v4.0 

and RASPA, as this property is calculated consistently between these two codes. As has been already 

discussed, in our definition and in the case of Zeo++, this property corresponds to the helium probe-

center volume. Not surprisingly, there is a significant amount of scattering in the parity graph between 

PB v4.0 and Zeo++ (Fig. 8, right). In their study, Ongari et al. outlined several scenarios under which 

Eq. 7 underestimates, overestimates and agrees with the geometric pore volume and we refer the 

reader to that publication29.   

 

  
Figure 8. Parity graphs for helium pore volume fraction 𝑭𝑯𝒆,𝑻. Resultsfor PB v4.0 and RASPA are shown on 

the left; and for PB v4.0 and Zeo++ on the right. 

 

3.2.2 Error analysis  

We then moved to study the error analysis for the different textural parameters analyzed, i.e. the total 

and network-accessible probe-occupiable volume, 𝑉𝑃𝑂,𝑇 and 𝑉𝑃𝑂,𝐴, the total and network-accessible 

surface area, 𝑆𝐴𝐶,𝑇 and 𝑆𝐴𝐶,𝐴, and the pore limiting diameter, PLD. Here, the relative error is deifned 

as 𝐸𝑅𝑅 = 100% ∙
|𝑃𝑃𝐵 𝑣4.0−𝑃𝑍𝑒𝑜++|

𝑃𝑃𝐵 𝑣4.0
, where 𝑃 is a property of interest.  The largest cavity diameter does 
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not feature materials for which predictions from PB v4.0 and Zeo++ deviate by more than 10%.. Figure 

9 shows the parity plots, correlations and error distributions for the different parameters. For for 

𝑉𝑃𝑂,𝑇, there are have 4,824 (40.03%) MOFs with an error exceeding 10% and with values from PB v4.0 

systematically exceeding those from Zeo++ (Figure 9, first row). It is also clear that the vast majority 

of these MOFs correspond to low pore volumes (below 0.25 cm3/g). For the network-accessible probe-

occupiable volume 𝑉𝑃𝑂,𝐴, we observe 986 (8.18%) MOFs with an error exceeding 10% (Figure 9, second 

row). Out of them, 574 MOFs have 𝑉𝑃𝑂,𝐴 values from PB v4.0 larger than Zeo++. The errors occur 

predominantly for MOFs with 𝑉𝑃𝑂,𝐴 values in the range 0-0.75 cm3/g; errors exceeding 25% occur only 

for materials with 𝑉𝑃𝑂,𝐴 values around 0-0.5 cm3/g. Several structures (ca. 100) have 100% error: in 

this case, the structure is considered non-accessible in Zeo++, but accessible on PB v4.0. Also, a small 

number of structures has errors much higher than 100% (e.g. 1000%): these are the cases where, 

according to PB v4.0, the MOFs have very low 𝑉𝑃𝑂,𝐴; however, these structures are deemed more 

accessible and therefore with much larger 𝑉𝑃𝑂,𝐴 in Zeo++.  

In the case of the total surface area, 𝑆𝐴𝐶,𝑇, we have a total number of 2,261 (18.76%) MOFs with 

errors exceeding 10% (Figure 9, 3rd row); importantly, the maximum values found for MOFs having 

these discrepancies are below 500 m2/g. Out of the 2,261 MOFs, 1,488 show Zeo++ 𝑆𝐴𝐶,𝑇 values larger 

than PB v4.0. Similar to the previous properties, MOFs with significant errors are concentrated in the 

low surface area regime: errors exceeding 100% correspond to the materials with surface areas below 

5 m2/g. When looking at the network-accessible surface area, 𝑆𝐴𝐶,𝐴, we found 2,396 MOFs (19.88%) 

with errors exceeding 10% (Figure 9, 4th row). 2,210 MOFs show an error of 100%; these MOFs have 

zero network-accessible surface areas according to Zeo++ but non-zero values in PV v4.0 – this is 

observed as the straight horizontal line of points (Figure 9, 4th row, left). Seven MOFs also feature zero 

values of this property according to PB v4.0 and non-zero values in Zeo++ in the range of 90-600 m2/g. 

We finally consider PLD, where there are 1,524 (10.40%) MOFs with errors exceeding 10% (Figure 9, 

5th row). Within this group, Zeo++ systematically predicts higher values. We also note that the majority 

of these MOFs are grouped around very low values of the PLD (below 2.5 Å). According to the error 

distribution, from 1,524 MOFs with an error exceeding 10%, 1,142 show an error between 10 and 20% 

and 264 between 20 and 30%.  
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Figure 9. Error analysis of the structural properties. From top down: the total and network-accessible probe-

occupiable volume, 𝑉𝑃𝑂,𝑇 and 𝑉𝑃𝑂,𝐴, the total and network-accessible surface area, 𝑆𝐴𝐶,𝑇 and 𝑆𝐴𝐶,𝐴, and the pore 

limiting diameter, PLD. Parity plots of the 4,824 structures with the error exceeding 10% (left), the correlation 
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between the different properties and the magnitude of the error (center), and error distribution for each 

property. 

From the results presented above in the comparison of PB v4.0 and Zeo++, it is clear that the total 

properties (i.e. volume and surface area) exhibit relatively limited scattering in the parity plots – the 

main differences between both codes are observed, predominantly, for those materials that feature 

low porosity. On the other hand, the network-accessible properties show higher scattering and 

therefore the reasons for the differences must be associated with how the network accessibility is 

obtained and to what factors this property is sensitive to. Let us outline three possible scenarios for 

when the results are expected to deviate significantly for PB v4.0 and Zeo++: 

Scenario 1. This is associated with what probe molecules are used to assess the accessibility of the 

porous structure and to obtain the surface area. In PB v4.0, we effectively use two different probes: 

the accessibility is obtained using a nitrogen probe and the collision diameter value for its size; for the 

surface area we use nitrogen probe with the collision diameter multiplied by a factor 1.122 to account 

for the likely position of the adsorbed atoms at the distance of the energy minimum, rather than at 

the collision distance. To make Zeo++ calculation consistent with the PB v4.0, we invoked a setup, 

provided in the github depository, that is based on the two different probe sizes. This is not however 

the default protocol in Zeo++: in fact, it is recommended that the size of the probe used for the surface 

sampling is equal or smaller than the size of the probe employed for the accessibility analysis. In the 

majority of the cases, and as we observed for the results in Table 7, it does not present a problem, 

giving consistent results between the two programs. However, it is a problem for the MOFs where the 

PLD is very close to 3.72 Å. In the case of PB v4.0, it treats these materials as nitrogen accessible. 

However, in Zeo++, these materials are not identified as accessible, leading to zero network-accessible 

surface area. This is the reason for the string of 2,210 materials (flat line) with zero Zeo++ surface area 

and non-zero PB v4.0 surface area in Figure 9. To test this hypothesis, we calculated the PLD 

distribution for this set of materials (see ESI, section S4), showing that, indeed, all these materials 

feature PLDs very close to 4 Å, where we expect the two codes to become sensitive to the details of 

how connectivity in the porous space is calculated.  

Scenario 2. The second scenario is similar to the first one. If compartments of the porous space are 

separated by very narrow windows leading to side pores, comparable in size to the probe particle, the 

resulting properties become sensitive to sizes of the probes and the algorithms employed to assess 

accessibility. If PB v4.0 “sees” these side pores and Zeo++ does not, it would lead to the values of the 

accessible properties being higher in PB v4.0 compared to Zeo++ and vice-versa. 

For both scenarios 1 and 2, we need to be aware that Zeo++ and PB v4.0 use different algorithms to 

assess percolation of the porous space across the periodic boundaries, and this may also be the source 

of disagreement.  

Scenario 3. Scenario 3 is a rather general shortcoming of the lattice representation of the porous 

space: as the pores become smaller, and hence the surface area and porosity, their values become 

more sensitive to the resolution of the lattice grid.  

3.2.3 Analysis of a reduced set of MOFs with practical porosity and surface area values 

Not all porous materials are useful for adsorption applications. Typically, for gas storage, we are 

interested in high pore volume and high surface area materials. Surface areas of typical industrial 

adsorbents are in the hundreds of m2/g, whereas pore volumes of most of MOFs and zeolites exceed 

0.25 cm3/g (for zeolites, see First et al.15). Specifically, within the considered set of 12,052 MOFs, 3,598 
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MOFs have a total surface area below 50 m2/g, 7,094 MOFs have a total pore volume below 0.25 cm3/g 

and 7,252 MOFs have low surface area or/and porosity according to the criteria above. In section, we 

exclude these MOFs from consideration and focus on the remaining structures.  

Within this reduced set of MOFs (ca. 4,800 structures) the errors (i.e. the differences in structural 

properties from PB v4.0 and Zeo++) can be summarized as follows. For the total pore volume, 542 

structures have outliers with errors larger than 10%; most of these errors are around 10-20%. For the 

network-accessible volume, 449 structures have errors larger than 10%. These subgroups can be 

separated into two subcategories: those that have errors within 25% and those with around 100%. 

The latter category is associated with one of the codes considering the structure as accessible and 

highly porous, whereas the other code does not consider it as accessible. For the total surface area 

within the reduced dataset, only 70 structures have an error larger than 10%, and most of the 

structures are with 10-15 % error. For the network-accessible surface area, 1,122 structures show 

errors larger than 10%. Within this group, 995 structures show errors of 100% and 993 are structures 

with a non-zero value for PB v4.0 and zero value for Zeo++. The rest of the structures show error values 

between 10-30%. The complete set of figures and error analysis for this reduced set is provided in the 

ESI file, sections S5 and S6.  

In our analysis, by removing low porosity systems, we have eliminated the potential errors 

associated with Scenario 3. The remaining disagreement between PB v4.0 and Zeo++ must be now 

strictly associated with percolation and network accessibility analysis. While the actual detection of 

the difference would require a more detailed analysis of the individual structures, a reasonable initial 

support for this hypothesis would be provided by the analysis of the PLD in the outlier MOFs. Indeed, 

Figure S10 in the ESI shows the distribution of the PLD for the set of 449 MOFs that show >10% 

deviation in the network-accessible pore volume. This figure clearly demonstrates that the vast 

majority of these materials feature PLDs below 4 Å. This is the regime where we expect higher 

sensitivity in the percolation algorithms, according to Scenarios 1 and 2. 

3.3 Material informatics with PB v4.0 and MOF/PCA Explorer 

In section 3.2 we assembled a database of geometric properties of materials within the experimental 

CSD MOF subset and explored the prediction of geometric properties from several available 

computational tools. What type of questions can we ask using this data? In principle, one would hope 

to use this data to explore current limits in the geometrical properties of materials, correlations 

between various properties and clustering of the properties together, and to engineer advanced 

features to be explored in the Machine Learning algorithms43. This, on its own, may guide the design 

of new materials or help with the search for a material with particular structural characteristics, such 

as a given PLD for kinetic separations. Combined with the functional properties of the materials, such 

as the adsorption characteristics, this forms a platform for material discovery and process 

optimization. An example of such a discovery platform is provided at the Materials Cloud44. 

A discovery platform requires material informatics tools. The data we deal with is intrinsically 

multidimensional, and therefore the tools required to reveal the trends and correlations within the 

data generally aim to reduce the dimensionality of the space. Based on our previous work23-25, we have 

developed two sets of tools available for interactive, dynamic exploration: the Metal-Organic 

Framework Data Visualisation tool (https://aaml-explorer-geo-prop.herokuapp.com) and the 

Principal Component Analysis Data Visualisation tool (https://aaml-pca-geo-prop.herokuapp.com), 

https://aaml-pca-geo-prop.herokuapp.com/
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which can be used without any prior programming knowledge. The MOF explorer allows the user to 

filter the data according to a selection of various criteria, such as the values of the selected geometric 

properties within certain intervals. It also visualizes and animates the data using 2D and 3D plots. The 

data on these plots can be further augmented using color and the size of the symbols, expanding the 

number of properties that can be simultaneously visualized to 5. Finally, it can provide statistics on 

the distribution of properties within the dataset. The second tool, the Principle Component Analysis 

(PCA) Explorer, allows one to explore of the data set through feature correlation analysis and PCA 

obtaining biplots, loading plots, squared cosine and contribution plots. Using these tools, we have 

explored some of the features of the CSD MOF subset obtained with PB v4.0.  

Figure 10 shows an example of representing 4-dimensional space of values: pore volume, surface 

area, PLD and LCD/PLD ratio using 2D plots. One particular question one may ask using this analysis is 

the nature and properties of the materials sitting on the edge of the cloud of points shown in Figure 

10. The MOFs on the top right of the plot corresponds to materials with 1D or 2D framework 

dimensionalities; this is, metal-organic chains or sheets, respectively. For now, we do not consider 

them, as they are more unlikely to find practical adsorption applications. We labeled other structures 

with 3D pores on the edge (or close to) of the cloud in Figure 10 and provided their data in Table 4. 

 

 

Table 4. Materials close to the edge of the cloud of properties in Figure 14 and their properties. 

Showing the CSD refcode, density, total helium volume (𝐹𝐻𝑒,𝑇) fraction, total surface area (𝑆𝐴𝐶,𝑇), 

total probe-occupiable volume (𝑉𝑃𝑂,𝑇), por limiting diameter (PLD), largest cavity diameter (LCD), 

LCD/PLD ratio and pore dimensionality. 

Refcode 
Density 

(g/cm3) 
𝑭𝑯𝒆,𝑻 

𝑺𝑨𝑪,𝑻 

(m2/g) 

𝑽𝑷𝑶,𝑻 

(cm3/g) 

PLD 

(Å) 

LCD 

(Å) 
LCD/PLD Porosity 

NIHWIN 0.193 0.929 6358.6 4.671 12.98 32.34 2.49 3D 

RAVXOD 0.179 0.875 3190.2 4.778 71.08 71.20 1.0 1D 

RAVXIX 0.228 0.864 3061.5 3.654 52.79 53.13 1.0 1D 

TOCJEC 0.253 0.900 3187.1 3.457 25.57 30.94 1.21 3D 

FOTNIN 0.270 0.900 2901.1 3.284 28.18 33.41 1.18 2D 

 
Figure 10. 4-dimensional analysis in a 2D plot. Total probe-occupiable pore volume 𝑉𝑃𝑂,𝑇 vs. total accessible 

surface area 𝑆𝐴𝐶,𝑇. Color bar indicates the value of the LCD/PLD ratio and the size of the circles indicates the 

value of the PLD.  
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What are these materials listed in Table 4? As the CSD MOF subset reports experimental structures, 

the reference codes in Figure 10 and Table 4 correspond to the actual synthesized and reported 

materials. RAVXOD and RAVXIX are IRMOF-74-IX and -XI, respectively45. These MOFs belong to a 

series of MOFs isoreticular to CPO-27/MOF-74 (eth topology) and are made of Mg-clusters and 

derivatives of dioxidoterephathalate with 9 (IRMOF-74-IX) or 11 (-XI) aromatic rings. NIWHIN is known 

as DUT-6046. This MOF, isoreticular to DUT-6 (ith-d topology) with elongated linkers, was designed in 

silico, its mechanical properties were studied computationally, and it was synthesized successfully. It 

is built from Zn4O(CO2)6 clusters connected by bbc3- and bcpbd2- linkers, generating a pore system with 

large mesopores surrounded by 8 smaller mesopores. TOCJEC is bio-MOF-247. This MOF was 

synthesized from bio-MOF-100, a Zn-based MOF with mesoporous interconnected channels48. For the 

synthesis of bio-MOF-2, they followed a stepwise ligand exchanged strategy, replacing the shorter 

ligands of bio-MOF-100 with longer ligands to transform the crystal in a new one with the same 

topology and bigger pores. FOTNIN is PCN-77749. This zirconium MOF is a highly stable MOF with β-

cristobalite topology and big cages. 

 

 
Figure 11. 4-dimensional analysis in 2D. LCD/PLD ratio vs PLD, Å. Color bar indicates the value of LCD and 

size of the point indicates the value of the total accessible surface area, 𝑆𝐴𝐶,𝑇. 

 

In the ESI, section S8, we provide PCA of the geometric properties of MOFs. Interestingly, the ratio 

of the LCD/PLD emerged as a property not strongly correlated with other properties under 

consideration. The PCA showed that three principal components can explain 90.27% of the variance 

within the dataset, and these three principal components are highly correlated with the ratio of the 

LCD/PLD, the total pore volume (VPO,T) and the density. Therefore, although the geometrical properties 

calculated with PB v4.0 are highly correlated, these three mostly independent properties can widely 

explain the distribution of the data.  

From the application point of few, we were curious whether we could identify materials with very 

large values of LCD/PLD, as large pores connected by narrow windows could be promising materials 

for kinetic separations, switch-on/switch-off or stimuli-responsive gas storage applications. For most 

of the MOFs, the LCD/PLD ratio sits around a value of 1.5 and this corresponds to slightly different 

pore diameters within the same channel. When the value of this property increases, we will find 
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structures with very small PLDs. Many MOFs are showing large values for LCD/PLD that are worth 

exploring in more detail, such NIWHIN, already mentioned in Figure 10 and Table 4.  

Figure 11 shows the LCD/PLD ratio as a function of PLD, with the color bar and the size of the circles 

giving information about the LCD and the total accessible surface area, respectively. The structures 

that clearly sit at the edge of the distribution are QOYYOU, with very high ratio LCD/PLD and relatively 

low PLD, NIHWIN (DUT-60) and OCUNAC (known as MIL-101), that show the opposite trend (large 

PLD, small LCD/PLD ratio). In the range of medium values, YEYCUC (PCN-58), IZEPAF (MIL-hypo-1) and 

IZEPAF (MIL-hypo-2) show both large PLDs and LCD/PLD ratios as well as high surface areas. In 

addition, there are two groups of structures near these ones. The first group, highlighted in grey, show 

high LCD/PLD value but small PLD and correspond to structures with rho or sod type of topologies. 

These topologies have big cages with narrow windows connecting them. The second group, 

highlighted in blue, shows a large PLD and LCDs three times higher than the previous group; REWNEO 

(NU-125) and GUPDEB (CdIF-9) belong here. Table 5 shows the geometrical properties of these MOFs, 

except for NIHWIN, which was already reported above.  

 

Table 5. Materials close to the edge of the cloud of properties in Figure 11 and their properties. Showing the 

CSD refcode, density, total helium volume (𝐹𝐻𝑒,𝑇) fraction, total surface area (𝑆𝐴𝐶,𝑇), Total probe-occupiable 

volume (𝑉𝑃𝑂,𝑇), pore limiting diameter (PLD), largest cavity diameter (LCD), LCD/PLD ratio and pore 

dimensionality. 

Refcode 
Density 

(g/cm3) 
𝑭𝑯𝒆,𝑻 

𝑺𝑨𝑪,𝑻 

(m2/g) 

𝑽𝑷𝑶,𝑻 

(cm3/g) 

PLD 

(Å) 

LCD 

(Å) 
LCD/PLD Porosity 

QOYYOU 0.945 0.701 1247.0 0.642 3.31 20.93 6.32 3D 

OCUNAC 0.450 0.803 2893.0 1.762 13.50 33.48 2.48 3D 

IZEPEJ 0.585 0.763 2741.4 1.253 6.51 22.19 3.41 3D 

IZEPAF 0.612 0.755 2727.2 1.173 7.30 22.05 3.02 3D 

YEYCUC 0.554 0.768 2862.7 1.282 5.06 17.25 3.41 3D 

REWNEO 0.578 0.833 3483.8 1.308 6.36 19.23 3.02 2D 

GUPDEB 0.945 0.644 1448.7 0.635 7.07 19.98 2.82 3D 

 

Again, the CSD reference codes in Table 5 correspond to real structures. QOYYOU is a structure 

designed computationally and synthesized successfully by Bai et al. based on Zn4O-7 clusters50. Its pore 

system comprises three types of cages with sizes ranging from the micro to the mesoporous scales. 

The largest cage is connected to another 6 large-size cages, 8 medium-size cages and 12 small-size 

cages. OCUNAC is MIL-101 from Ferey and co-workers, which was “tailor-made” by assembling its 

building blocks using computational strategies51. The synthesized framework is characterized by two 

types of mesoporous cages with pentagonal and hexagonal windows. YEYCUC is PCN-58 from Jiang 

and co-workers52. This MOF belongs to an isoreticular series of MOFs similar to UiO-type, Zr-based 

MOFs, and was designed with appended azide groups to control post-synthetic functionalization. The 

resulting MOF shows two polyhedral microporous cages: one tetrahedral and one octahedral. IZEPAF 

and IZEPEJ are MIL-hypo-1 and -2, two hypothetical MOFs designed computationally by Mellot-

Draznieks and co-workers53. IZEPAF has three types of cages, cubic, spherical and 

rhombicuboactahedral in the range of micro- and mesopores. IZEPEJ has also three types of cages: 

tetrahedral, cubic and a spherical one constructed by the combination of the other two. REWNEO is 

NU-125 by Wilmer et al.54, a MOF with rht topology, Cu-Cu paddle-wheels as metal clusters and 
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characterized by four different types of cages with sizes ranging from 11 Å to 24 Å. GUPDEB is CdIF-9 

by Tian et al.55, a MOF with rho topology that belongs to a group of cadmium imidazolate frameworks, 

known as CdIFs, which are regarded as more open than their Zn- or Co-based analogs. In section S9 of 

the ESI we provide computer visualizations of the structures within Table 5. 

We emphasize here that the main objective of this section was not to identify the best MOF for a 

specific application, but simply to illustrate how the available tools can be used to reduce the 

dimensionality of the space of MOF geometric properties and to reveal some interesting, hidden 

correlations between them. We encourage the reader to explore these tools, by using their own data 

and their own derived features.  

 

4. Outlook 

The objective of this paper was to introduce the new version of the PoreBlazer code for structural 

characterization of porous materials. We provided a comprehensive review of the geometric 

properties that can be obtained for crystal structure given coordinates of its atoms, the algorithms 

behind the calculation of these properties, and elaborated on the links between the geometric 

properties of porous materials and the properties that can be actually measured experimentally.  

There are now several codes available to obtain these geometric properties, differing in the algorithms 

employed, efficiency, availability of the source code, platforms etc. In general, having several 

alternative codes for the same computational task it generally a very positive thing scientific 

advancement. For example, healthy competition between several coexisting molecular dynamic codes 

(LAMMS, GROMOS etc.) has been driving efforts to improve performance of the codes, to provide 

accurate and comprehensive documentation, and ultimately, to provide alternative platforms to 

validate the algorithms and to ensure reproducibility of the data. Sarkisov group has recently made 

the first step towards similar transparency and cross-validation in the domain of the Monte Carlo 

codes, particularly in application to the adsorption problems. 

To address this issue here we provided comprehensive comparison of the properties obtained from 

the currently available codes, PB v4.0, Zeo++ and RASPA. While writing this article we became aware 

of another code PorosityPlus56, however we have not tested its capabilities here. Overall, the codes 

are predominantly consistent with each other, which is definitely reassuring. The most sensitive 

properties that exhibit a significant degree of scattering are the properties that require analysis of the 

accessibility of different region of the porous structure. This scattering is exacerbated where 

structures have low porosity and surface area or/and feature channels of sizes comparable to the size 

of the probe used to explore connectivity of the porous space. Identifying what properties are 

sensitive to the algorithms employed is also an important outcome of the study.  

This article should not be considered as a promotion of a specific code – likely the codes will find 

different scopes and niches complementing each other. The significant advantage of Zeo++ is the fact 

that it works with small asymmetric unit cells and cif files, leading to a substantial computational 

efficiency (see a more complete analysis in the SI). However, for the expanded unit cell such as 

presented in the section 3.1, PB v4.0 seems to be more efficient (this is without yet taking any 

advantage of the lattice structure of the code, such GPU and parallelization using MPI and OpenMP. 

This suggests that the possible area of PB v4.0 application is the disordered materials (model activated 

carbons, MOFs with defects, polymers) based on unit cells of significant size to operate on the length 
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scales compatible with the disorder features. We further note that the fact that PB v4.0 uses lattice 

representation and effectively pre-calculates the distances between possible location of the adsorbate 

molecules and atoms of the adsorbent structure, allows PB v4.0 to go beyond purely geometric 

features and explore properties that now depend on the intermolecular interactions. An obvious 

example of this is the helium volume fraction obtained by default in PB v4.0. However, with the 

interaction parameters changed to the spherical molecule of interest (e.g. methane, noble gases), the 

same simulation can be used to obtain the Henry’s constants of adsorption (Eq. 9). Lattice 

representation of the porous space then opens an opportunity to explore adsorption in Henry’s regime 

and free energy landscapes within the porous materials57-59.   

Using PB v4.0, Zeo++ and RASPA we obtained geometric properties of ca. 12,000 porous MOFs within 

CDS MOF database and made the data available on the github depository. The analysis of this data 

indicates that within this set of materials still a very significant proportion (close to 60%) of MOFs have 

very low porosity and surface area and are unlikely candidates for any adsorptive applications. This is 

in contrast to the hypothetical MOF and ZIF databases featuring hundreds of thousands of structures: 

it seems only a small fraction of this proper porous MOF universe has been realized experimentally 

and it is an interesting philosophical question on why it is so. 

The data is available online and it opens an opportunity for readers explore this data and mine it for 

some interesting correlations. Here, we presented a case study where visualization of the 

multidimensional data, combined with some statistical analysis such as PCA, was used to efficiently 

discover MOFs with interesting characteristics (e.g. large LPD/PLD ratio values). MOF databases have 

been now assembled by several groups for both real and hypothetical structures and it is an ongoing 

scientific quest to understand what kind of scientific questions we can pose to these databases. For 

example, a recent study by Moosavi et al.60, asked whether the possible parameter space of MOFs is 

uniformly sampled and what clusters form within the current universe of MOFs. We believe, however, 

we are just at the beginning of the realization of the full potential of the material informatics tools in 

discovery of new materials and new applications. 
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