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ABSTRACT 

This study presents CryptoChem, a new method and associated software to securely store 

and transfer information using chemicals. Relying on the concept of Big Chemical Data, molecular 

descriptors and machine learning techniques, CryptoChem offers a highly complex and robust 

system with multiple layers of security for transmitting confidential information. This 

revolutionary technology adds fully untapped layers of complexity and is thus of relevance for 

different types of applications and users. The algorithm directly uses chemical structures and their 

properties as the central element of the secured storage. QSDR (Quantitative Structure-Data 

Relationship) models are used as private keys to encode and decode the data. Herein, we validate 

the software with a series of five datasets consisting of numerical and textual information with 

increasing size and complexity. We discuss (i) the initial concept and current features of 

CryptoChem, (ii) the associated MOLREAD and MOLWRITE programs which encode messages as 

series of molecules and decodes them with an ensemble of QSDR machine learning models, (iii) 

the Analogue Retriever and Label Swapper methods, which enforce additional layers of security, 

(iv) the results of encoding and decoding the five datasets using CryptoChem, and (v) the 

comparison of CryptoChem to contemporary encryption methods. CryptoChem is freely available 

for testing at https://github.com/XinhaoLi74/CryptoChem  

  

https://github.com/XinhaoLi74/CryptoChem
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1. Introduction 

As the amount of data produced worldwide is growing exponentially, the need to reliably, 

durably, and securely store and transfer that data has never been so critical. However, data storage 

is at a pivotal crossroad. Physical storage devices such as optical drives and tapes are not only 

reaching their technical limit in terms of capacity and density of storage but also in terms of 

durability. Also on the rise is the need for disrupting encryption methods based on advanced 

technologies requiring highly technical skills and/or appropriate equipment. To solve these 

problems, next-generation DNA storage1,2 has been developed to encode and store enormous 

amounts of information on DNA molecules3; but this technology suffers many practical 

challenges, especially when it comes to obfuscation protocols4. Meanwhile, the chemical space is 

estimated to be filled with 1060 unique small molecules that can be characterized by properties 

directly computed from their two-, three-, or even four-dimensional structures and 

conformations5,6. There has been a few attempts to use different subsets of chemicals for 

establishing novel steganography and/or cryptography methods, especially with dyes7. But as of 

today, to the best of our knowledge, there is no available technology capable of exploiting the 

chemical space to directly store information in a secured, reproducible, and efficient way.  

Herein, we propose to use chemical structures and their properties as the central element 

for a completely novel data encoding method. It is based on the high complexity and uniqueness 

of the thousands of structural characteristics and properties that can be computed for every single 

molecule of the chemical universe. As the chemical universe is estimated to be in the order of 1060 

molecules5, it is nearly impossible to enumerate all possible molecules and their properties using 

a brute force algorithm. Therefore, storing information using chemicals could simultaneously offer 

very high levels of storage density8 and security. Ultimately, this approach could also be used to 
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physically store encryption keys or any other information in physical storage technology (e.g., 

direct encoding by chemicals packaged within a DNA storage cell9).  

Moreover, for the past decade, robust quantitative structure-activity relationship (QSAR) 

models10–13 have been built to predict very specific physical, chemical, and biological endpoints 

of compounds. Those QSAR models are based on the hypothesis that similar compounds have 

similar properties. But chemicals first need to be encoded into numerical data being fully amenable 

to computer-based calculations. To do so, we use molecular descriptors that are well-defined, 

reproducible, interpretable, and numerical parameters directly and solely computed from the 

chemical structure of a compound. For a given chemical, thousands of descriptors can be computed 

solely based on its two-dimensional structure, thousands more based on its three-dimensional 

structure (i.e., one 3D conformation of that compound). Importantly, those 3D conformation-

dependent descriptors can also be computed for thousands of 3D conformations of that same 

particular compound (e.g., time-dependent descriptors computed from molecular dynamics 

trajectories6,14). Overall, every chemical can be characterized by tens of thousands of numerical 

descriptors directly computed in silico.  

For this study, we developed Quantitative Structure-Data Relationships (QSDR) models 

that use machine learning to establish non-linear, quantified links between computed molecular 

descriptors and numerical/textual data. A collection of QSDR models was built using several types 

of machine learning techniques (e.g., deep learning neural networks, random forests) and families 

of 2D, 3D structural descriptors and fingerprints directly computed from various series of 

molecules. In this CryptoChem project, we designed, implemented, and validated two proof-of-

concept programs, MOLWRITE and MOLREAD, enabling the encoding and retrieval of information 

using series of molecular structures. MOLWRITE program stores and encodes a given message in 

the molecular CryptoChem format, whereas the MOLREAD program decodes a given CryptoChem 
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message using the right QSDR model. The feasibility and capabilities of this innovative 

technology have been tested on a series of five different datasets consisting of numerical and 

textual information. To have a better understanding of CryptoChem in relation to other popular 

encoding algorithms, we also compared it to contemporary methods such as block and stream 

ciphers on the basis of features, weaknesses and strengths. 

2. Methods 

2.1. Overview of CryptoChem 

CryptoChem is comprised of two major components: (1) MOLWRITE and (2) MOLREAD. 

The former encodes textual/numerical information into in silico molecules, and the later decodes 

the molecules back into the original textual/numerical message. The overview of CryptoChem 

encryption and decryption algorithm is provided in Figure 1.  

 

Figure 1. Simplified workflow of the CryptoChem Algorithm. 
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MOLWRITE (the encryption part) is composed of four major functions: ASCII Encoder, 

Label Swapper (LS) Encoder, Molecular Encoder (ME), and Analogue Retriever (AR). First, the 

input message is encoded into digits using ASCII Encoder (ection 2.1. ASCII Encoder). In the 

current version of the method/software, the algorithm can encode the first 128 characters in the 

standard ASCII table15. To introduce an extra layer of protection in the algorithm, the digits are 

then transformed into new digits using Label Swapper (LS, see section 2.2. Label Swapper). Next, 

Molecular Encoder (ME, see section 2.3. Molecular Encoder) is applied to replace each value by 

a virtual reference chemical which has been tagged with labels. Then, an additional layer of 

security and confusion is added into the algorithm with the use of Analogue Retriever (AR, see 

section 2.4. Analogue Retriever). AR replaces the previously tagged reference molecules with new 

chemical analogues which have no explicit tags and/or labels associated with them (also defined 

as the reference set). These new molecular analogues are used to generate the encoded message, 

also known as CryptoChem message that carries the original textual/numerical information in 

encoded molecular format (SMILES). The Simplified Molecular-Input Line-Entry System 

(SMILES) encodes the molecular structures as strings of text.16 

MOLREAD (the decryption part) is comprised of three major functions: Molecular Decoder, 

Label Swapper (LS, Decoder) and ASCII Decoder. Molecular Decoder converts the molecules 

from CryptoChem message into digits. Then, LS (Decoder) is applied to transform these digits 

back into the original digits. These digits are then decoded into characters from the initial message 

using ASCII Decoder.  

In the following sections, we will explain each function accordingly. 
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2.1. ASCII Encoder 

ASCII stands for American Standard Code for Information Interchange. ASCII encodes a 

numeric value to different characters and symbols. For example, the ASCII value of the character 

“d” is 100. The complete ASCII table can be found at https://theasciicode.com.ar/. In this study, 

the original character “d” is converted to the ASCII value of 100. Label Swapper is then applied 

to switch 100 to a different number (e.g., 91). The new number is then encoded with a chemical 

molecule from the reference set. For the current version of the method, the algorithm can encode 

the first 128 characters in the standard ASCII table. 

2.2. Label Swapper 

Label swapper (LS) employs a permutation key (also known as the molecular key) and 128 

(pre-shared with message sender and receiver) neighbor molecules, to switch the ASCII digits to 

new digits. The algorithm of LS is directly inspired by the famous Enigma machine that was used 

by the Germans during World War II17. Instead of using the real keyboard and rotors to encrypt 

the information, LS uses the permutation key and the neighbor molecules to generate a virtual 

look-up table for each ASCII digit to change from one digit to another. For each neighbor 

molecule, we assigned a digit (0-127) to it. During label swapping, the distances between the 

permutation key and neighbor molecules are computed, and neighbor molecules are ranked 

according to the computed distances. The virtual look-up table is formulated based on the 

originally assigned digits and the computed distance ranks of the neighbor molecules. The Label 

swapper is an important component to ensure a higher security level in CryptoChem. 

Essentially, the native CryptoChem system (without Label Swapper) can be seen as a form 

of substitution encryption. The machine learning model acts as a substitution key. The assumption 

of QSDR is that ‘similar’ molecules (characterized by the specific molecular descriptors used) will 

https://theasciicode.com.ar/
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be used to represent the same ACSII code. The trained QSDR machine learning models learn the 

patterns of the text-molecule relationship so that it can map the molecules to the text.  

LS is designed to resist several major cryptanalysis techniques against the substitution 

encryption part in case the machine learning model itself is compromised by the adversarial. The 

concept of LS is shown in Figure 2. The central part of Label Swapper is the molecular key. It is 

of high importance to underline that it can be any molecule chosen from the whole molecular 

universe (~1060). Based on same molecular properties/descriptors of the molecular key, an initial 

look-up table and some rotors are generated by one or several mathematical functions (Figure 2a). 

The look-up table maps each ACSII code to another. Every time encoding a new text, the rotors 

will generate a new look-up table. For example, the text ‘aaaaaa’ would be changed to ‘pomcfr’. 

In CryptoChem system, the molecular key acts as a permutation key. In the encoding process 

(MOLWRITE), the original text is changed to a ‘new’ text before translating to the molecules. In the 

decoding process (MOLREAD), the text decoded by the machine learning model will be further 

translated back to the original text by the Label Swapper. To fully “crack” the Label Swapper, the 

adversarial would thus need to know (1) the exact molecular key; (2) the exact set of molecular 

properties/descriptors used for computing the initial look-up table and rotors; (3) the exact set of 

functions to compute the initial look-up table and rotors; and (4) how the rotors work. 
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Figure 2. Graphical Illustration of Label Swapper. 

 

2.3. Molecular Encoder 

The reference set contains 128 clusters of molecules with tagged digits. Molecular Encoder 

(ME) takes the output from the previous step of LS (see Figure 1); which are numerical digits. 

Based on these digits, ME randomly samples a chemical cluster from the reference set and picks 

a molecule from that cluster. Hence, in this step, digits from LS are encoded into chemical 

molecules.  
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2.4. Analogue Retriever 

As the name suggests, Analogue Retriever (AR) aims at identifying and retrieving 

“analogues” from a very large external set (millions randomly chosen and/or generated among 

1060 chemicals) of molecules and replaces a target reference molecule. It is incorporated into 

MOLWRITE to add an additional layer of security in encoding the CryptoChem messages. In this 

disclosed case study, we split it into two datasets: reference set (a small set of chemicals with 

tagged labels) and analogue set (a large chemical space containing multiple clusters of chemicals). 

Reference set contains molecules with associated cluster labels, and analogue set contains multiple 

clusters (e.g., thousands) of molecules without any labels attached to them. AR is an essential part 

of MOLWRITE in improving the security level by obscuring the relationships between labels and 

molecules even more. Without AR in MOLWRITE, chemicals could be potentially mapped with 

labels.  

When MOLWRITE program encodes texts into molecules, all these molecules are taken from 

the reference set. Cryptochem messages encoded with molecules directly retrieved from reference 

set could be vulnerable to security breach since having access to reference set enables not only 

encoding but also decoding CryptoChem messages through SMILE matching and identifying their 

cluster labels. Thus, it is important to devise a strategy to ensure that chemicals used in the 

CryptoChem messages are not easily traceable to the original labels associated with them. 

Therefore we developed and implemented Analogue Retriever (AR) which made it impossible to 

directly decode the message as the same compound is never used twice to encode the same 

character in the same message or in difference messages. 

In this method, the molecules with classified labels in the reference set are not actually 

used in encoding CryptoChem messages; instead, they are only used as reference molecules for 

picking compounds from an extremely large external set which, in our case, is called the Analogue 
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Set. The highlight of applying DNN models (see next sections) in CryptoChem is that well-trained 

DNN models can, however, predict the right clusters for these analogues. 

2.5. Implementation of Analogue Retriever 

We incorporated multistage sampling (clustering, stratified sampling) into designing AR 

to make the process of searching and selecting analogues efficient. There is certainly ample room 

for optimizing the algorithm and integrating parallel computing on GPUs to further improve the 

efficiency and runtime. Currently, the software can run on multiple CPUs of a standard desktop 

computer. The scheme of AR is provided in Figure 3.  

 

Figure 3. Analogue Retriever scheme for replacing a reference molecule with an analogue from 

the Analogue Set. 

 

AR takes the output molecules from Molecular Encoder (Figure 1) generated initially with 

the reference set. For readers’ convenience, we will refer to them as target molecules from now 

on. These reference molecules are later replaced with new molecules from the analogue set. Then, 

AR can compute the Euclidean distance (among other metrics) between each target molecule and 
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multiple centroids (hundreds or thousands) from the list of internal_centroids. The closest centroid 

is chosen based on the smallest Euclidean distance (and/or other metrics). To make this process 

efficient, we have already extracted all the centroids from all selected chemical clusters and 

assigned codenames to each centroid beforehand. Once the closest centroid is identified, the code 

name can be extracted. Using the code name, the chemical cluster is identified, and an analogue 

is randomly selected from that chemical cluster to replace the target molecule. Finally, the 

molecules from the original CryptoChem message generated initially with reference set are thus, 

one by one, entirely replaced by molecules from the analogue set.  

2.6. Molecular Data Preparation 

In this disclosed case study, 1 million molecules were randomly selected from the 

purchasable ‘drug-like’ molecules in the ZINC15 library18. The selected molecules (called V1 

library) were used as the training set to develop the deep learning neural network DNN model 

(molecular decoder). The full V1 library was grouped into 128 clusters using k-means algorithm 

in Scikit-learn package19 in Python based on 166-bit MACCS keys (but any custom-pool of 

descriptors could be used for a given user/application). We then extracted a few molecules from 

each of 128 clusters, assigned them labels 0 to 127, and exported them to the reference set. Our 

machine learning model was trained to associate the molecular MACCS keys with the labels. After 

removing the reference set, several internal clusters within each of these aforementioned 128 

clusters were then generated (see Figure S1), resulting in thousands of chemical clusters. These 

chemical clusters, also known as the analogue set, have no explicit label or digit associated with 

them. The centroids from all the internal clusters were assigned code names and saved as 

internal_centroids which is an integral part of AR (see section 2.5. Implementation of Analogue 

Retriever).  
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2.7. Model Development 

We used the V1 Library as training set to develop the model for our molecular decoder. 

The disclosed Decoder model was trained using Keras 2.2.2 functional API, TensorFlow backend 

with GPU acceleration, NVIDIA CuDNN libraries 20,21. We used RMSprop algorithm to train for 

1,000 epochs for all molecules in one batch with default learning parameters. It is composed of 

seven hidden dense layers activated with RELU. Since it is an integer classification (128 classes) 

task, we used multilabel classification model with 128 nodes in the output layer with SoftMax 

activation function, sparse categorical crossentropy loss function, and accuracy as the evaluation 

metric. We then evaluated it by predicting the clusters for the same dataset, and the accuracy of 

our model is above ~99.7%. A few outliers (0.3%, ~140 compounds) which were predicted to have 

wrong cluster labels were simply discarded to ensure the 100% accuracy for chemical-to-character 

and character-to-chemical QSDR-based recognition. 

2.8. MOLWRITE software 

MOLWRITE program takes an input text file and encode it into molecules (SMILES). The 

workflow is summarized in Figure 1. The input message is first translated to ASCII values (a string 

of digits). For each digit in the ASCII values, LS encoder (section 2.2. Label Swapper) is then 

applied to change the original digits to new ones. Based on the new digits, molecules from the 

reference set are randomly picked (e.g., for digit ‘12’, a molecule tagged with label 12 is picked) 

using ME (section 2.3. Molecular Encoder). Then, AR (section 2.4. Analogue Retriever) replaces 

the picked molecules with an unlabeled analogue molecules from the analogue set, generating 

CryptoChem messages as output. That CryptoChem message can be further treated with modern 

encryption algorithm (e.g., AES). 
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2.9. MOLREAD software 

MOLREAD program takes a CryptoChem message as input file, which contains molecules 

(SMILES). Available set of descriptors developed in Python using the RDKit modules are reported 

in Table S1. Chemical descriptors (both the sender and the receiver must pre-share and/or know 

the type and exact number of descriptors applied) are then computed on these molecules and fed 

into the machine learning model that was initially trained with V1 library (substitution key; it could 

be any model trained with any chemical library). The model then predicts and decodes cluster 

labels for each molecule based on its chemical descriptors. The generated cluster labels are stored 

in a string of digits in the same linear order as molecules. LS decoder (section 2.2. Label Swapper) 

transforms these digits back into the original labels. These digits are translated into characters 

using ASCII decoder, resulting in the decoded original message. 

3. Results 

3.1 Assessment of CryptoChem with five datasets  

To demonstrate the feasibility and capabilities of CryptoChem, we validated the QSDR 

and the Molecular Encoder approach by encoding and decoding a series of five datasets consisting 

of numerical and textual information with increasing size and complexity (Table 1). Often 

considered as benchmark for storage and encoding techniques, these datasets have different sizes 

and complexity increasing from dataset 1 to 5. 
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Table 1. Description of the five datasets to be encoded in this project. 

ID Datasets to be stored using the Molecular Informatics technique Size Complexity 

1 “123456789” + + 

2 “abcdefghijklmnopqrstuvwxyz” + + 

3 “Operation start at 11:00PM” + ++ 

4 

Latitude, Longitude, and Corresponding Time Zones for Major Cities. 

Source: https://www.infoplease.com/world/world-geography/major-

cities-latitude-longitude-and-corresponding-time-zones 

+++ ++ 

5 
Full text of the Declaration of Independence 

Source: http://www.ushistory.org/declaration/document/ 
+++++ +++++ 

MOLWRITE directly uses text files (e.g., “.txt”, “.csv”) as input and stores the encoded 

molecules (SMILES) in CryptoChem messages. MOLREAD takes the generated CryptoChem 

messages as input and decodes the molecules into original textual message. All the five datasets 

were saved as plain texts in txt files.  

For each of the five datasets, we used MOLWRITE to encode the original numerical and/or 

textual information with and without analogue retriever. The encoded messages were then decoded 

by MOLREAD. The results are summarized in Table 2.  

The first and the second datasets consists of Arabic numerals and English alphabet, 

respectively, which are considered as the basic elements of English texts. The results of the first 

and the second datasets showed that the MOLWRITE and MOLREAD programs can fast encode and 

decode the Arabic numerals and English alphabets with perfect accuracy. The result of the third 

dataset demonstrated the ability of MOLWRITE and MOLREAD programs to encode and decode 

simple sentence. 

 

https://www.infoplease.com/world/world-geography/major-cities-latitude-longitude-and-corresponding-time-zones
https://www.infoplease.com/world/world-geography/major-cities-latitude-longitude-and-corresponding-time-zones
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Table 2. Results of encoding and decoding the five datasets using MOLWRITE and MOLREAD 

programs (with programs performing in single CPU mode). 

Dataset 
No. of 

characters a 

No. of 

compounds 

Accuracy of 

original 

molecules set 

Encoding 

Time 

Decoding 

Time 

1 10 10 100% 1s 1s 

2 26 26 100% 1s 1s 

3 26 26 100% 1s 1s 

4 5,163 5,163 100% 144 s 10s 

5 8,685 8,685 100% 247s 16s 

a with spaces.  

The real challenges are the 4th and 5th datasets. The 4th dataset (Figure 4) is the latitude, 

longitude, and corresponding time zones for major cities. It is worth noting that this dataset is 

stored in a tabular format in the txt file. Impressively, the output of MOLREAD of this dataset is the 

same as original text. This demonstrated that our programs can not only encode and decode the 

content of text, but also the format of the text. The 5th dataset is the entire article of the US 

Declaration of Independence. We tested our programs on the entire text including 8,685 characters 

and got the encoded text fully recovered. This validated our programs and demonstrated the 

feasibility of storing complex information with molecules.  
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(a) 

 

(b) 

Figure 4. (a) The 4th dataset, and (b) the encoded version using MOLWRITE. 

 

4. Discussion 

CryptoChem builds on the concept of Quantitative Structure-Data Relationship (QSDR) 

modeling method to encode and store information using machine learning, Big Chemical Data, 

molecular structures and their properties. There are several key advantages of using machine 

learning to create those relationships: (i) the descriptor  data relationship is encoded non-

linearly, meaning there is no direct, obvious link between a particular chemical scaffold, shape, 

volume and the actual character to be stored; (ii) different molecules can still encode the same 

CCCCOc1cccc(NCCCO)c1.O=C(NCCC[N@H+]1CCCC[C@@H]1CO)c2ccc(O)c(Cl)c2.C[C@@H](C(=O)N1CC

Cc2cc(OC(F)(F)F)ccc21)n3cccn3.CCc1nccn1Cc2cc(C(=O)O)ccc2OC.FC(F)(F)c1ccc(C[C@@H]2CCC[NH2+]C2)

cc1.Cc1ncnc2c1ncn2c3ccc([C@H](C)O)cc3.CCOC(=O)[C@H]1C(C)=NC(=O)N[C@@H]1c2ccccc2C.COc1cc([C

@H](C)NC(=O)[C@@H]2C[C@@H](O)C[NH2+]2)ccc1OC(C)C.Cc1nc(Cl)c2c(I)n[nH]c2n1.COc1cc([C@@H]2[

NH2+]CCc3cc(O)c(O)cc32)ccc1O.COc1ccc(Cl)cc1C(=O)N2CCN([C@@H]3CCC[C@H]3O)CC2.C[C@H]1C[N

@@H+](CCc2ccccc2)[C@H](C)CC1=O.Cc1nnc(CN(C)Cc2nc(c3ccc(F)cc3)oc2C)o1.C[C@H](c1ncc(C(C)(C)C)o1

)N2CCC[C@@H](CS(N)(=O)=O)C2.CC[C@H](C)[NH2+]Cc1cccc2[nH]ccc12.OCCCn1cnc(c2ccccc2)c1c3cccc4c

3OCO4.O=C\1NC(=O)N(c2ccccc2F)C(=O)/C1=C/c3ccc(O)cc3.CCN(C(=O)COc1cc(C)ccc1C(N)=O)C2=CCCCC2.

Fc1ccc(C2=Nc3nnnn3[C@H](c4ccc(F)cc4)C2)cc1.CCOCCC[NH2+]Cc1cc(Cl)c(OCC)c(OC)c1.Cc1cc(C)c(NC(=O

)COc2ccc(F)nc2)c(C)c1.CCn1cnnc1CNC(=O)[C@H](c2ccccc2)N3CCSCC3.C#C[C@@H]1C[C@@H]2CC(=O)[C

@@H]3[C@@H]4CCC(=O)[C@@]4(C)CC[C@@H]3[C@@]2(C)C[C@H]1O.Clc1cccc(S[C@H]2CC[NH2+]C2)

c1.Cc1ccc(C(=O)C[n+]2ccccc2C)c(C)c1.NC(=O)CN1CCN(C(=O)C=C2CCCCC2)CC1.NNCc1ccccc1OCc2ccccc2.

CCOc1cccc(/C=C/2\SC(=S)NC2=O)c1.CN1/C(=C\C=C\2/SC(=S)NC2=O)/C(C)(C)c3ccccc31.CCCOc1ccc(C[NH2

+]CCOCCO)cc1Br.Cc1cc(NC(=O)C[C@H](C)c2ccccc2)no1.Cc1cccc(OC[C@H](O)C[NH2+][C@H](C)c2cncc(F)

c2)c1.CCN1C(=O)/C(=C/c2ccc(OC(C)=O)cc2)/SC1=S.CC(C)N1C(=O)/C(=C/c2ccc(N(C)C)cc2)/SC1=S.COc1ccc(

Cl)c([C@@H]2CCC[NH2+]C2)c1.Cc1ccc(c2nnc(COC(=O)c3cnccn3)o2)cc1.C[C@@H](O)C[NH2+]CCNCc1cccc

c1OCc2ccccc2Cl.O=C(CSc1nncc2ccccc12)NCc3ccccc3F.CC[C@H]1CC[NH2+][C@@H]1Cc2ccc(F)cc2.Cc1cc(C

N2CC[NH+](C[C@@H](O)COc3ccccc3)CC2)on1. 
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character, meaning that character frequency analysis (traditionally used to crack methods that 

substitute a given alphabet by another one) is useless with this technology, (iii) the relationships 

are quantified, meaning there is an actual weight (or set of weights) associating each molecular 

descriptor with a character. Therefore, a CryptoChem message cannot be read and/or written 

without using the right QSDR model (that includes the compounds used to train the model, the 

type of machine learning algorithms, the set of descriptors used to characterize these compounds, 

and the actual parameters of the models (e.g., descriptor weights, number of neurons/hidden layers 

if using DNN). In this disclosed study, we utilized implicit and explicit 2D molecular 

descriptors/fingerprints and deep learning neural networks (DNN) model to encrypt and decipher 

CryptoChem messages containing textual and numerical data.  

We have successfully developed our first QSDR-DNN models that directly link the 

molecular descriptors of chemicals in V1 dataset to numerical/textual characters. It should be noted 

that the application of our DNN models is unique from others found in literature. In contemporary 

research in cheminformatics, DNN models are usually used to build the quantitative relationship 

between molecular structures and their properties/activities (e.g., binding affinity, toxicity) in the 

context of drug discovery or computational toxicity. For those models, the relevance and choice 

of descriptor sets are crucial in the model’s performance to predict these desired outputs. DNN 

models must be trained with the most appropriate and relevant set molecular descriptors to 

correctly predict the targeted endpoint. In other words, the accuracy in those predictions relies 

heavily on choosing the right set of features, relevance between these features and the targeted 

characteristics, data curation, etc. If such important criteria are not met, it is usually challenging to 

obtain high accuracy. It is therefore important to follow normal protocols 22 in preprocessing data, 

training such QSDR models and evaluating their accuracy to ensure that the model’s performance 

will be good enough to predict values on new data.  
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However, in this study, we train our models to associate manually created labels (labeled 

by k-means clustering algorithm) with the molecular descriptors of compounds. The major 

difference between contemporary approaches and ours is that we can manipulate the descriptor 

sets and cluster labels as we see fit, and our model will still learn to associate certain descriptors 

with cluster labels. If it fails to predict the right clusters, we can simply discard those data. In 

essence, our models learn to distinguish molecules based on specific molecular descriptors. Our 

goal is to use DNN models as keys to decode information, so standard protocols used in developing 

machine learning models are not strictly relevant here. For a given compound, trained DNN 

models must assign the right clusters for our large libraries of molecules given the right set of 

descriptors. So, we trained and fitted our models (envisioned as substitution key) with the entire 

dataset, instead of splitting it into train and test sets like in other contemporary cheminformatics 

researches. The wrongly predicted compounds which represent a very small percentage are 

discarded. This way, our fitted models have learned to associate molecules in our libraries with 

cluster labels with 100% accuracy.  

MOLWRITE and MOLREAD programs were implemented to respectively write and read 

CryptoChem messages encoded with chemical molecules that could only be decoded using our 

QSDR DNN model as substitution key and specific descriptor sets. We showed in 3.1 Assessment 

of CryptoChem with five datasets section the true accomplishment of our system by encoding and 

decoding five datasets containing textual, numerical information and tabular formats with 

increasing complexity with 100% accuracy not only in content but also in format. Besides the fact 

that it is the first time ever one actually encodes the full text of the US Declaration of Independence 

with chemicals, this result validates this proof-of-concept project and demonstrate the feasibility 

of storing complex information with molecules and their properties. 
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Additionally, we implemented Analogue Retriever (AR) to replace molecules in 

CryptoChem messages generated from reference set in MOLWRITE with the new “analogues” from 

analogue set. By introducing new molecules from an unlabeled external set, it ensures a better 

integrity of data even if the initial reference database and CryptoChem messages are compromised. 

However, our well-trained QSAR models can decipher them correctly provided the right descriptor 

set to use and the correct sets of parameters. We tested AR by applying it on the five datasets we 

previously mentioned. The molecules from these CryptoChem messages were replaced with new 

molecules using AR, and we encoded them using MOLREAD program. The QSDR model used in 

MOLREAD was able to decipher the analogue retrieved CryptoChem messages with 100% 

accuracy. This accomplishment showed two important things: (1) our DNN models successfully 

learned the intricate features and representations mapping molecular descriptors with cluster 

labels, and (2) AR was designed with a good understanding of how our DNN model works. 

In terms of implementing the AR, we tested several different metrics such as Tanimoto, 

Euclidean distance, string similarity, etc. We previously assumed that we could sample a few 

molecules from different clusters in the external set, and selected the cluster containing a molecule 

with the highest Tanimoto score or highest string match score or lowest Euclidean distance to the 

target molecule. These approaches were tested with different sample sizes, and clustering methods 

(DL-model based, initial k-means based), but all failed to retrieve the original messages. None of 

them yielded an accuracy score more than 51%. The analogues have not been chosen simply based 

on Tanimoto scores, Euclidean distance or string match. More complexity is involved, and 

selecting the analogues relies heavily on the initial k-means clustering. Unless the centroids from 

the initial k-means clustering generated with the exact random seed is known, the actual decoding 

could be near impossible. On the other side, it showed that our model may have learned to 
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recognize these centroids and decipher the cluster labels on its own. By successfully implementing 

AR, we may have gained a better understanding on the inner workings of our QSDR model.  

The summary of security layers in CryptoChem is shown in Figure 5. In order to encode 

the message, one can select a particular chemical space including a set of highly specific and 

similar chemical compounds or a combination of various chemical scopes. The chemical universe 

is vast and there are many possibilities of designing and enumerating one’s in-silico libraries. For 

instance, cheminformatics software such as PKS Enumerator23 or SIME24 can automatically build 

extremely large libraries of macrocycles, macrolactones or macrolides with multiple constitutional 

and structural constraints.  

Next, the choice of descriptor sets, or fingerprints is highly relevant in establishing the 

QSDR relationships between chemicals and cluster labels as well. Both the sender and receiver 

must know the type and exact descriptor set applied in order to successfully encode and decode 

CryptoChem messages. For even further improved security, one can specify in-house, hand-picked 

chemical descriptors or use 3D descriptors for which both the sender and the receiver have to know 

the method to specify the conformational arrangement used for each molecule to derive the correct 

3D descriptors. Going one step further, one can even use 4D/MD descriptors14 where chemicals 

are docked or run through molecular dynamic simulation in a specified binding site of a protein or 

ribosome target of interest for a specific duration. One can then extract 4D/MD chemical 

descriptors from that process and use that to establish to QSDR relationships. This is however 

highly complex and thus very challenging and rewarding at the same time, if the proper protocol 

and regulations are meticulously applied. 
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Figure 5. Summary of security layers in CryptoChem 

Another security layer is AR which obscures and adds confusion to the link between 

chemical structures and digits associated with them. Since new analogues without any associated 

cluster labels (analogue set) are being used in CryptoChem messages, it makes it difficult for third 

parties to decode the labels by attempting to identify the chemicals even with access to reference 

set. It is also highly improbable to reproduce the same QSDR model without using the exact 

parameters such as number of decision trees (in RF), nodes, layers, activation functions, dropout 

layers, regularizations, etc. (in DNN); thus it is treated as an additional security layer in 

CryptoChem technology. LS is another security layer to protect CryptoChem messages. It could 

protect them from cryptanalysis attacks purely based on frequency analysis by generating new 

labels based on permutation key (a molecular key) and 128 neighbor molecules.  
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We also compared CryptoChem to contemporary encryption methods such as block cipher 

(e.g. AES - Advanced Encryption Standard 25) and stream cipher (e.g. One-Time Pad 26). A 

summary of encryption features among these three encryption methods are provided in  

Both CryptoChem and block cipher are based on substitution and permutation concepts 

whereas stream cipher is based on substitution alone. In terms of cryptographic keys, CryptoChem 

requires both substitution and permutation keys; the former can be any virtual chemical library of 

user’s choice and the later can be any chemical molecule that needs to be passed in a different 

secure channel or in a physical form. With the application of label swapper, even if the permutation 

key (any chemical molecule of user’s choice) and the substitution key (any large virtual chemical 

library) are compromised, the key space for permutation key is still rather large (factorial of 128 

= 128!) due to the application of Label Swapper in CryptoChem. Meanwhile, block ciphers keys 

are bit dependent such as 56-, 128-, 256-bits etc. and consequently the key space depends on the 

bits employed as well (e.g. 2256 = 1.2 x 1077). Stream cipher relies on pseudorandom number 

generator. Block cipher is deterministic with the use of same initialization vector; an encryption 

system is deterministic if the same cypher text is reproducible given the same plaintext and key. 

Stream cipher is deterministic as well. On the contrary, CryptoChem is not deterministic; meaning 

that different encoded messages are generated even if the same key molecule and models are being 

applied to generate them.  

XOR operation 27 is not applicable to CryptoChem though it is used in both block and 

stream ciphers. Next, we compared avalanche effect, one important trait in determining the 

strength of a cryptographic algorithm wherein a higher avalanche effect is desired for a stronger 

encryption system 28. An avalanche effect is achieved if a substantial change in the cipher message 

can be triggered by a slight change in the plaintext for a fixed key 29. CryptoChem has a high level 

of avalanche effect since one character can be expressed by a cluster of chemicals, and the use of 
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Analogue Retriever and Label Swapper switched chemicals and change labels accordingly. 

Consequently, very different CryptoChem message are generated even when the same message is 

used as input. Block cipher possesses avalanche effect whereas stream cipher does not. 

The operation unit of CryptoChem is byte (character) which is converted to molecules in 

the encrypted message. On the other hand, block cipher uses block of bits and stream cipher uses 

bytes. Both CryptoChem and block cipher use both principles of confusion and diffusion; which 

are central to the security of conventional encryption algorithms 30 while stream cipher uses 

confusion principle alone. Confusion is the concealment of the relation between the secret key and 

the cipher text whereas diffusion is the complexity of the relationship between the plain text and 

the cipher text 30. Regarding the reversibility, both CryptoChem and block cipher made it highly 

improbable to reverse cipher text back to original text unlike stream cipher which applies XOR 

that can easily reverse cipher text to the plain text. CryptoChem and stream cipher are strongly 

resistant to error; meaning that an error in a character will not affect the rest. However, block 

cipher is more susceptible to error because an error in a byte will affect the entire block. 

It is important to underscore that, despite the results of this comparison, we are not claiming 

that CryptoChem can be seen as a robust, fully secure, quantum-ready encryption technique in its 

current state. In order to fully assess those claims, a specific and detailed cryptanalysis study would 

need to be conducted (far beyond the scope of this proof-of-concept study). 
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Table 3. Comparison with Contemporary Encryption Methods 
Features CryptoChem Block cipher Stream cipher 

Principle Substitution-permutation 
Substitution-

permutation 
Substitution 

cryptographic key Substitution key + permutation key 
56, 128, 256-

bits, etc. 

Pseudorandom 

number 

generator 

deterministic 
No (if using the same key molecule and 

model) 

Yes (if using 

same 

Initialization 

vector) 

Yes 

Key space 
Substitution key: any chemical library 

Permutation key: 128! = 4 x 10
215

 

Depend on 

key length 

256-bit: 2
256 

= 

1.2 x 10
77

 

--- 

XOR based No Yes Yes 

avalanche effect yes yes no 

Operation unit Character (byte) to molecule Block of bits byte 

Confusion and 

diffusion 
Uses both confusion and diffusion 

Uses both 

confusion and 

diffusion 

Relies on 

confusion only 

Reversibility Reversing encrypted text is hard. 

Reversing 

encrypted text 

is hard. 

It uses XOR for 

the encryption 

which can be 

easily reversed 

to the plain text. 

Susceptibility to 

error 

Strong (an error in a character will not affect 

the rest) 

Weak (an 

error in a byte 

will affect the 

entire block) 

Strong (an error 

in a byte will 

not affect the 

rest) 

 

5. Conclusions  

In this study, we conceived and implemented the CryptoChem method that uses chemical 

structures and their properties as the central element to encode and store information using 

chemicals. In this proof-of-concept version, we achieved the implementation of both MOLWRITE 

and MOLREAD programs to write and read CryptoChem messages. Additional levels of complexity 

afforded by Label Swapper and Analogue Retriever significantly strengthen the security of 

CryptoChem. The program validation on five datasets showed the accomplishment of our goal to 

encode and accurately decode data/information using molecules. Additionally, the comparison of 

CryptoChem to contemporary encryption methods could justify launching a detailed cryptanalysis 
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of the method to fully understand its strong characteristics as well as its weak points. That full 

cryptanalysis and stress tests need to be conducted in the future to further assess and potentially 

demonstrate the security of CryptoChem, especially with the rise of quantum computers. 

Moreover, one could use CryptoChem as an additional layer of protection prior to encoding a 

message using AES or other modern cryptographic technology.  

In further phases, we plan to develop different machine learning models and create multiple 

libraries with varying sizes based on different sets of descriptors (including 3D, 4D/MD) and 

fingerprints. To encode larger texts such, we certainly need much bigger chemical libraries. There 

is certainly more work to be done regarding the optimization of both AR and LS in terms of method 

improvement and GPU-accelerated parallel computing. GPU acceleration is the key to have 

CryptoChem ready for real-world and commercial applications. The software is freely-available 

for testing and available on our GitHub.  

Software availability:  

The current version of CryptoChem is available at 

https://github.com/XinhaoLi74/CryptoChem  
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