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Abstract

The convolution of the excitation energies, computed by the complete active space

self-consistent field (CASSCF) or other CAS-based methods, of an ensemble of ge-

ometries generated by molecular dynamic simulations is a usual recipe to obtain the

absorption spectrum or the density of states of a chromophore. This approach requires

that all the considered geometries have the same molecular orbitals within the active

space. However, the different geometrical features and/or the different influence of the

solvent or biological environments along the sample geometries makes the preserva-

tion of the active space a challenging task, which is usually ignored. In this work, we

present an algorithm to correct for the active space of geometry ensembles in CASSCF

calculations. The algorithm is based on the calculation of the molecular orbital overlap

matrix between a previously selected reference geometry, with the desired active space,

and each of the sampled geometries. Depending on the value of the overlap matrix
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elements, the algorithm determines whether one or more pairs of molecular orbitals

of the sampled geometry have to be swapped for a subsequent CASSCF calculation.

We have applied the developed algorithm to quantum mechanics/molecular mechan-

ics CASSCF/MM and CASPT2/MM calculations for sets of geometries of the five

canonical nucleobases in aqueous solution obtained from classical molecular dynamics

simulations. The algorithm shows a very good efficacy since it recovered the correct

active space for 76% of the geometries which presented undesired molecular orbitals in

the active space after the first CASSCF wavefunction optimization. In addition, the

importance of having the same orbitals within the active space for all the geometries

is discussed based on the computed density of states for the solvated nucleobases.

Introduction

Multiconfigurational self-consistent field (MCSCF)1 methods represent nowadays a standard

ab initio tool used by computational chemists to study systems in situations that cannot be

properly described by a single Slater determinant (single reference methods), such as bond

dissociations, vertical electronic excitations, and photochemical reaction pathways, among

others. Among these methods, the complete active space self-consistent field (CASSCF)2,3

is perhaps the most popular method due to its conceptual simplicity and the development

that it has undergone since its introduction. The CASSCF wavefunction is constructed by

first subdividing the molecular orbital (MO) space into three subspaces: inactive, active and

secondary orbitals. During the optimization of the wavefunction the inactive and secondary

orbitals are assumed to be doubly occupied and completely empty, respectively, whereas the

active orbitals are allowed to assume all possible occupations, as long as the overall spin and

spatial symmetry of the wavefunction is conserved. Thus, the problem of selecting the most

suitable configurations for the chemical problem at hand reduces to that of choosing the

set of MOs that compose the active space. This is mainly a problem that involves a strong

chemical intuition; however, the size of the set of orbitals is also limited by the size of the

2



system, and in some cases not all suitable orbitals can be incorporated in the active space due

to the huge amount of obtainable configurations. Once the CASSCF wavefunction has been

obtained, it can be used as the reference wavefunction for methods that recover the so-called

electron dynamical correlation due to electrons not present in the active space, such as the

complete active space second-order perturbation theory (CASPT2),4,5 the restricted active

space second-order perturbation theory (RASPT2),6 or the n-electron valence second-order

perturbation theory (NEVPT2).7 In the last decades, these quantum mechanical methods

that rely on a CASSCF reference wavefunction have been extensively employed to unravel a

large list of photochemical and photophysical processes.8–13

When the photoinduced behaviour of a chromophore is theoretically investigated, for ex-

ample, by computing the potential-energy curves that connect different stationary points14–16

or by evolving dynamic trajectories,17–20 it is usually necessary to compare excitation en-

ergies or other electronic properties for different geometries of the chromophore. This is

also the case when the absorption spectrum is calculated by considering an ensemble of

geometries which are generated by, e.g., molecular dynamic (MD) simulations.21–26 If the

electronic-structure calculations are based on the CAS approach, it is advisable to use very

similar orbitals from a qualitative perspective – although they present slightly different co-

efficients – in the active space for all the geometries that are considered. This is especially

true when studying non-reactive processes such as nuclear dynamics at the Franck-Condon

region, where there is no bond breaking or formation and, thus, new MOs are not formed.

Although the vibrational motion of the chromophore will modify the coefficients of the MOs,

and the active spaces of different geometries will be quantitatively different, the qualitative

nature of the MOs should not be altered since a drastic change of the electronic wavefunction

is not expected. If a chemical reaction or a non-adiabatic process occurs, where the elec-

tronic wavefunction suffers important alterations, the modification of the active space must

be done smoothly along the reaction pathway to avoid discontinuities in the potential-energy

surfaces and sudden changes of the electronic properties. However, to preserve the same or-
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bitals inside the active space is a very challenging task in many cases, especially when the

molecular motion and the solvent or biological environments have to be explicitly considered

in the theoretical model. In this situation it might happen that for some of the geometries

the optimized active space differs from that of the desirable reference wavefunction, which

could be, for example, the active space of the equilibrium geometry in vacuum. In such cases,

a second (or even further) CASSCF optimization needs to be performed using the previously

optimized wavefunction as the initial guess but swapping the problematic MOs, in the hope

that the desired reference active space is obtained along the different optimizations. The

usual way to tackle the problem is to visually assess for each of the failed geometries which

orbitals are within the active space and which of them need to be swapped by inactive or

secondary orbitals.14,22,27 However, this becomes a formidable task when considering a large

amount of sampled geometries which, in many cases, is disregarded.

We propose an approach to compare the active spaces of a set of geometries with the

one of a reference geometry and, when required, to swap the problematic MOs and perform

further CASSCF calculations to correct for the wavefunctions of the sampled geometries.

The method is based on the calculation of the MO overlap matrix between the CASSCF

optimized orbitals of the reference geometry and each of the sampled geometries. The cri-

terion for swapping the MOs will, thus, depend on the value of the overlap integrals of the

above mentioned matrix. There are several efficient methods for calculating overlap inte-

grals between many-electron wavefunctions in the literature,28,29 as well as Density Matrix

Renormalization Group methods that provide a better scaling than the standard CASSCF

implementations30 and allow for an automatic selection of the active space,31 and the present

work is by no means an alternative to these approaches. However, to our knowledge no such

method has been applied to correct for the active space of an ensemble of geometries that, for

example, is considered in the computation of absorption spectra. It should be pointed out

that it is not expected that two different geometries of the same molecular species possess

exactly the same wavefunction – the configuration-interaction (CI) coefficients and the MO
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coefficients will inevitably be different. However, it is desirable that they be qualitatively

similar in terms of the nature of their active spaces. However, as evidenced in the present

work, for a given geometry different minima of the energy (as a function of the CI and MO

coefficients) can be obtained for different initial guess wavefunctions. Being the CASSCF

method a variational one, it is thus of utmost importance to tackle this potential ambigu-

ity by attempting to attain the minimum-energy wavefunction, which is the most suitable

CASSCF wavefunction for a given geometry.

In this work we present the theoretical insights and the implementation of our approach,

followed by an application on an ensemble of force field MD sampled geometries for each of

the five canonical nucleobases in explicit water. Nucleobases represent a suitable test case set

as their photophysical and photochemical properties have been thoroughly studied both in

vacuum and with implicit solvation models within several different MCSCF approaches.32–35

Thus, our goal is not to reproduce accurate vertical excitation energies, but rather to show

the effectiveness of our approach in recovering the appropriate CASSCF active space of an

ensemble of geometries. Moreover, we seek to stress out the importance of describing in a

proper manner the wavefunction for each of these geometries by comparing the uncorrected

CASSCF calculations with their corrected counterparts.

Theory and Implementation

In the CASSCF (or in general MCSCF) framework, the wavefunction is represented as a

superposition of Slater determinants that span the configuration space that is most adapted

for the system under study

Ψ0 =
∑
j

CjΦj (1)

where each Slater determinant Φj is constructed from a set of N molecular orbitals

{ψjki}i∈{1..N}
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Φj = |ψjk1 ...ψjkNψjk1 ...ψjkN | (2)

To construct the Ψ0 wavefunction, both the expansion coefficients Cj and the MOs

{ψjki}i∈{1..N} are variationally optimized.

In what follows we present a method to recover the active space in an ensemble of sampled

geometries of a molecular species, using a specific geometry and the corresponding active

space as the reference. For simplicity, we will drop the Slater determinant index j from

the MOs (equation 2) as we will refer to the entire orbital space of a geometry, for which

one index suffices. We will use the orbital indices p and q instead of ki, and will represent

the MO space of the reference geometry as {ψp}, and that of any sampled geometry for

which to recover the active space as {ψ′
q}; thus, throughout the present work, MOs without

a prime (′) will represent reference MOs, and those with a prime (′) will represent MOs of a

sampled geometry. The method we propose consists of the computation of the MO overlap

matrix
〈
ψp
∣∣ψ′

q

〉
(for simplicity SMO) between the reference geometry and any of the ensemble

geometries. The molecular orbitals are expanded in an atomic orbital (AO) basis

ψp =
∑
µ

Cµpφµ (3)

so that the MO overlap matrix is given by

〈
ψp

∣∣∣ψ′

q

〉
=
∑
µν

CµpC
′

νq

〈
φµ

∣∣∣φ′

ν

〉
(4)

where Cµp and C
′
νq are the MO coefficients of the reference and the sampled geometries,

respectively, and
〈
φµ
∣∣φ′
ν

〉
is the corresponding AO overlap matrix SAO.

The SMO matrix could be easily determined from the expansion coefficients of the refer-

ence {ψp} and the sampled geometry {ψ′
p} MO sets36 (Cµp and C

′
νq in equation 4, respec-

tively), assuming that the AOs are equal for the different geometries. However, the AO basis
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sets used in the present work comprises atom-centered functions, and since two different

geometries of the same molecular system are compared, no such assumption can be made.

The only assumption made – for the sake of comparing calculations at the same level of

theory – is that the contraction schemes of both AO basis sets are the same. Therefore, the

SAO needs to be calculated explicitly.

To this end, we start by considering the basis set of atom-centered functions, which are

linear combinations (contractions) of spherical harmonic Gaussian primitive functions of the

type

φ̃(ζ, l,m, n, r) = Ñ(n, ζ)Y l
mr

ne−ζ(r−R)2 (5)

where Ñ denotes the normalization constant, ζ is the orbital exponent, n is the principal

quantum number, Y l
m is the spherical harmonic having orbital and magnetic angular momen-

tum numbers l and m, respectively, r denotes the electron coordinates, and R denotes the

atomic coordinates on which the Gaussian primitive is centered. However, several integral

calculation algorithms rely on the usage of Cartesian Gaussian functions instead

φ(ζ, lx, ly, lz, r) = N(lx, ly, lz, ζ, n)(x−Rx)
lx(y −Ry)

ly(z −Rz)
lze−ζ(r−R)2 (6)

where N is the normalization constant, lx, ly, lz are three non negative integers such that,

for the orbital angular momentum number, l = lx + ly + lz, whereas ζ, R, r and n have the

same meaning as before. In the present implementation, Cartesian Gaussian functions are

used, so that instead of calculating the overlap matrix SAO of spherical harmonic Gaussians

directly, we compute the Cartesian overlap matrix SAOxyz. In what follows, we will refer to

a shell as a set of Cartesian Gaussian functions having the same principal (n) and orbital

angular momentum (l) numbers, and the components of a shell will be the set of basis

functions belonging to it. Each Cartesian Gaussian function will be represented as a vector

a = (ax, ay, az) having as components the three numbers lx, ly, lz mentioned above. Having

implemented a vector description for the components of a shell, we will represent them using
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vector notation. Thus, the single component of an s shell having angular momentum l = 0

is given by s = (0, 0, 0). To represent each of the three components of the p shell (px, py

and pz), and each of the six components of a d shell (dx2 , dxy, dxz, dy2 , dyz, dz2) we will

employ the unit vector 1i (i = x, y, z), given by

1i = (δix, δiy, δiz) (7)

in terms of Kronecker deltas. In that case, the pi and the dij components of the p and

d shells, respectively, will be given by

pi =1i

dij =1i + 1j

(8)

so for example, px = (1,0,0), dxy = (1,1,0) and dz2 = (0,0,2). Given two Cartesian

Gaussian functions a and b centered at A and B, respectively, there are several algorithms

that allow for the calculation of the overlap integral 〈a|b〉 – that is, an arbitrary element of the

SAOxyz matrix – in a recursive manner,37–39 starting from integrals of low angular momentum

functions to obtain higher angular momentum integrals. In all such cases, the recursion

begins with the analytic expression for the overlap integral between two s functions:

〈sa|sb〉 = (
π

ζ
)
3
2 e−ξ(A−B)2 (9)

where

ξ =
ζaζb
ζa + ζb

(10)

In the present implementation, we use the Obara-Saika recursion relation40 to compute the

integral 〈a + 1i|b〉 from the lower angular momentum integrals 〈a|b〉 and 〈a− 1i|b〉
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〈a + 1i|b〉 = (Pi − Ai) 〈a|b〉+
1

2ζ
Ni(a) 〈a− 1i|b〉+

1

2ζ
Ni(b) 〈a|b− 1i〉 (11)

in which a, b and 1i have the same meaning as before and Ni is the projection operator on

the ith component of a vector. P and ζ are defined as follows

ζ = ζa + ζb (12)

P =
ζaA + ζbB

ζa + ζb
(13)

so that Pi and Ai represent the ith components of P and A in equation 11, respectively.

The recursion in equation 11 stops once a component of either a - 1i or b - 1i is negative

(specifically -1), and the value of the corresponding integral is set to zero. All the ζ, ξ and P

values, as well as the 〈sa|sb〉 matrix are computed at the beginning of the calculation. Once

the SAOxyz matrix has been determined, it is transformed into the AO matrix SAO of spherical

harmonic Gaussians as follows

SAO = TTSAOxyzT (14)

The transformation matrix T is constructed by using the expansion coefficients of spherical

harmonic Gaussians in terms of Cartesian Gaussian functions reported elsewhere.41 Finally

the molecular orbital overlap matrix SMO is computed using equation 4, which in matrix

notation reads

SMO = CTSAOC
′

(15)

where C and C
′

are the expansion coefficient matrices of the {ψp} and {ψ′
q} spaces, respec-

tively.

It must be pointed out that to have a meaningful comparison between the MO sets of the

reference and the sampled geometries, these need to be aligned prior to calculating the SMO

matrix. Therefore, the center of mass of the sampled geometry is first translated so that it
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coincides with the center of mass of the reference geometry. Afterwards, the alignment is

accomplished by determining the optimal rotation matrix W that minimizes the root mean

square deviation between the two structures, using the algorithm developed by Kabsch42

and implemented in the quaternion algebra reformulation due to Coutsias et al .43 A com-

prehensive description of the alignment procedure for obtaining the matrix W is presented

elsewhere;43–45 here we present only the basic insights. Considering two geometries of the

same molecular system of Na atoms, let X and Y be the the two Nax3 matrices containing

the coordinates of the two geometries, with X being the structure to be superimposed (by

means of a rotation W) to the structure Y. The rotation matrix W, which provides the

best superposition between the structures X and Y, is the one that minimizes the following

residual function:

E =
1

Na

tr((XW−Y)2)

=
1

Na

(GX +GY − 2tr(MW))

(16)

where GX is the inner product of structure X

GX = tr(XTX) =
Na∑
i

(x2X,i + y2X,i + z2X,i) (17)

with xX,i yX,i and zX,i being the x, y and z coordinates of the ith atom of structure X,

and M is the matrix product

M = XTY =


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 (18)

with

Sxy =
N∑
i

xY,iyX,i (19)

Thus, it can be shown43 that the optimal rotation matrix W, in the quaternion repre-
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sentation,

corresponds to the eigenvector having the largest eigenvalue of the following matrix:



Sxx + Syy + Szz Syz − Szy Sxz − Szx Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Sxz + Szx

Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy

Sxy − Syx Sxz + Szx Syz + Szy −Sxx − Syy + Szz


(20)

so that the resulting 4-component eigenvector, which represents the above mentioned

quaternion, needs to be transformed into the corresponding 3x3 matrix by a suitable trans-

formation for quaternions.43 In the case of a QM calculation including point charges (or in

general an electrostatic embedding QM/MM calculation), the W matrix is determined for

the QM part (which coincides in the number of atoms with the reference geometry), and the

point charges are rotated using the same W matrix.

Once the SMO matrix has been calculated, the comparison between the reference orbital

space {ψp} and the orbital space of the sampled geometry {ψ′
q} proceeds as follows: for each

column of the SMO, the absolute value of the maximum element is fetched and its matrix

element indices recorded (the row indices of the SMO matrix correspond to the MO labels of

the reference structure and the column indices represent the MOs of the sampled geometry).

This maximum value is chosen since it qualitatively represents which orbital of the reference

space is the most similar to the MO of the sampled geometry under consideration. The

orbitals to be swapped for the sampled geometry are determined by generating two lists

of orbitals, one for orbitals that need to be removed from the active space (lrem) and the

other one for orbitals to be added to the active space (ladd). These lists are generated by

analyzing the above mentioned maximum value for each column of SMO as follows:

(a) If the column index is outside of the range of the reference active space, but the row

index is inside the range of the reference active space, the orbital corresponding to that

column index is added to the ladd list (orange matrix element in Figure 1).
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(b) If both the row and the column indices are within the range of the reference active

space, the orbital is kept inside the active space (red matrix element in Figure 1).

(c) If the column index is inside the range of the reference active space, but the row index

is outside, the orbital corresponding to that column index is added to the lrem list

(green matrix element in Figure 1).

(d) Finally, if both the row and the column indices are outside the range of the reference

active space, then the orbital corresponding to that column index is ignored, i.e., it is

kept outside the active space (blue matrix element in Figure 1).

Figure 1: Schematic representation of the SMO matrix, for the hypothetical situation of
an orbital space of 4 orbitals. Here, the reference active space corresponds to orbitals 2
and 3, and the four situations described in the main text (a-d) are depicted by showing
the maximum value of each column as a colored square, and what is to be done with the
corresponding sampled orbitals, depending on the values of the row and column indices.

It should be emphasized that the lengths of ladd and lrem must be equal. For example

in Figure 1, ladd and lrem contain the MOs 1’ and 2’, respectively. This means that the

MOs 1’ and 2’ of the sampled geometry would need to be swapped before performing a

second CASSCF calculation.
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Computational Details

The force field MD simulations were performed using the AMBER18 package.46 An octa-

hedral water solvation box of 20 Å from the center of the box to either of the faces was

built around each one of the nucleobases using the tleap program of AmberTools19,46 and

the potential of the water molecules was described by the TIP3P47 solvation model. The

intramolecular and van der Waals parameters for all nucleobases were taken from the general

amber force field (GAFF) for organic molecules.48 The geometries for all nucleobases were

retrieved from Thiel’s benchmark set35 except for guanine, whose geometry was obtained

from the work of Wiebeler et al.34 These geometries were reoptimized at the MP2/6-31G*

level of theory using the Gaussian1649 software, and restrained electrostatic potential (RESP)

charges of all the nucleobases were calculated at the B3LYP50,51/6-31G* level of theory using

the same software. For each solvated nucleobase, the system was at first minimized for 5000

steps using the steepest descent algorithm, after which the conjugate gradient algorithm was

used for another 5000 steps. Afterwards, a constant volume (NVT) heating to 300 K was

performed for 300 ps using a time step of 2 fs, in which positional restraints were imposed to

the geometry of the nucleobase by applying a force constant of 10 kcal/mol. Three consec-

utive MD simulations of 1 ns each were run in the NPT ensemble to equilibrate the density

and to gradually remove the positional restraints previously applied, so that force constants

of 10 kcal/mol, 5 kcal/mol and no force constant were applied correspondingly. Finally, a

100 ns production simulation was run in the NPT ensemble using a Langevin thermostat to

keep the temperature constant, and the SHAKE52 algorithm was used to maintain fixed the

bond lengths of bonds involving hydrogen atoms as required when using the TIP3P solvation

model; a time step of 2 fs was used for all the NPT simulations. For each nucleobase, 100

snapshots were fetched from the last 50 ns of the production run to perform the CASSCF

molecular orbital analysis described above.

The reference geometries for the MO overlap analysis correspond to the equilibrium

geometries of the nucleobases in vacuum; the corresponding CASSCF MOs were optimized by
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means of the state average (SA) CASSCF with the triple-ζ basis set developed by Alrichs,53

using the OpenMolcas software.54 For all nucleobases, no symmetry was used in the CASSCF

calculations to have a better comparison with the sampled geometries, as it is expected that

the Cs symmetry breaks down during the MD sampling. For most of the nucleobases, the

same active spaces and number of roots as used in a previous study34 were considered for

the SA-CASSCF calculations. Specifically, for uracil we computed the first 10 roots using a

(14,10) active space which included all π electrons plus the four nonbonding electrons of the

oxygen atoms; for cytosine we computed the first 8 roots with a (14,10) active space. For

adenine 11 roots were computed with a (18,13) active space and for guanine we considered

a (20,14) active space and computed the first 9 roots. In the case of thymine, an active

space smaller than the one reported before34,35 was used, that is a (14,10) active space, in

which we have excluded the molecular orbital localized on the methyl group (See Supporting

Information for more details), and the first 10 roots were computed in the SA-CASSCF

calculations. The MOs analyzed with the MO overlap algorithm correspond to the state-

averaged natural orbitals, as provided by the OpenMolcas SA-CASSCF calculations. To

further investigate the effect of the variation of the CASSCF active space on the ensemble of

geometries we performed MS-CASPT2 on top of the SA-CASSCF optimized wavefunctions

with the undesired active spaces, as well as on top of the SA-CASSCF wavefuctions with the

corrected active spaces, using an imaginary level shift of 0.2 eV55 and no IPEA correction.56

All molecular orbital figures were made using the molden software.57

Results and Discussion

We start illustrating the presented algorithm in a visual and schematic way for an example

geometry for uracil taken from the force field MD simulations. Figure 2a shows the orbitals of

the active space –orbitals (23) to (32)– for the reference geometry of uracil, which corresponds

to the optimized geometry in vacuum. The orbitals after the first CASSCF calculation for
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the geometry labeled as geometry 29, and those corresponding to the same geometry, but

after performing the SMO analysis and the second CASSCF iteration are also shown. As

can be seen, the active space resulted from the first CASSCF calculation for the sampled

geometry contains two molecular orbitals, namely (24’) and (31’), which should not be part

of the active space. Consequently, there are two orbitals – (19’) and (37’) – which erroneously

lie outside the active space. The developed algorithm is able to detect these two pairs of

orbitals, which need to be swapped in the subsequent CASSCF calculation, by computing

the overlap matrix between the MOs of the sampled and reference geometries, whose relevant

rows and columns are shown in Figure 2b. The elements of the matrix columns (24’) and

(31’), which represent the overlap between the orbitals (24’) and (31’) of the geometry 29

and the orbitals of the active space of the reference geometry, have very small absolute

values, indicating that the MOs (24’) and (31’) have to be removed from the active space.

On the contrary, the matrix columns (19’) and (37’) present large overlap values with the

reference MOs (23) and (31) and, therefore, orbitals (19’) and (37’) have to be included in

the active space. For each of the geometries of the ensemble, the algorithm analyzes the MO

overlap matrix after the CASSCF computation to determine whether there are orbitals that

have to be swapped. If this is the case, a new CASSCF calculation is performed with the

modified active space, and this procedure is repeated until the appropriated active space is

obtained or until the maximum number of iterations is reached. In the example shown in

Figure 2a the MOs inside the active space for the geometry 29 are the same as the MOs

of the active space of the reference geometry after the second iteration and, therefore, the

CASSCF optimization is converged.

The algorithm is not only useful to perform the swapping of the MOs in an automatic

way along all the geometries of the ensemble, but also to identify the orbitals to be swapped

in a quantitative and easy way. In some cases, the identification of the undesired and desired

orbitals is straightforward and can be done just by visualisation. For example, as seen in

Figure 3a, it is relatively easy to directly identify the MO (22’) of the geometry 55, which lies
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Figure 2: An illustration of the working principle of the SMO analysis algorithm for sampled
geometry 29 of uracil. (a) A comparison among the reference active space, the active space
of geometry 29 after the first SA-CASSCF iteration - displaying the MOs that need to be
removed (green) and added (orange) to the active space-, and the active space of geometry
29 after the second SA-CASSCF iteration. (b) A portion of the SMO matrix showing the
absolute values of the overlap integrals. It can be clearly evidenced that MOs 24’ and 31’
display negligible overlap integrals with the MOs of the reference active space, whereas MOs
19’ and 37’ show significant overlaps with at least one MO in the reference active space.
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outside the active space after the first CASSCF calculation, as the equivalent counterpart of

the orbital (26) of the reference geometry. Thus, it should be included in the active space.

Moreover, the orbital (24’), included in the active space by the first CASSCF wavefunction

optimization, is clearly different from all the active-space MOs of the reference geometry

of uracil plotted in Figure 2a and, therefore, has to be removed from the active space.

However, in many other cases, the visual characterization of the MOs is an impossible task

if the optimization process did not reach the global minimum and the wavefunction is not

converged with respect to the wavefunction of the reference geometry. For example, our

algorithm has identified the orbital (37’) of the geometry 27, shown in Figure 3b, as being

equivalent to orbital (31) of the reference geometry. Therefore, orbital (37’) needs to be

Figure 3: Two examples of geometries of uracil whose active spaces were recovered after
a SMO analysis. For geometry 55 (a), the algorithm correctly identifies MO 22’ as being
equivalent to the reference MO 26, as can be verified by simple inspection. For geometry 27
(b), the algorithm identifies MO 37’ as being equivalent to the reference MO 31, although
their similarity is not qualitatively straightforward.

included in the active space in replacement of the orbital (32’). This assignment would have

been impossible to do by simple visualization since both orbitals (32’) and (37’) significantly

differ from the reference orbital (31), and it would be hard to decide which one should be

included within the active space.

As explained above, we have performed CASSCF/MM calculations for 100 geometries for

each of the five nucleobases in aqueous solution. The initial wavefunctions were taken from

previous CASSCF calculations for the optimized nucleobases in vacuum. Since large geo-
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metrical alterations with respect to the vacuum optimized geometries should not occur along

the ground-state classical MD simulations, it could be expected that the wavefunction of the

optimized nucleobases in vacuum is a good initial guess for the CASSCF/MM calculations.

Therefore, it would be reasonable to assume that the vast majority of CASSCF/MM calcu-

lations finish correctly with the right active space. However, as it is shown in Table 1, this

is partially true only for adenine, for which 82 out of 100 geometries present the right active

space after the CASSCF calculation. However, for the other canonical nucleobases a large

amount of geometries have undesirable MOs in the active space. Specifically, 39 geometries

for uracil, 37 for cytosine, 34 for thymine and 77 for guanine have a wrong active space after

the first CASSCF calculation. Therefore, for all these geometries it was necessary to swap

some orbitals based on the analysis of the MOs overlap matrix. Our algorithm shows a very

good efficacy since for most of the geometries initially presenting inappropriate MOs within

the active spaces, the corresponding active spaces were successfully corrected as can be seen

in Table 1. In particular, 92%, 86%, 71%, 67% and 66% of the wrong geometries have been

corrected by the algorithm for uracil, cytosine, thymine, adenine, and guanine, respectively.

For all the nucleobases but guanine, the right active space for the recovered geometries has

been achieved, in average, after carrying out one additional CASSCF calculation, in which

two pairs of orbitals have been swapped. The case of guanine is slightly more complicated

since it was necessary to swap, in average, almost three pairs of orbitals in the additional

CASSCF calculation. Moreover, it was not possible to recover the desired active space for

34 % of the failed geometries.

The preservation of the active space along all the geometries of the ensemble is very

important. Different CASSCF – or in general CAS-based calculations – can be combined,

for example, to obtain the absorption spectrum or the density of states, only when all the

computed geometries have the same active space. Otherwise, different geometries would have

electronic properties, such as excitation energies and oscillator strengths, which rely on qual-

itatively (in some cases drastically) different CASSCF wavefunctions. The convolution of
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Table 1: Results of the SMO analysis on the overall set of sampled geometries for all five
canonical nucleobases. The wrong geometries represent those for which the active space
differed from the reference active space. The recovered geometries are represented with the
percentage over the whole set of geometries presenting the wrong active space after the first
SA-CASSCF iteration.

Nucleobase Correct Wrong Recovered Average Number Average Number
Geometriesa Geometriesb Geometriesc of Iterations of Swaps

Uracil 61 39 36 (92%) 1.06 2.03
Cytosine 63 37 32 (86%) 1.00 1.88
Thymine 66 34 24 (71%) 1.13 1.92
Adenine 82 18 12 (67%) 1.14 2.02
Guanine 23 77 51 (66%) 1.23 2.66

a Geometries presenting the desired active space after the first SA-CASSCF iteration
b Geometries presenting an undesired active space after the first SA-CASSCF iteration
c Geometries for which the desired active space was recovered after performing the SMO anal-
ysis. They are recovered in the sense that they do not need to be discarded for studying the
ensemble properties of the system.

these energies based on very different wavefunctions to obtain the spectrum would be equiv-

alent to the convolution of energies computed at different levels of theory. The importance

of preserving the active space is exemplified in the following analyses. Figure 4 displays, for

each of the recovered geometries for the five nucleobases, the difference in excitation energies

for the S1 state between the wrong and corrected active-space CASSCF calculations, against

the variation of the CI coefficient of the most representative determinant in the corrected

active-space calculation. Many geometries present large energy deviations – in some cases

larger than 0.5 eV – after the MO swapping to attain the desired active space, especially for

uracil, cytosine, and guanine.

It is also interesting to see in Figure 4 that there is no correlation between the difference

in excitation energy and the difference in the CI coefficients. This means that large excita-

tion energy variations are not always originated by a significant alteration of the electronic

wavefunction. In other words, an important error in the electronic properties can be ob-

tained even when the undesired orbitals in the active space are not orbitals involved in the

main electronic transitions of the electronic state under study.
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Figure 4: Difference in Excitation Energies towards the S1 state between SA-CASSCF cal-
culations with the corrected and the uncorrected active spaces for uracil (a), cytosine (b),
thymine (c), adenine (d) and guanine (e), vs the difference between the coefficient of the most
representative determinant in the corrected active space calculation with its corresponding
coefficient in the uncorrected calculation
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Although it is evident that swapping the problematic MOs to preserve the active space

of the reference geometry provides significantly different results than the first SA-CASSCF

wavefunction optimization, this does not directly imply that the result with the swapped

orbitals is better. However, this can be easily investigated by comparing the SA-CASSCF

energies of the electronic states obtained with the corrected and uncorrected active spaces.

The active space that provides the lowest energies, and thus that approaches more to the

full-CI result, contains the most suitable MOs. Figure 5a-e shows the energy difference

for the six lowest-lying electronic states between the corrected and uncorrected active-space

SA-CASSCF calculations for the geometries whose active space were successfully recovered

by the algorithm. As can be seen, the energies of the vast majority of electronic states

obtained by employing the corrected active space are lower than the energies of the states

obtained after the first SA-CASSCF wavefunction optimization. Specifically, the use of

the corrected orbitals gives electronic energies that are, in average, 0.56, 0.69, 0.79, 0.51,

and 0.61 eV lower than those of the uncorrected calculations for uracil, cytosine, thymine,

adenine, and guanine, respectively. Therefore, the wavefunction corrected by the algorithm,

which is composed by the same MOs of the active space of the reference geometry, is more

accurate than the wavefunction obtained after the first CASSCF calculation. Since the

energies between the corrected and uncorrected calculations are clearly different, the density

of states presents also important differences as is shown in Figure 5f-j. The band structure of

both calculations clearly differs with different number of peaks located at different positions

for the five solvated nucleobases.
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Figure 5: (Left). Absolute energy differences DE for the ground state and the first five singlet
excited states between the SA-CASSCF calculations for the uncorrected and the corrected
active spaces for uracil (a), cytosine (b), thymine (c), adenine (d) and guanine (e). (Right)
Comparison of the DOS (SA-CASSCF) obtained with the active space stemming from the
first SA-CASSCF iteration (blue), and the DOS (SA-CASSCF) obtained using the target
active space (red) for uracil (f), cytosine (g), thymine (h), adenine (i) and guanine (j). Only
those geometries for which the active space was successfully recovered are considered.
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It is interesting to see that the large energy differences displayed between the corrected

and uncorrected SA-CASSCF calculations partially disappear when MS-CASPT2 calcula-

tions are performed on top of the SA-CASSCF wavefunctions. Figure 6a-e shows that the

MS-CASPT2 energies based on the corrected SA-CASSCF wavefunction can be lower or

higher than the MS-CASPT2 energies based on the uncorrected SA-CASSCF wavefunction

depending on the geometry considered. This is an expected result due to the non-variational

nature of the MS-CASPT2 approach, which can provide a better result even when a worse

reference wavefunction is employed or vice versa. In average, the absolute energy difference

between the corrected and uncorrected MS-CASPT2 calculations, taking into account only

the geometries for which the active space was recovered, is lower than 0.10 eV for the five

nucleobases. Despite this fortuitous error cancellation observed when a large number of

geometries is considered, the band structure of the density of states suffers important modi-

fications after the swapping of the MOs to keep the same orbitals of CASSCF wavefunction

of the reference geometry, as can be seen in Figure 6f-j. In addition, when individual ge-

ometries are considered, the error in the CASPT2 excitation energies is larger than 0.50 eV

for several geometries. These errors in the electronic properties introduced by the presence

of undesired MOs in the active space are not only relevant when investigating the photoab-

sorption of the chromophores at the Franck-Condon region by means of static calculations.

It is evident that these errors can also be present in excited-state dynamics simulations and,

thus, artificially alter the conclusions about the photophysics and photochemistry of the

chromophores extracted from the dynamics.
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Figure 6: (Left). Absolute energy differences for the ground state and the first five singlet
excited states between the MS-CASPT2 calculations for the uncorrected and the corrected
active spaces for uracil (a), cytosine (b), thymine (c), adenine (d) and guanine (e). (Right)
Comparison of the DOS (MS-CASPT2) obtained with the active space stemming from the
first SA-CASSCF iteration (blue), and the DOS (MS-CASPT2) obtained using the target
active space (red) for uracil (f), cytosine (g), thymine (h), adenine (i) and guanine (j). Only
those geometries for which the active space was successfully recovered are considered.
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Conclusions

The analysis and comparison of electronic properties computed by CAS-based approaches for

different geometries of the same chromophore requires the use of the same MOs in the active

space for all the geometries. This issue is often ignored when, for example, the absorption

spectrum or the density of states is computed by selecting an ensemble of geometries which

was generated by a sampling technique, such as classical MD. It is generally assumed that

the sampled geometries keep the same active space as the reference active space provided as

initial guess in the CASSCF calculation. However, we have demonstrated that this is not

necessarily true by performing CASSCF/MM and CASPT2/MM computations for the five

canonical nucleobases in water. Specifically, 205 out of the 500 geometries (41%) employed

in our calculations presented undesired orbitals inside the active space after the CASSCF

wavefunction optimization. The correction of the active space by swapping the undesired

MOs by the desired ones would be a tremendous task if one aims to perform it manually

after visual inspection of the orbitals for the 205 failed geometries.

In this work we have presented an algorithm which automatically assesses whether the

sampled geometries present the desired active space and, when this is not the case, identifies

the MOs that have to be swapped in subsequent CASSCF wavefunction optimizations. The

MOs to be swapped are selected based on the computation of the overlap matrix between the

MOs of a reference geometry and the MOs of the sampled geometries. The algorithm was

able to correct, in average, the orbitals of 76% of the geometries that presented a undesired

active space after the first CASSCF calculation. The efficacy of the algorithm was higher for

the pyrimidine (83%) than for the purine (67%) nucleobases, indicating that the preservation

of the active space along the ensemble is more difficult to achieve for large chromophores.

The importance of having the correct active space was also demonstrated. Specifically, it

has been shown that the SA-CASSCF energy of the electronic states is lower, and therefore

more accurate, when the orbitals of the active space of the reference geometry are employed

than when undesired orbitals appears in the active space. It has been also discussed that
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the excitation energies can suffer artificial and large shifts when undesired orbitals enter

the active space during the wavefunction optimization, even when these orbitals are not

involved in the excitation that dominates the electronic state. These energy shifts have

induced important modifications on the shape of the DOS bands at both SA-CASSCF and

MS-CASPT2 levels. Therefore, the amendment of the active space for all the geometries of

the ensemble is highly advisable.

The algorithm has been applied to the calculation of the density of states of the five

canonical nucleobases in aqueous solution showing a good performance. However, more

challenging situations need to be investigated in the future to assess the robustness of the

implemented algorithm. For example, chromophores that undergo larger geometrical alter-

ations within the Franck-Condon region, biological environments that strongly interact with

the chromophore, or chemical reactions that modify the relevant orbitals that should be

included in the active space along the evolution of a reaction coordinate are more difficult

scenarios that could be addressed. In addition, the current algorithm will allow the system-

atic investigation of the factors that can potentially mess up the active space along a set

of sampled geometries, such as the size of the chromophore, the nature of its chemical sub-

stituents, the presence and description of environments, and the sampling approach, among

others. The current implementation can also be adapted to be used in excited-state molecu-

lar dynamic codes. If the electronic structure is described by a CAS-based method along the

excited-state dynamics, it is important to keep the same active space along the trajectories

to avoid discontinuities on the potential-energy surfaces and on the electronic properties of

the chromophore. This can be achieved by comparing the orbitals of the active space of the

current geometry with those of the previous geometry, and perform orbital swapping based

on the analysis of the MO overlap matrix when required.
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(14) Nogueira, J. J.; Oppel, M.; González, L. Enhancing Intersystem Crossing in Pheno-

tiazinium Dyes by Intercalation into DNA. Angewandte Chemie International Edition

2015, 54, 4375–4378.

(15) Mart́ınez-Fernández, L.; Arslancan, S.; Ivashchenko, D.; Crespo-Hernández, C. E.; Cor-

ral, I. Tracking the origin of photostability in purine nucleobases: the photophysics of

2-oxopurine. Phys. Chem. Chem. Phys. 2019, 21, 13467–13473.

(16) Aleotti, F.; Soprani, L.; Nenov, A.; Berardi, R.; Arcioni, A.; Zannoni, C.; Garavelli, M.

Multidimensional Potential Energy Surfaces Resolved at the RASPT2 Level for Accu-

rate Photoinduced Isomerization Dynamics of Azobenzene. Journal of Chemical Theory

and Computation 2019, 15, 6813–6823.

(17) Szymczak, J. J.; Barbatti, M.; Soo Hoo, J. T.; Adkins, J. A.; Windus, T. L.; Nachti-
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