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In this work, we present a new theoretical explanation of the resonance vibrational strong coupling
(VSC) regime in polariton chemistry. Coupling molecular vibrations and the cavity photonic excita-
tion has experimentally demonstrated to strongly influence the ground state kinetics of a chemical
reaction. Our theoretical results suggest that the VSC kinetics modification originates from the
non-Markovian behavior of the cavity radiation mode when coupling to the molecule, leading to the
dynamical caging of the reaction coordinate and the suppression of chemical reaction rate for a given
range of photon frequency that is close to the barrier frequency. Further, we use a simple analytical
non-Markovian rate theory to describe a single molecular system coupled to a radiation mode in
an optical cavity. We demonstrate the accuracy of the rate theory by performing a numerical cal-
culation in a one-dimensional model molecular system coupled to the cavity. Our simulations and
analytical theory demonstrate the importance of dynamical effects in VSC polaritonic chemistry.

Introduction. Polariton Chemistry is an exciting
emerging field [1–5] that provides opportunities for new
chemical reactivities or selectivities by coupling molec-
ular systems to quantized radiation fields inside an op-
tical cavity. By hybridizing electronic excitation of the
molecule and the photonic excitation of the radiation in-
side the cavity, new light-matter entangled states, so-
called the polariton states, are generated with an en-
ergy gap, which is the Rabi splitting that indicate the
coupling strength. Recent experimental and theoreti-
cal works have demonstrated the possibility of changing
photo-isomerization reactivities [3, 6–9], modifying elec-
tron transfer kinetics [10–12], and remotely controlling
chemical reactions [13]. These new polaritonic photo-
chemical reactivities are attributed to the modification
the excited state landscape [1, 3, 6–9, 11, 12] due to the
formation of the polariton states.

Similarly, hybridizing molecular vibrations and the
photonic excitations inside an optical cavity [14, 15]
forms vibrational polaritons. For the vibrational po-
laritonic hybrid system, it is a well-known result that
the Rabi splitting observed in the infrared (IR) spec-
trum (due to light-matter coupling) scales as

√
N with

N as the number of molecules [14, 15] inside the cav-
ity. Whether or not such a collective effect also mani-
fests itself into chemical kinetics has been a subject of a
debate [16–19]. Recent experiments have demonstrated
that it is possible to suppress [20–24] or enhance [25, 26]
the ground state chemical reactivities by placing an en-
semble of molecules in an optical micro-cavity through a
resonance coupling between the cavity frequency and vi-
brational degrees of freedom. This so-called vibrational
strong coupling (VSC) regime [5] operate in the absence
of any light source (photons inside the cavity) [21, 22],
and was hypothesized to utilize the hybridization of a
vibrational transition of a molecule and the zero-point
energy fluctuations of a cavity mode [21, 22]. This new
strategy of VSC will allow us to bypass some intrin-
sic difficulties (such as intramolecular vibrational energy

transfer) encountered in mode-selective chemistry that
uses IR excitation to tune chemical reactivities, offering
a paradigm-shift of synthetic chemistry through cavity
enabled bond-selective chemical transformations [21, 22].

Unfortunately, a clear theoretical explanation of such
remarkable VSC ground state reactivities remains miss-
ing, including explaining both (i) the collective (N -
dependent) effects on chemical reaction rates, and (ii)
the resonant effect where the suppression of the rate is
achieved with a particular cavity photon frequency. Re-
cent theoretical works that use simple transition state
theory (TST) suggest that there is no collective effect nor
resonant effect in VSC polariton chemistry [17–19, 27].
On the other hand, both effects do show up in a VSC
non-adiabatic electron transfer reaction [28], with an en-
hancement of the rate upon resonance coupling between
molecular vibration and the cavity. The applicability of
this theory on the recent VSC ground state reactions re-
mains an open question.

In this work, we provide a completely new perspec-
tive on understanding the resonance effect of the VSC
ground state reactivities. Through both analytical the-
ory and numerical simulations, we demonstrate that the
non-Markovian nature of a radiation mode leads to sig-
nificant suppression of the chemical reaction rate con-
stant at a particular photon frequency that is related to
the barrier frequency. At such a “resonance” frequency,
the cavity radiation mode induces a dynamical-caging ef-
fect [29, 30], such that the molecular reaction coordinate
becomes trapped in a narrow “photonic solvent cage”
near the barrier region, leading to a suppression of the
chemical kinetics. Such effects are purely dynamical and
are not captured within a simple transition state theory.
This work underscores the importance of “dynamical sol-
vent effect” of the cavity radiation modes and provides
a completely new understanding of the VSC polariton
chemistry, paving the way towards an ultimate theoreti-
cal understanding of VSC polariton chemistry.
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RESULT.

Theoretical Model. The model QED Hamiltonian
used in this work for describing the molecule-cavity in-
teraction is expressed as [31–33]

Ĥ =
P̂ 2

2M
+E(R)+Ĥvib+

p̂2c
2

+
1

2
ω2
c

(
q̂c+

√
2

~ω3
c

χ·µ(R)
)2
,

(1)
which is the Pauli-Fierz (PF) QED Hamiltonian (see
Method) projected on the electronic ground state
|Ψg(R)〉. Here, E(R) is the ground state potential en-
ergy surface for a Shin-Metiu model (an electron and
a proton confined between two fixed charged ions) de-
picted in Fig. 1b, where R is a proton transfer coordi-
nate, µ(R) = 〈Ψg|µ̂|Ψg〉 is the ground state permanent
dipole moment depicted in Fig. 1c, with µ̂ as the total
dipole operator of the molecule. In addition, Ĥvib =∑
k

P 2
k

2Mk
+ 1

2Mkω
2
k(Rk + ck

Mω2
k
· R)2 is the vibrational

system-bath Hamiltonian that describes the interaction
between reaction coordinate R and other vibrational
modes in the molecule. Further, q̂c =

√
~/2ωc(â

†+â) and

p̂c = i
√
~ωc/2(â† − â) are the photonic coordinate and

momentum operator, respectively, where â† and â are
the photon creation and annihilation operators. Under
the dipole gauge, the matter interact with the quantized
radiation mode of the cavity by displacing the photonic

coordinate with the amount of
√

2
~ω3

c
χ · µ0(R), where χ

characterizes the coupling strength between the molecule
and the cavity (see Method). In this study, we have
also explicitly assumed that the dipole moment is always
aligned with the cavity polarization direction.

Vibrational Polariton Rabi Splitting. At the
equilibrium position of the reactant R0, one can approx-
imate the permanent dipole as µ(R) ≈ µ0 + µ′0(R−R0),

where µ0 = µ(R0) and µ′0 = ∂µ(R)
∂R |R0

. The light-matter

interaction term in Ĥ (Eq. 1) at R0 becomes [15, 17]√
2ωc

~ q̂cχ · µ(R0) =
√

~
2Mω0

χ · µ′0(â† + â)(b̂† + b̂) +√
2ωc

~ q̂cχ(µ0−µ′0R0), where ω0 = ∂E2(R)
∂R2 |R0

is the vibra-

tional frequency at the equilibrium nuclear configuration
R0, M is the effective mass of the nuclear vibration, b̂†

and b̂ are the creation and annihilation operators for the
nuclear vibration associated with the coordinate R. At
the resonance condition of ωc = ω0, the photon-vibration
coupling induces a Rabi splitting ~ΩR as follows [15, 17]

~ΩR = 2

√
~

2Mω0
χ · µ′0 ≡ 2~ωc · η, (2)

where the normalized coupling strength η =

µ′0

√
~

2Mω0

χ
~ωc

characterizes the light-matter cou-

pling strength. Note that the above relation between
ΩR and η only holds under the linear approximation of
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FIG. 1. Vibrational strong coupling (VSC) regime in
polariton chemistry. (a) Schematic representation of a
molecule placed inside an optical cavity. (b) Ground
state potential energy surface (PES) of the molecule
as a function of the mass-weighted proton coordinate√
MR for the Shin-Metiu molecular model system. The

ground state electronic density at two different nu-
clear configurations (at the donor and acceptor minima)
are illustrated in the insets. (c) Ground state perma-
nent dipole (solid red line) as a function of the mass

weighted proton coordinate
√
MR. (d) Cavity Born-

Oppenheimer (CBO) surface along photonic coordi-

nates qc and mass-weighted reaction coordinate
√
MR,

with the white dash line representing the minimum en-
ergy path at the resonance frequency ω0 = ~ωc = 0.17
eV and with a coupling strength η = 0.047. (e) A zoom-
in to the reactant well of the CBO surface at the reso-
nance frequency ~ωc = 0.17 and η = 0.376. The arrows
in (d)-(e) represent the directions of two polariton nor-
mal modes. (f) Schematic diagram showing the Rabi-
splitting ~ΩR due to the light-matter coupling between
photon-dressed vibronic-Fock states, |ν0, 1〉 (photonic
excitation) and |ν1, 0〉 (vibrational excitation).
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the dipole operator, and it breaks down for ultra-strong
coupling (USC) regime when 0.1 < η < 1 [34]. The
~ΩR presented in the main text are instead obtained
from numerical simulations of Ĥ (Eq. 1), with details
provided in the Supporting Information.

Reaction Rate Constant. The VSC polariton
chemical kinetics can be viewed as a barrier crossing pro-
cess on the cavity Born-Oppenheimer surface (CBO) [17,

31, 35] Ĥpl = E(R) + Ĥvib + 1
2ω

2
c

(
q̂ +

√
2

~ω3
c
χ · µ(R)

)2
,

which is a function of both qc and R. Note that the cor-
rect QED description in Eq. 1 includes the dipole self-
energy (χ ·µ(R))2/~ωc (see method). Without this term,
one would get artificial changes of the barrier height and
predicts a significant modification of the polariton po-
tential energy barrier [17]. Since we are interested in
the VSC regime, the cavity mode has a similar range
of frequency as the molecular vibrations, meaning that
qc evolve at a similar time scale as R. Based upon this
consideration, we decide to follow the previous work [17–
19] to treat both nuclear and photonic DOF classically.
The electronic DOF is considered fully quantum mechan-
ically, described by the adiabatic electronically ground
state wavefunction |Ψg(R)〉.

It is formally rigorous to express the rate constant as
the TST rate kTST and the transmission coefficient κ as
follows

k = lim
t→tp

κ(t) · kTST, (3)

where tp refers to the plateau time of the flux-side cor-
relation function, and κ(t) is the transmission coefficient
that captures the dynamical recrossing effects, measuring
the ratio between the reaction rate and the TST rate. It
has been shown that classically the potential mean force
is invariant to the change the coupling strength or photon
frequency [18], and other theoretical investigations based
on a TST analysis for N molecules coupled to cavity also
suggest no significant change of the reaction rate [19, 27].
Since kTST does not change under the VSC condition, it
is reasonable to conjecture that the change is purely dy-
namical and completely irrelevant to the potential bar-
rier changes or free energy barrier changes. Thus, it is
highly likely that such influence of the cavity on VSC
chemical reactivities is purely originated from the trans-
mission coefficient κ. It can be numerically calculated
from the flux-side correlation function formalism [36, 37]
as follows

κ(t) =
〈F(0) · h[R(t)−R‡]〉‡
〈F(0) · h[Ṙ‡(0)]〉‡

, (4)

where h[R−R‡] is the Heaviside function of the reaction
coordinate R, with the dividing surface R‡ that sepa-
rate the reactant and the product regions (for the par-
ticular model studied here, R‡ = 0), the flux function

F(t) = ḣ(t) = δ[R(t) − R‡] · Ṙ(t) measures the reactive

flux across the dividing surface (with δ(R) as the Dirac
delta function), and 〈...〉‡ represents the ensemble aver-
age on the dividing surface where the reaction coordinate
R is constrained with the value R‡.

To obtain more intuitive understanding of how VSC
light-matter interaction can influence κ, let us consider a
simplified model, Ĥ−Ĥvib where we only have two DOFs
{R, qc} such that we can obtain an analytic expression of
the rate as k = kTST ·κGH, where the transmission coeffi-
cient κGH (under the limit t→ tp) can be obtained from
the Grote-Hynes (GH) theory [29, 38–42]. The TST rate
is kTST = ω0

2π e
−βEb , where Eb = E(R‡)−E(R0) is the po-

tential energy barrier height measured from the bottom
of the well R0 to the top of the barrier R‡ (see Fig. 1),
and ω0 is the vibrational frequency of the reactant at
R = R0, and β = (kBT )−1. When explicitly considering
the DSE, Eb remains invariant as changing the light-
matter coupling strength or the photon frequency (see
Eq. 1), explaining why one can not observe any effects
from a simple TST analysis [18]. The transmission coef-
ficients κGH for this simple 2D model is (see the Method
section)

κGH =
1

ωb

[
1

2

(
−∆ω2

‡ +
√

(∆ω2
‡ )

2 + 4ω2
bω

2
c

)] 1
2

, (5)

where ω2
b = −∂

2E0(R)
∂R2 |R‡ is the curvature of the reac-

tion barrier (and ωb is the barrier frequency), ∆ω2 ≡
ω2
c −ω2

b +
C2
‡
ω2

c
, with C‡ =

√
2ωc

M χ · µ′‡ characterizes the ef-

fective coupling between photonic coordinate qc and nu-
clear reaction coordinate R in the transition state region,
and µ′‡ = ∂µ

∂R |R‡ is the slope of the dipole moment on the
dividing surface R‡. Based on Eq. 5, one can derive that
κGH will have a minimum when

ωc = −1

2
η̃2µ′

2
‡ +

1

2

√
η̃4µ′4‡ + 4ω2

b (6)

where η̃ = χ√
M~ωc

(note that the normalized coupling

strength is η = µ′0

√
~

2ω0
η̃). This provides a resonance ef-

fect of the reaction rate constant (through the transmis-
sion coefficient) when the cavity frequency ωc is tuned.

When η is small (such that η̃4µ′
4
‡ � 4ω2

b), the resonance
frequency is close to the original barrier frequency ωb.
As the coupling strength η increases, the minimum will
be shifted to the low-frequency region (red-shift). Note
that this resonance condition to achieve a minimum in κ
(Eq. 6) is different than the one (which is ωc = ω0) to
form the vibrational polariton in Eq. 2.

When explicitly considering the vibrational coupling to
R within Ĥvib, κGH has a more complicated expression as
shown in the Supporting Information. Nevertheless, the
presence of Ĥvib does not change the resonance condition
in Eq. 6 (see Fig. S1 in Supporting Information). The
detailed procedure for obtaining the transmission coeffi-
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FIG. 2. Infrared absorption spectrum by changing the normalized light-matter coupling strength η (see Eq 2). (b) The
transmission coefficient κ (under the limit t → tp) under various light-matter coupling strength (indicated by ΩR) at the
resonance frequency ωc = ω0 = 0.17 eV. (c) The “effective change” of the Gibbs free energy barrier ∆(∆G‡) with respect to the
coupling strength ΩR at 300 K. (d) Time-dependent transmission coefficient κ(t) at various light-matter coupling strengths. (e)

and (f) Cavity Born-Oppenheimer surfaces V̂CBO(R, qc) at η = 0.047 and η = 0.376, respectively, with representative reactive
trajectories indicated with black solid lines.

cient is provided in the method section as well as in the
Supporting Information.

Central Hypothesis. With the above analysis, we
conjecture that the quantized radiation mode inside the
optical cavity is effectively acting as a “solvent” degree
of freedom (DOF) that is coupled to the molecular re-
action coordinate R, such that the presence of photonic
coordinate enhance the recrossing of the reaction coordi-
nate and reduces the transmission coefficients. A similar
phenomenon is commonly referred to as the “dynamical
caging” regime in simple organic reactions [30, 43, 44]
and enzymatic catalysis [45–47], which have been suc-
cessfully explained by the GH theory.

Decreasing κ as increasing ΩR. Fig. 2 presents the
influence of increasing light-matter coupling η (thereby
increasing ΩR) on the reaction transmission coefficient κ
with the model Hamiltonian presented in Eq. 1. Fig. 2a
presents the IR spectrum computed based the quantum
light-matter interaction (Eq. 12 in Method). The nu-
merically exact Rabi splitting ~ΩR is slightly deviated
from 2~ωc · η (as indicated by Eq. 2) due to the linear
approximation (µ(R) ≈ µ0 + µ′0R) used in Eq. 2 (see
Fig. S2 in the Supporting Information). Fig. 2b presents
the transmission coefficient κ obtained from direct nu-
merical simulations (Eq. 4 under the t → tp limit) as
well as from the GH theory (solid lines) κGH (by solving
Eq. 10 in Method). The GH theory quantitatively agrees

with the results from the direct numerical simulations.
With an increasing Rabi splitting ΩR, the transmission
coefficient κ decreased by almost one order of magni-
tude, whereas the TST rate kTST remains unchanged
(due to the unchanged barrier height in the PF QED
Hamiltonian). These numerical results corroborate our
hypothesis that the suppression of chemical rate origi-
nates from κ, which closely resembles the experimental
result (Fig. 3D in Ref. [22]).

Fig. 2c presents another interesting result in this work.
For the PF Hamiltonian description that explicitly in-
cludes the DSE term, there is no change in kTST be-
cause there is no change of potential energy barrier (see
Fig. 1d) nor free energy barrier [18]. The only changes
in the rate come from κ. However, one can back out
the “effective change” of the free energy barrier height
due to the changing κ. To this end, we use the Eyring
Rate equation (Eq. 11 in Method) to convert the change
of rate from κ into an effective ∆(∆G‡). The 4 times
decreases in κ presented in Fig. 2b results in 4 KJ/mol
change in “effective ∆(∆G‡) in Fig. 2c over the 700 cm−1

of ΩR. We emphasize that this is not the real change of
the free energy barrier height, but rather an “effective”
change of ∆G‡ according to the change of κ based on
our theoretical analysis. Interestingly, the experimen-
tally measured results of ∆(∆G‡) (Fig. 3C in Ref. 22,
for example) closely resemble our theoretical finding in
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Fig. 2c, with the key difference that our theoretical inves-
tigate suggests that these are not the actual free energy
barrier changes, but entirely due to the change of κ, i.e.,
kinetics. Note that if one hypothesizes that an unknown
mechanism to force the upper or lower vibrational polari-
ton states to be a gateway of VSC polaritonic chemical
reaction [48], then the activation energy change should
shift linearly [18] with ΩR. The experimental results, on
the other hand, demonstrate a non-linearity of reaction
barrier [22]. Our theory indicates a non-linear increase
of the “effective” ∆(∆G‡) as increasing ΩR due to the
change of κ, closely resembles the experimental discover-
ies (Fig. 3c-d in Ref. [22]).

Fig. 2d presents the time-dependent simulation of the
transmission coefficient κ(t) defined in Eq. 4. With
an increasing light-matter coupling hence a larger ΩR,
the plateau value of κ(t) keeps decreasing, and at the
same time, becomes more oscillatory. This is typi-
cal behavior of reaction dynamics in the solvent caging
regime [49]. As the coupling between qc and R increase,
the non-Markovian dynamics of qc can significantly influ-
ence the recrossing dynamics of the reaction coordinate
R, from the “non-adiabatic” limit for a weak coupling
regime to the “dynamic caging” for a strong coupling
regime [38, 49].

To clearly demonstrate the difference between these
two regimes, we further present the Cavity BO surface

V̂CBO = Ĥ − P̂ 2

2M −
p̂2

c

2 − Ĥvib along R and qc in panel (e)
and (f), with a representative reactive trajectory on top
(black solid line). Fig. 2e presents a typical non-adiabatic
case of the GH theory. When the instantaneous friction
is weak ( Cωc

� ωb), the GH theory becomes a model
of non-equilibrium solvation, where the friction from the
photonic coordinate qc does not severely impede the tran-
sitions [49]. In this case, the transmission coefficient may
remain close to those without the cavity (black curve in
Fig. 2d), and the reactive trajectory crosses the barrier
without much influence from qc. Fig. 2e presents a typical
“dynamical caging” regime of the GH theory, where the
instantaneous friction from qc to R is strong ( Cωc

� ωb),
such that the reaction coordinate R becomes trapped in
a narrow “solvent cage” at the barrier top [49]. At long
times, the bath relaxation of Ĥvib allowing the R to move
away from the barrier top, but at shorter times, the re-
action coordinate R oscillates within the photon-induced
solvent cage [50]. The trajectory cross the R‡ = 0 sur-
face many times, resulting in oscillations of κ(t) (and
even exhibit negative values) at a short time and a small
plateau value of κ(t) at tp (see red curve in Fig. 2d).
This dynamical caging effects from the solvent have been
extensively studied in simple organic reactions (SN1 and
SN2) [30, 43, 44] and enzymatic reactions [45–47], where
the solvent dynamics significantly influences the reaction
rate [38, 39, 49, 51, 52]. Here, the photonic coordinate qc
acts like a “solvent coordinate”, and for strong coupling

between qc and R, the system exhibits the dynamical
caging effect, and effectively slows down the reaction rate
constant. This is our theoretical explanation for the ob-
served slow down of the rate constant for VSC polariton
chemical reactions [20, 21, 23, 24].

The Origin of the Resonance Effect. Fig. 3a
presents the transmission coefficient κ (when t → tp) as
a function of the photon frequency ωc with three normal-
ized coupling constant η (defined in Eq. 2). The results
are obtained from the GH theory (solid line) as well as the
direct numerical simulation of Eq. 4 (filled circles). One
can clearly see a resonance behavior of κ when changing
the photon frequency, agreeing with the analytical result
(Eq. 6) of a simpler model. These findings in Fig. 3a
closely resemble recent experimental results of desilyla-
tion reaction (Fig. 3A in Ref. 53, Fig. 3B in Ref. [20]),
aldehyde/ketone Prins cyclization (Fig. 3 in Ref. [24]),
and enzymatic reaction in pepsin (Fig. 3C in Ref. [23]).
Note that under a relatively small light-matter coupling
η = 0.047 (green), the resonance frequency that gives a
minimal κ is close to ωb, which is also close to the reac-
tant equilibrium frequency of the reactant ω0 in our Shin-
Metiu model. For the parameter regime η < 0.1 (not
entering into the USC), we find that the resonance con-
dition (based on Eq. 6) is close to ωb. Note that exper-
imentally, one often plot the cavity frequency-dependent
reaction kinetics against the absorption curve of vibra-
tional polariton. With our theoretical understanding and
model calculations, we conclude that these two resonance
behavior have two different origins and resonance fre-
quencies. The resonance condition observed in the IR
spectrum for Rabi Splitting requires ωc = ω0, whereas
the resonance effects for a minimum of the rate constant
requires ωc ≈ ωb. However, it is possible for a given
molecular system which has ω0 ≈ ωb.

When increasing the coupling strength to the USC
regime (0.1 < η < 1.0), the resonant frequency is signifi-
cantly red-shifted from ωb. For example, when η = 0.188
(red curve), the resonant condition for reaching a min-
imum value of κ is 25 meV. Nevertheless, in the range
of 10 meV < ωc < 100 meV, κ remains a very low value
around 0.2, similar to the value at ωc = ωb. This red-shift
of resonance frequency at which the rate is most signifi-
cantly reduced has not been experimentally observed.

The origin of this resonant behavior in VSC chemical
reaction rate constant can also be intuitively understood
by examining representative trajectories on the cavity
BO potential energy surfaces presented in Fig. 3b-d, with
the black solid lines, indicate representative trajectories.
At a very low frequency, ~ωc = 2.5 meV as shown in
Fig. 3b, the photon coordinate essentially remains frozen
compared to the dynamics of the reaction coordinate R
during the course of the reaction. As a result, under this
frozen solvent limit, the transmission coefficient remains
close to the no-coupling scenario. At ~ωc = 80 meV in
Fig. 3c, with C

ωc
� ωb, the light-matter interactions leads
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FIG. 3. Resonance effect in vibrational strong coupling regime of polariton chemistry. (a) Transmission coefficient κ as a
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to the dynamical caging of the reaction coordinate at the
barrier top leading to a significant decrease in the trans-
mission coefficient κGH. When the photon frequency is
further increased, the reactant and the product wells be-
come separated with a narrow channel as shown in Fig. 3d
when ~ωc = 1 eV. At such a high photon frequency, the
channel connecting the reactant becomes extremely nar-
row [54] (much narrower than the usual dynamical caging
scenario depicted in Fig. 3c or Fig. 2f), such that the re-
active trajectories almost follow a straight path and is
no longer caged near the dividing surface. As opposed to
the dynamic caging regime, the transmission coefficient
in Fig. 3d is less suppressed than the minimum κ when
the photon frequency is near ωb. Similar behavior of the
reaction dynamics is also observed for the USC regime
(η = 0.188 in Fig. 3), where the results are provided in
the Supporting Information. Therefore, the suppression
of the chemical kinetics through the dynamical-caging ef-
fect by the photon mode is highly sensitive on the photon
frequency, proving a plausible mechanism for explaining
the resonance behavior [21, 23, 24] of the reaction rate in
VSC polariton chemistry.

Conclusions. In this work, we provide a new theo-
retical explanation of the resonance VSC polariton chem-

istry reactivities. We demonstrate the resonant suppres-
sion of the reaction rate constant by using the analytical
Grote-Hynes rate theory as well as performing numeri-
cal calculations for a Shin-Metiu model molecular system
coupled to a single radiation mode inside an optical cav-
ity. As opposed to the previous studies [17–19, 27] that
only focuses on the transition state theory, our inves-
tigation suggests that coupling a cavity photonic mode
to a molecule leads to the suppression of the transmis-
sion coefficient of the rate constant, which exhibit the
resonance behavior that can be well explained by sim-
ple GH rate theory. Through both analytical theory and
numerical simulations, we demonstrate that the cavity
photon mode acts like a solvent coordinate which influ-
ences the chemical kinetics and leads to the suppression
of the transmission coefficient. Such an effect is purely
dynamical and is not captured within a simple transi-
tion state theory. This also explains why the polariton
mediated reaction free energy barrier change is not nec-
essarily linear to the Rabi splitting [5, 18, 22], because
the former (if we back out the effective barrier change
from the change of the rate constant) is a pure kinetic
effect, which is not directly related to the latter, which is
the energy splitting among vibrational polaritonic states
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in the reactant region.
Further, our theoretical hypothesis provides a plau-

sible explanation to the observed resonance effects of
the electronically adiabatic ground-state reactions cou-
pled to an optical cavity, whereas previous theoretical
studies [17–19, 27] based upon a simple TST always con-
clude a frequency-independent VSC rate constant. The
suppression of the rate constant is sensitive to the pho-
ton frequency, such that the maximum suppression is
achieved when the photon frequency is close to the bar-
rier frequency in the vibrationally strong coupling regime
η < 0.1 and is then red-shifted in the vibrationally ultra-
strong coupling regime 0.1 < η < 1. Our results indi-
cate that the resonance condition for achieving the Rabi-
splitting in the IR-spectrum and the resonance condition
for achieving a maximum suppression of the reaction rate
constant are actually different. While the former is re-
lated to the frequency of the reactant, the latter is related
to the barrier frequency and the coupling strength. Our
work underscores the importance of the dynamical effect
induced by the cavity photon modes on chemical kinetics
to explain new chemical reactivities observed in recent
experimental studies on vibrational strong coupling of
molecules and cavity. Future investigations will focus on
understanding the collective VSC reactivities by coupling
many molecules with the cavity [18, 19].

METHOD

Pauli-Fierz QED Hamiltonian. The minimal cou-
pling QED Hamiltonian in the Coulomb gauge (the
“p ·A” form) is expressed as

ĤC =
∑
j

1

2mj
(p̂j − zjÂ)2 + V̂ (x̂) + Ĥph,

where the sum is performed over all charged particles,
including electrons and nuclei, mj and zj are mass and
charge for particle j,respectively, and p̂j = −i~∇j is
the canonical momentum operator. Further, under the
Coulomb gauge, ∇ · Â = 0, the vector potential becomes
purely transverse Â = Â⊥. Under the long-wavelength
approximation, Â = A0

(
â+ â†

)
= A0

√
2ωc/~ q̂c, where

A0 =
√

~/2ωcε0V ê, with V as the quantization volume
inside the cavity, ε0 as the permittivity, and ê is the unit
vector of the field polarization. Using the Power-Zienau-
Woolley (PZW) gauge transformation operator [55, 56]

Û = exp
[
− i

~ µ̂ · Â
]

= exp
[
− i

~ µ̂ ·A0

(
â+ â†

)]
, as well

as a unitary transformation operator Ûφ = exp
[
−iπ2 â

†â
]
,

the Pauli-Fierz (PF) Hamiltonian is obtained as

ĤPF = ÛφÛĤCÛ
†Û†φ = ĤM+

1

2
p̂2c+

1

2
ω2
c

(
q̂c+

√
2

~ωc
µ̂·A0

)2
,

(7)
where the matter Hamiltonian is ĤM = T̂R + Ĥel ≡
T̂R+T̂r+V̂ , with T̂R and T̂r representing the nuclear and

electronic kinetic energy, respectively, and V̂ represent-
ing the Coulomb interaction potential among all charged
particles (electrons and nuclei), and Ĥel is the electronic
Hamiltonian. The detailed derivation is documented in
the Supporting Information. The presence of dipole self-
energy (DSE) (the A2

0 term in Eq. 7) is necessary in order
to have a Gauge invariant Hamiltonian [57, 58] and it has
shown to be crucial for an accurate description of light-
matter interactions under the dipole gauge [57–59]. Pro-
jecting the above Hamiltonian in the ground electronic
state of the molecule |Ψg〉 (which is obtained by solving

Ĥel|Ψg〉 = Eg(R)|Ψg〉, we obtain the model Hamiltonian
in Eq. 1.

Model Molecular Hamiltonian. The potential en-
ergy surface (PES) and permanent dipole moment are
taken from a Shin-Metiu model [60], which is illustrated
in Fig. 1. The Shin-Metiu model is an one dimensional
molecular system that describes a proton-coupled elec-
tron transfer reaction between a donor and an acceptor
ion. The model consists of a transferring proton with a
mass of mp and charge zp, an electron, and two fixed
ions (a donor and an acceptor ion, with the charge of
zD and zA, respectively). The molecular Hamiltonian

is ĤM =
P̂ 2
R

2M + Ĥel, where M is the mass of the nuclei

(proton in this model), Ĥel = T̂r + V̂eN + V̂NN is the elec-
tronic Hamiltonian, where T̂r = p̂2r/2me represents the
kinetic energy operator of the electron with mass me,
V̂eN describes the interaction between the electron and
the three nuclei, which is written as a modified Coulomb
potential

V̂eN =− zpe2
erf( |r−R|Rc

)

|r −R|
−
∑
α∈D,A

zαe
2

erf( |r−Rα|Rc
)

|r −Rα|
,

where r is the position of the electron and e = 1 a.u. is
the fundamental charge, R is the position of the proton,
while RD and RA are the positions of the donor and ac-
ceptor ion, respectively. Rc is a parameter that controls
the strength of the modified Coulomb potentials. The
nucleus-nucleus interaction potential VNN that describes
the Coulomb repulsion between the proton and the static
ions takes the form of

VNN =
zpzDe

2

|R−RD|
+

zpzAe
2

|R−RA|

The parameters in the molecular Hamiltonian ĤM used
in this work is tabulated in Table. I. The resulting PES
E(R) = 〈Ψg(R)|(ĤM − T̂R)|Ψg(R)〉 and the permanent
dipole moment µ(R) = 〈Ψg(R)|µ̂|Ψg(R)〉 are shown in
Fig. 1b and Fig. 1c, respectively. The adiabatic ground
state |Ψg(R)〉 is obtained using Fourier Grid Hamiltonian
(FGH) approach [61, 62]. In particular, we use a total
of N = 2000 grid basis {|ri〉} to describe the electronic
degrees of freedom r in the range of [RD − 10, RA + 10]
(with ∆r = 0.01 a.u.). Details of this calculation is
provided in the Supporting Information.
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Parameter Value (unit)

zp , zD, zA 1 (unitless)
RD -2.5 (Å)
RA 2.5 (Å)
Rc 0.8 (Å)
mp 1836 (a.u.)
me 1 (a.u.)

TABLE I. Parameters used in the molecular Hamiltonian ĤM.

Grote-Hynes Rate Theory. In multi-dimensional
transition state theory, the reactant to product rate con-
stant is given as [39, 63–65]

k =
1

2π

∏N
i=1 ω̃

0
i∏N

i=2 ω̃
‡
i

e−βEb , (8)

where, {ω̃i} are normal mode frequencies of the Hamilto-

nian in the reactant well, and {ω̃‡2, ..., ω̃
‡
N} are the stable

normal mode frequencies at the barrier, such that ω̃‡2i > 0

for i > 1, and ω̃‡21 < 0 is the imaginary frequency of the
transition state.

Considering a simplified model of the molecule-cavity

hybrid system, Ĥ − Ĥvib = P̂ 2

2M +E(R) +
p̂2

c

2 + 1
2ω

2
c (q̂c +√

2
~ω3

c
χ · µ(R))2 which only contains two DOFs {qc, R},

the normal modes frequencies at R0 are ω̃2
± = 1

2 (ω2
0+
C2

0

ω2
c

+

ω2
c )± 1

2

√
(ω2

0 +
C2

0

ω2
c
− ω2

c )2 − 4C20 , where C0 =
√

2ωc

M χ ·µ′0.

Note that they can also be equivalently expressed as

ω̃2
± = 1

2 (ω2
0 +

C2
0

ω2
c

+ ω2
c ) ± 1

2

√
(ω2

0 +
C2

0

ω2
c

+ ω2
c )2 − 4ω2

cω
2
0 .

The normal mode frequencies at R‡ are ω̃‡2± = 1
2 (−ω2

b +

C2
‡
ω2

c
+ ω2

c ) ± 1
2

√
(−ω2

b +
C2
‡
ω2

c
+ ω2

c )2 + 4ω2
cω

2
b, where C‡ =√

2ωc

M χ · µ′‡. Using these normal mode frequencies, the

rate constant in Eq. 8 for the Ĥ − Ĥvib model is ex-
pressed as k = 1

2π
ω̃+ω̃−

ω̃‡+
e−βEb , where Eb is the energy

barrier. Using the fact that (ω̃‡+ω̃
‡
−)2 = −ω2

bω
2
c and

(ω̃+ω̃−)2 = ω2
0ω

2
c , the rate constant can be further ex-

pressed as follows

k =
1

2π

√
−(ω‡−)2

ω0ωc

ωbωc
e−βEb =

λ

ωb
·ω0

2π
e−βEb ≡ κGH·kTST,

(9)
where kTST = ω0

2π e
−βEb , κGH = λ

ωb
is the transmission

coefficient in the GH theory, λ =
√
−(ω‡−)2, and κGH =

λ
ωb

, which is Eq 5.
Alternatively, one can derive the transmission coef-

ficient κGH from the equation of motion [38, 52]. It
is straightforward to derive (see SI) the generalized
Langevin equation (GLE) of R governed by Ĥ − Ĥvib

as R̈ = ω2
bR(t) −

∫ t
0
γ(t − τ)Ṙ(t)dτ + ξ(t), where γ(t) =

C2
‡
ω2

c
cos(ωct) is the the friction kernel and the random

force obeys 〈ξ(0)ξ(t)〉 = kBT · γ(t). Using R(t) = B0e
λt

as a solution for a reactive trajectory [38], perform-
ing an ensemble average of the above GLE, using the
fact 〈ξ(t)〉 = 0, and taking the limit t → ∞, we ob-
tain λ2 = ω2

b − λ
∫∞
0
γ(τ)eλτdτ = ω2

b − λγ̃(λ), where

γ̃(λ) =
∫∞
0
γ(τ)eλτdτ =

C2
‡
ω2

c

λ
λ2+ω2

c
is the Laplace trans-

formed friction kernel γ(t). This leads to the following
equation that λ satisfies

λ4 +
[
ω2
c − ω2

b + 2
(χµ′‡)

2

Mωc

]
λ2 − ω2

cω
2
b = 0, (10)

whose solution leads to the same expression for κGH = λ
ωb

in Eq. 5. When explicitly considering the dissipative en-
vironment Ĥvib in Eq. 1, the above procedure for deriv-
ing κGH can be followed, and the detailed derivation is
provided in the Supporting Information.

Numerical Calculations of κ(t). To compute κ(t)
from the flux-side correlation function in Eq. 4, the pho-
ton mode qc and the molecular reaction coordinate R
was treated classically, and the influence of Ĥvib on R is
simulated through Langevin dynamics (with the details
provided in the Supporting Information). All simulations
were performed under T = 300 K. The time step ∆t we
chose was 4 a.u., which was carefully checked to produce
stable integration for all simulations. From a constraint
MD trajectory with R‡ = 0 and the Langevin dynam-
ics, the constrained configurations {qc, R‡} are sampled
for every 270 fs along the constrained trajectory. A to-
tal of 100,000 trajectories are released from the dividing
surface, with the velocity randomly sampled from the
classical Maxwell-Boltzmann distribution. Each of the
child trajectory was propagated for 200 fs, which guaran-
teed that the flux-side correlation function would plateau.
Langevin dynamics was applied to the molecular DOF
in this process to dissipate the excess energy to ensure
a plateau in the correlation function. The friction pa-
rameter γ was chosen to be 400 cm−1, according to the
spectral density of the Ĥvib.

Effective ∆(∆G‡). To account the “effective change”
of the Gibbs free energy barrier ∆(∆G‡) that is equiva-
lent to the change of κ, we consider the Eyring rate equa-

tion k = kBT
h e
−∆G‡
kBT , and thus ∆G‡ = − 1

β ln(2πβ · k).

With k = κ · kTST, we can rewrite the above ∆G‡ as

∆G‡ = − 1

β
lnκ− 1

β
ln 2πβkTST (11)

Because kTST is a constant at any coupling strength and
cavity frequency and is same for bare molecular case.
The effective ∆(∆G‡) solely depends on the change of
κ. The change of free energy barrier compared to the
bare molecular reaction (with a κ0 and δG‡0) is then

∆(∆G‡) = ∆G‡ −∆G‡0 = − 1
β ln κ

κ0
.

Absorption Spectrum. We employ a simple
scheme [66] to compute the absorption spectrum of the
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molecule-cavity hybrid system. We assume that the ex-
ternal light source is only coupled to molecular transition
dipoles [66] and we introduce a phenomenological width
ε to account for the broadening of the absorption spec-
trum. With these simplifications the absorption spec-
trum can be obtained analytically. The absorption cross
section σ(E) as a function of excitation energy E is ex-
pressed [66, 67] as follows

σ(E) =
4πE

c
Im
[∑
k 6=0

|〈ψk|µ̂|ψ0〉|2

Ek − E0 − E − iε

]
(12)

where Ek is the kth polaritonic eigenenergy obtained by
solving the eigenstate of polariton Hamiltonian Ĥpl =

Ĥ−T̂R−Ĥvib with the basis {|Ψ0〉⊗|n〉}, where |n〉 is the
Fock states of the vacuum. We have used 100 Fock states
to ensure convergence of the polariton eigenspectrum for
the IR spectroscopy calculations.
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