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Abstract 

High-throughput computational screening (HTCS) is an approach that can enable rational and time-

efficient discovery of electroactive compounds. The effectiveness of HTCS is dependent on the 

accuracy and speed at which the performance descriptors can be estimated for possibly millions of 

candidate compounds. Here, a systematic evaluation of computational methods, including force field 

(FF), semi-empirical quantum mechanics (SEQM), density functional based tight binding (DFTB), 

and density functional theory (DFT), is performed on the basis of their accuracy in predicting the redox 

potentials of redox-active organic compounds. Geometry optimizations at lower level theories 

followed by single point energy (SPE) DFT calculations including an implicit solvation model are 
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found to offer equipollent accuracy as the higher level DFT methods, albeit at significantly lower 

computational costs. Effects of implicit solvation on molecular geometries and SPEs, and their overall 

effects on the prediction accuracy of redox potentials are analyzed in view of computational cost versus 

prediction accuracy, which outlines the best choice of methods corresponding to a desired level of 

accuracy. The modular computational approach presented here is expected to be applicable for 

accelerating virtual studies on functional quinones and the respective discovery of candidate 

compounds for energy storage. 

 

1. Introduction 

Commercial utilization of intermittent renewable energy sources, such as solar and wind, requires 

large-scale, low-cost, and durable energy storage technologies to balance the mismatch between the 

energy supply and demand. Redox flow batteries (RFBs) are recognized as prime candidates for large-

scale and long-term storage of electrical energy.1,2 RFBs have external storage tanks that store the 

liquid-phase redox-active electrolyte material separated from the electrochemical reaction cells. This 

unique design feature is advantageous as it decouples the battery’s power and energy density scaling, 

while also facilitating easier maintenance and recycling.2  

Conventional RFBs operate using metal-based electrolyte materials, such as vanadium, iron, zinc, lead 

and chromium.3 They, however, face technical challenges of ion crossover through the membranes 

and sluggish reaction kinetics.4 Additionally,  high-costs and the risks associated with metal toxicity 

have hindered the widespread deployment of metal-based RFBs.5,6  RFBs employing organic redox 

active materials offer a promising alternative to metal-based electrolytes, since they can sustainably 

be sourced from earth-abundant elements and further modified structurally to tune their key battery-

relevant properties when necessary.1,2 The emerging classes of organic redox-active materials, which 

have been utilized in RFBs, consist of viologens,7,8 alloxazines,9,10 phenazines,11,12  nitroxide radicals13 

and quinones.14–18  
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Among organic-based redox couples, quinone compounds are ubiquitous in nature.19 With their fast 

redox kinetics15,20 and tunable properties owing to their chemical diversity,1,21 they are increasingly 

being utilized as electroactive materials in new, advanced RFB technologies. Accordingly, a 

tremendous effort has been made in recent years to develop aqueous RFBs (ARFBs) that utilize 

quinones, such as the functionalized benzoquinones,22,23 naphthoquinones,20,22 and anthraquinones,22,24 

as electroactive materials. Research has shown that these molecules undergo a coupled two-electron 

two-proton redox reaction in aqueous media.14 However, these molecules offer low energy densities 

in a practical ARFBs as they are not very soluble and their half-cell redox potential is not close enough 

to 0 V (vs SHE), which is desired for ARFB anolytes.22,25,26 Therefore, a major challenge for organic 

ARFBs is to tune the properties of the electroactive compounds to meet the practical requirements of 

high power and energy density.  

To make an ARFB with large cell voltage, maximizing the redox potential window of quinone-based 

compounds is essential. Recent experimental and computational studies show that the redox potential 

of organic ARFBs can significantly be influenced by functionalizing them with electron-

withdrawing/donating groups.1,2 Assary et al.27 and Aspuru-Guzik et al.28,29 used HTCS for creating 

virtual libraries of candidate electroactive compounds populated with the functionalized compounds 

of quinones and predicting their redox properties. These studies utilized robust quantum chemical 

calculations to estimate the thermodynamic properties of compounds and identify the most promising 

candidates for further study. Thus, they showed how hierarchical HTCS methods can be used to 

accelerate the predictions of key properties of redox-active molecules.  

Using quantum chemical calculations to predict the redox properties is, however, a computationally 

expensive task. The approach is particularly not well-suited for HTCS studies on the enormous space 

of conceivable molecules. Therefore, it is necessary to determine the trade-offs between the accuracy 

and computational expense. While there has been a significant increase in the number of HTCS efforts 

in the area of RFBs,27–34 to the best of our knowledge, an analysis of the effect of factors, such as the 
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level of theory for optimization of molecular geometry, inclusion/exclusion of solvation effects and 

the level of theory for the calculation of energy, on the prediction accuracy are not available in the 

current literature.  

To address the issue, in this article, we systematically evaluate the performance of different 

computational methods, including DFT, DFTB,35 and SEQM.36–38 We compare these methods based 

on their accuracy in predicting experimentally measured redox potentials of quinone based molecules 

from four different sources. Besides, we make first-order comparisons of the computational expense 

of these approaches and suggest the best approach that offers very good prediction accuracy at a much 

lower computational cost. The results provide new insights into the various factors that influence the 

accuracy of computational methods for predicting redox potentials.  The new findings are expected to 

be useful for both customary and HTCS efforts that are aimed at the study of redox-active molecules 

that are of importance in bio- and electro-chemical conversion reactions also beyond the ARFBs. 

 

2. Methods 

2.1. Thermodynamic Principle 

The main aim of this work is to develop a computational framework to quickly and accurately predict 

the redox potentials of quinone-based ARFB electrolyte compounds with high charge-to-weight ratio. 

During a redox reaction in the aqueous phase: 

 

Q + 2H%+	2𝑒(	 → 	QH*                                                                                                                                                           (1) 

 

The hydroquinone, QH2, compounds can be generated from the quinone, Q, compounds via a two-

electron two-proton redox reaction.14 A quantitative measure of the favorability of a given reaction is 

the change in standard Gibbs free energy, D𝐺,-./ . According to the Nernst equation, the equilibrium 
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potential of a redox reaction, 𝐸/, is related to the change in the standard Gibbs free energy per coulomb 

of charge transferred during the electrochemical reaction as: 

 

𝐸/ = −D𝐺,-./ 𝑛𝐹⁄                                                                                                                                                                      (2) 

 

where n = 2 is the number of electrons and F is the Faraday constant. Typically, 𝐸/ is measured relative 

to the Standard Hydrogen Electrode (SHE) and D𝐺,-./  is computed at standard temperature T = 298.15 

K and pressure p = 1 atm. To calculate D𝐺,-./  we use the following equation: 

 

D𝐺,-./ = 𝐺/(QH*) − [𝐺/(Q) + 𝐺/(H*)]                                                                                                                      (3) 

 

in which D𝐺,-./  is expressed simply as the difference in the standard free energies of the reactants and 

products. Thermodynamically, D𝐺,-./  can be described as a sum of contributions arising from the 

change in internal energy (D𝑈,-.), pressure-volume (𝑝D𝑉,-.) and entropic (𝑇D𝑆,-.) contributions due 

to reaction as: 

 

D𝐺,-./ = D𝑈,-. + 𝑝D𝑉,-. − 𝑇D𝑆,-.                                                                                                                                  (4) 

 

The change in internal energy can be further decomposed as D𝑈,-. = D𝐸,-. + DZPE, where D𝐸,-. is 

simply the reaction energy and DZPE is the change in zero-point energy. In the present work, the zero-

point energy contributions to the internal energy, changes in pressure-volume and entropic 

contributions are neglected, thus effectively using the approximation: 

 

D𝐺,-./ 		@		D𝐸,-. = 𝐸BC(QH*) − [𝐸BC(Q) + 𝐸BC(H*)]                                                                                          (5) 
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where 𝐸BC represents the theoretically calculated internal energy of a species in the aqueous (aq) phase. 

All the other contributions are ignored because they require extra calculation steps, computational 

resources, and thus, are not suitable from the perspective of HTCS. The effects of ignoring these other 

contributions on the accuracy of predictions are discussed in Section 3.1. The descriptor of choice in 

this work, D𝐸,-. , is calculated with the inclusion of aqueous solvation effects, which requires 

additional computation time. In order to quantify the effect of solvation on prediction accuracy, another 

approximation is considered in this work by ignoring solvation such that Eq. (5) can be rewritten using 

internal energies calculated in the gas (g) phase as: 

 

D𝐺,-./ 		@		D𝐸,-. = 𝐸D(QH*) − [𝐸D(Q) + 𝐸D(H*)]                                                                                      (6) 

 

Under these set of approximations, the calculated change in internal energy D𝐸,-. from Eq. (5) and (6) 

can be linked to the measured redox potential using Eq. (2).  In this work, we use various theoretical 

methods, as explained below in Section 2.2, to calculate D𝐸,-., and discuss their performance for the 

prediction of experimentally measured redox potentials. 

 

2.2. Computational Workflow 

In this study, the MacroModel program is used for force field (FF) configurational searches and 

geometry optimizations, and Jaguar program39 is used for DFT calculations, all as implemented in the 

Materials Science Suite (version 2019-2) provided by Schrödinger, LLC. The MOPAC and DFTB 

calculations are performed using the ADF program.40 To make generalizable and consistent 

comparisons between various computational approaches, we developed a systematic workflow, as 

shown in Fig. 1.  
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(a)                                                                              (b)                                                                             

Fig. 1 (a) Schematic showing the chain of operations for geometry optimization (OPT) and single point 

energy (SPE) calculations at different levels of theory (b) A graphical summary of the various levels 

of approximations used for estimating D𝐸,-.EFG in this work. The hollow black arrow with symbol Δt 

represents the difference between gas phase energy and geometry at different levels of theory. The 

solid black arrow with symbol Δe represents the difference between energy computed at DFT level for 

a fixed geometry from lower-level theory and energy computed at that given level of theory. The dotted 

gray arrow represents the solvation effect from gas-phase SPE to solution-phase SPE when the implicit 

solvation model is considered. For both (a) and (b), the text boxes with no background represent 

geometry optimization; the boxes with color background represent SPE calculations; the full boxes 
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with water bubbles in the background represent solution phase SPE calculations using the implicit 

solvent model with water as the solvent. 

 

Table 1. List of computational methods that are used for the optimization of geometries and the 

calculation of the single point energies of the molecules. 

FF DFT 
OPLS3e LDA 
SEQM PBE 
AM1 PBE-D3 
MNDO BLYP 
MNDO BLYP 
PM3 B3LYP 
PM6 B3LYP-D3 
PM6-D3 PBE0 
PM6-D3H4X PBE0-D3 
PM7 HSE06 
RM1 M08-HX 
DFTB  
DFTB-D3  
GFN1-xTB   

 

In this workflow, the starting point for any given molecule is its SMILES representation,41 which is a 

widely used form of graph-representation and can easily be generated for any given molecule. The 

SMILES representation is at first converted to a two-dimensional (2D) geometrical representation 

using a SMILES interpreter. Next, 

(1) This 2D representation is converted to a three-dimensional (3D) geometry by applying the 

geometry optimization (OPT) scheme of OPLS3e FF42 to identify the lowest energy 3D 

conformer. It is important to note that in this workflow, the FF level geometry is the starting 

point for constructing all the considered approaches.  

(2) The 3D geometry is further optimized in the gas phase at three different levels of theory, namely: 

SEQM, DFTB, and DFT. For SEQM and DFT, geometry optimizations are also carried out in 
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the implicit aqueous phase, but these are not shown in Fig. 1 for the sake of simplicity. This 

step yields different 3D geometries and the corresponding SPE of the molecules. 

(3) Next, SPEs of all the different 3D geometries are calculated using different DFT functionals. 

This step yields energy values that are directly comparable but are obtained from geometry 

optimizations that are performed at four different levels of theory.  

(4) Finally, for the geometries obtained from the optimizations in the gas phase, the SPEs are 

recalculated, this time by including the effect of the aqueous medium (SOL) implicitly by using 

the Poisson−Boltzmann Solvation Model (PBF).39,43   

The molecular structures of redox couples are optimized both in the gas and aqueous phases using the 

OPLS3e FF that provides a broad coverage of small compounds.42 The gas phase FF optimized 

geometries are used as inputs to perform gas and aqueous phase geometry optimizations using nine 

different SEQM methods (Table 1), including AM1,44 MNDO,45 MNDOD,46 PM3,47 PM6,48 PM6-

D3,49 PM6-D3H4X,38 PM750 and RM1.51 The aqueous phase geometry optimizations at the SEQM 

level are performed using the COSMO-RS solvation model.52,53 The choice of this solvation method 

is constrained by the present availability in the ADF program. The gas phase FF optimized geometries 

are also used as inputs for DFTB level optimizations using the DFTB-D354 and GFN1-xTB55,56 

methods. The DFTB-D3 computations are performed with a self-consistent charge cycle using the 

QuasiNANO-2015 parameter set,35 while the parameters for GFN1-xTB are taken from the work of 

Grimme et al.55,56 The aqueous phase geometry optimizations of molecules are not performed with the 

DFTB method, since currently there is no available routine for this task in the ADF program. Finally, 

FF minimized geometries are used as inputs to perform geometry optimizations in the gas phase at the 

DFT level using the local density approximation (LDA),57 generalized gradient approximation 

(GGA),58 hybrid and meta-GGA functionals,58 all of which vary drastically in their accounting of the 

exchange-correlation energy. A total of 11 functionals, also including some of the D3 dispersion59,60 

corrected variants, are used for geometry optimizations and single-point energy calculations. As listed 
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in Table 1, these functionals include LDA,57 PBE,61,62 PBE-D3,59 BLYP,63 BLYP-D3,59 B3LYP,63,64 

B3LYP-D3,59 PBE0,65 PBE0-D3,59 HSE06,66 and M08-HX.67 Owing to their significantly higher 

computational expense, the DFT aqueous phase geometry optimizations are performed only with the 

following functionals: PBE, B3LYP, and M08-HX.  The choice of these 3 functionals was motivated 

by the fact that they lie on three different rungs of the so-called Jacob’s ladder of accuracy,58 namely- 

GGA, hybrid and meta-GGA. It was assumed that functionals at a given level of accuracy would yield 

similar results, and thus, it was not necessary to consider every one of them. 

As DFT options in Jaguar, we choose “medium” grid density for OPT and “fine” grid density for SPE 

calculations. Energy and RMS density matrix change convergence criteria are set to the default values 

of 5.0	×	10-5 Hartree and 5.0	×	10-6, respectively. The default direct inversion in the iterative subspace 

(DIIS, iconv =1) is employed as the convergence scheme. For OPT, the option iaccg = 2 is employed 

as it increases the speed of computations by using Jaguar’s mixed pseudospectral grids with default 

cutoffs. For SPE calculations, we set iacc = 2 that corresponds to accurate cutoffs, and use 

pseudospectral grids. To treat solvated molecular systems in water, we use the standard PBF solver 

(isolv = 2) with water as the solvent.39,43 The calculations are performed with LACVP**++ basis set 

with polarization and diffuse functions.68,69 The LACVP basis set is chosen here because it includes 

an effective core potential (ECP), which represents the effect of the core electrons in a parametrized 

form. The use of ECPs speeds up calculations on compounds that contain heavy elements. For the 

elements from H to Ar, LACVP and the widely employed 6-31G are essentially indistinguishable when 

evaluating ground state properties. The quinone molecules considered in this work contain the 

elements C, H, O, N, S, F and Cl, and thus, the use of LACVP**++ basis set in this work is consistent 

with the use of 6-31G**++ basis set. More information on LACVP basis sets can be found in the Jaguar 

User Manual.69 For the geometries that have been obtained from FF, SEQM and DFTB optimizations, 

the DFT level SPEs are computed in the gas phase, and subsequently in the aqueous phase using only 
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the PBE, B3LYP, and M08-HX functionals, as they are well accepted in the community but also span 

a wide range of ways for accounting for the exchange-correlation effects. 

 

2.3. Calibration data and performance metrics 

We collected redox potential data from 43 quinone redox couples in acidic aqueous solution.15,22,29,70 

In consideration of prediction accuracy and universality for the calibration models, the selection of 

available experimental data has been substantially expanded within various quinone molecules, rather 

than using monotonous structural patterns. Compounds decorated with various chemical functional 

groups can show improved redox properties as well as charge/discharge capacity when compared to 

their undecorated counterparts. These selected molecules cover both quinone cores and their 

functionalized derivatives with multiple substituted groups including   ̶SO3H,  ̶ COOH,  ̶ OH,   ̶CH3,  ̶ 

F and  ̶ Cl (see Supporting Information Table S1). The collected data spans a broad set of experimental 

redox potentials between -0.084 and 1.21 V. The redox couples are chosen consistently from 

measurements that were performed under similar experimental conditions, such as T = 298.15 K, pH 

= 0, and highly conducting salts.  

In this work, the correlations between experiments and calculations are expressed in terms of two 

commonly used coefficients, namely the coefficient of determination (R2) and root-mean-square error 

(RMSE). R2 and RMSE in this work are calculated using the definitions from the software Originlab, 

in which RMSE is defined as I∑ (KL(KML)NO
LPQ

R(S
, where 𝑦U	is the experimental measurement made at the ith 

x-value in the data set,  𝑦MU is the predicted response for the measurement. The x-value in this study 

refers to calculated reaction energy differences, D𝐸,-., as described earlier. 

 

3. Results and discussions 

3.1. Comparison of the DFT methods 
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DFT is the highest level of theory considered in this work with regards to accuracy in the prediction 

of total energies. Therefore, we begin with a discussion of the performance of the various DFT 

functionals, with an aim to use them as performance benchmarks for the lower-level methods. At first, 

we briefly discuss the performance of D𝑈,-. and D𝐺,-./  as descriptors for predicting redox potentials. 

For this purpose, DFT energy calculations using the PBE functional are performed first for optimizing 

geometry in the gas phase, and then, for calculating single point energy in the implicit aqueous phase. 

The calibration performance of both D𝑈,-. (RMSE = 0.049 V, R2 = 0.978) and D𝐺,-./  (RMSE = 0.048 

V, R2 = 0.979) is very similar, as shown in Fig. S1 in the Supporting Information. As will be 

demonstrated in the following discussions, inclusion of ZPE (in D𝑈,-.) as well as entropic effects (in 

D𝐺,-./ ) is only marginally better than considering only D𝐸,-. (RMSE = 0.051 V, R2 = 0.977). In this 

work, we consider that the effect of including these terms is not significant enough from a HTCS 

perspective. Therefore, all the following discussions in this work consider only D𝐸,-. as the descriptor. 

First, we discuss the linear calibration of three representative DFT functionals, namely: PBE (Fig. 2a), 

B3LYP (Fig. 2b), and M08-HX (Fig. 2c). As shown in the legend in Fig. 2, for each of these three 

functionals we further used three kinds of DFT calculated reaction energies D𝐸,-. = D𝐸,-.EFG, against 

the experimentally measured redox potentials (𝐸V-W/ ) as follows: (1) with OPT in gas phase without 

calculation of the SPE in SOL, (2) with OPT in gas phase and the following SPE in SOL, and (3) with 

both OPT and SPE in SOL.  

On comparing the RMSE and R2, the following observations are made: 

(1) When using D𝐸,-.EFG  from only gas phase optimized geometry and SPE, PBE is the worst 

performing functional with RMSE = 0.072 V, R2 = 0.954. This indicates that at the most basic 

DFT level, it is possible to predict 𝐸V-W/  for quinone-based molecules within the range of 

common experimental errors (~0.1 V).  
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(2) Upon the inclusion of solvation effects on the gas phase geometry using the implicit model, all 

three functionals show a considerable decrease in their RMSE values. The decrease in error is 

highest for PBE (~30 %) and lowest for M08-HX (~23 %). 

(3) Remarkably for all three functionals, full geometry optimization and energy calculation in the 

implicit solvation model yields slightly worse results than their counterparts in which geometry 

is optimized in the gas phase. The RMSE values are found to increase by 0.002~0.004 V, 

indicating that there is no real added value of performing geometry optimizations with implicit 

solvation, not to mention are computationally more demanding. 

Based on the findings above, we evaluate the performance of eight other DFT functionals without 

considering geometry optimization in the implicit aqueous phase. In Fig. 2d and Supporting 

Information Fig. S2, a summary of the performance of all DFT functionals considered in this work is 

presented in the form of bar plots for R2 and RMSE, respectively. When compared under the same set 

of approximations, it can be observed that, with the exception of LDA, all other functionals have 

relatively similar performance. The functionals PBE0/PBE0-D3, HSE06 and M08-HX have all very 

similar performance (R2~0.984, RMSE~0.043 V) when using implicit solvation on a gas phase 

optimized geometry, which is followed by the hybrid functional B3LYP/B3LYP-D3 and then the GGA 

functionals (PBE/PBE-D3 and BLYP/BLYP-D3). The addition of D3-dispersion corrections makes 

hardly any difference on either of the hybrid or the GGA functional calculated results. For all further 

comparisons in this work, we choose PBE as the benchmark DFT functional amongst the compared 

DFT functionals, as it offers the best compromise between prediction accuracy and computational 

expense. It must be noted that in this work, the different DFT functionals are compared purely on the 

basis of their performance in predicting measured potentials. Functionals constructed with higher 

degrees of empiricism, such as the Minnesota Density Functionals,67 are aimed at producing better 

values of a chosen set of physically observable properties. In this regard, it is not surprising that the 

M08-HX functional performs the best amongst the compared functionals, as it is very heavily 
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parametrized to show high performance for thermochemistry. However, it must be kept in mind that 

such heavily parametrized functionals tend to produce less accurate electron densities than the ones 

with little to no empiricism in their design, such as the PBE functional.62  

 

 

Fig. 2 Performance comparison of different DFT exchange-correlation functionals for prediction of 

experimentally measured redox potentials, 𝐸V-W/ . The scatter plots (a), (b) and (c) show the linear 

correlation of the DFT calculated energy difference, D𝐸,-.EFG , versus 𝐸V-W/ , for three representative 
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functionals: (a) PBE, (b) B3LYP and (c) M08-HX. The bar plot (d) shows the RMSE values for all 

the functionals considered in this work. In all subplots of this figure, the color green represents both 

OPT and SPE in gas phase, the color orange represents OPT in gas phase followed by SPE with SOL 

(i.e., including implicit aqueous solvation) and color blue represents both OPT and SPE with SOL. 

The same information is tabulated in the legend. The horizontal dashed green line represents the PBEg 

(RMSE = 0.072 V, R2 = 0.954) benchmark, the horizontal dashed blue line represents the PBEaq 

(RMSE = 0.053 V, R2 = 0.975) benchmark, and the horizontal dashed orange line represents the PBEs 

(RMSE = 0.051 V, R2 = 0.977) benchmark. 

 

Discussion: It can be noted that using DFT with LDA density functional is clearly not as good as the 

GGA- and hybrid-level density functionals. Additionally, there is a significant impact on prediction 

accuracy due to the inclusion of the effect of implicit solvation in the calculation of D𝐸,-.EFG. Such an 

effect can be attributed to a better accounting of the -OH groups’ interaction with the surrounding 

aqueous environment in the hydroquinone products.34 Surprisingly, optimizing geometry with implicit 

solvation slightly worsens the prediction accuracy. This observation can be attributed to multiple 

factors. First, it is possible that the PBF solvation model is not accurate enough to improve the gas 

phase geometry. Secondly, there might be a serendipitous cancellation of errors when using the gas 

phase geometry that is affected by the changes in the geometry due to the implicit solvation model in 

use. Additionally, D𝐸,-.  is used as an approximation for D𝐺,-./ , and accounting for the ignored 

pressure-volume and entropy terms from Eq. (4) might result in better prediction accuracy when 

optimizing geometry implicit solvation. In the work of Kim et al.,34 it was shown that the reduction 

potentials of Anthraquinones in acidic aqueous solutions are strongly influenced by specific 

interactions with molecules in the solvent environment. In aqueous solution, they found that using 

DFT (ωB97X-D/6-31G*) with implicit solvation (PCM(Bondi)) for the geometry optimization yields 

good results, except for the redox couples that have strong intramolecular hydrogen bond interactions. 
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They evaluated a total of 19 Anthraquinones and identified a mean absolute deviation (MAD) of 0.194 

V for three outliers that showed strong intramolecular hydrogen bond interactions. This value was 

more than five times the MAD value of the remaining 16 redox couples (0.037 V). Further, they 

showed that QM/MM calculations (with the TIP3P force field for explicit water molecules) can 

alleviate the overestimation and lead to a more balanced treatment of the solute-solvent interactions. 

Accordingly, using a QM/MM model, the correlation between theory and experiment had a MAD of 

0.033 V. In the current work, we performed a similar analysis of MAD values in our calibration set 

with 43 molecule pairs. We found that there are only 12 molecules, with IDs: 1, 2, 3, 4, 5, 6, 8, 9, 16, 

35, 37 and 39 from Table S1 in the Supporting Information, without any possibility of strong 

intramolecular hydrogen bond interactions due to the neighboring positions found in the hydroquinone 

versions of the molecules. Surprisingly, we found that when using implicit aqueous solvation during 

geometry optimization, the MAD in prediction of redox potentials was 0.039 V for the 12 molecules 

and 0.037 V for the remaining 31 molecules. We note that these MADs are very similar and the 

difference between the two groups is only in the third decimal digit. Therefore, we cannot confirm that 

the explanation provided by Kim et al. also applies to the methods used in this work. At the same time, 

it must be noted that Kim et al. used only Anthraquinones (3-ring molecules) for their analysis, whereas 

this work considers a wide variety of quinone molecules (from 1 to 3 rings), including those with the 

C=O groups at the 1,2 positions on the compounds. Further, Kim et al. employed the PCM (Bondi) 

implicit solvation model, which is different from the PBF model used in the current work. These 

differences, as well as the difference in the calibration data, make it hard to ascertain the exact origin 

of the disparities between this work and the work of Kim et al. 

Another important aspect of the calibration of molecules that needs to be considered is the effect of 

ionization of sulfonic acid groups, as they are prone to dissociation in aqueous media. In the calibration 

set of 43 molecule pairs used in the current work, there are 18 molecules, with IDs: 7, 8, 9, 10, 11, 12, 

13, 30, 31, 32, 33, 34, 35, 36, 37, 41, 42 and 43 from Table S1 in the Supporting Information, which 
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contain –SO3H groups. In the framework of the best performing scheme, i.e. PBEs, we found that the 

MAD values for these 18 molecules is 0.047 V, which is ~50 % higher than the MAD of the remaining 

25 molecules (0.032 V). Clearly, the ionization of sulfonic groups has adverse effects on the prediction 

accuracy. Although the effect is not significant from the perspective of HTCS, we recommend the 

inclusion of explicit water molecules, such as in a QM/MM type of formalism, when highly accurate 

values of redox potentials of the quinones with sulfonic groups are demanded.34 

The calibration equation for the prediction of redox potential vs SHE from energy difference of 

reaction corresponding to the PBEs ( º T) method is: 

 

𝐸/ = −0.409[D𝐸,-.EFG] − 0.193                                                                                                                                            (7) 

 

The performance metrics of all the DFT functionals and their variations considered in this work can 

be found on the Supporting Information Table S2.                                                                                        

 

3.2. Comparison of lower level methods: FF, SEQM and DFTB 

After establishing the effectiveness of DFT-based methods as a benchmark, we now turn to other, 

computationally less expensive methods of optimizing geometries and estimating energies of 

molecules. As summarized in Fig. 3 and Supporting Information Fig. S3, we employ different lower 

level methods such as FF, SEQM and DFTB for geometry optimization. Using these optimized 

structures, we calculate the D𝐸,-.G  from SPEs using the following three schemes: 

I. SPE values are taken directly at the same lower level method after geometry optimization in 

the gas phase and in the aqueous phase. It must be noted that aqueous phase geometry 

optimization is performed only using FF and SEQM (but not DFTB, as explained in the 

Computational Workflow). 
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II. SPE values are taken from gas phase DFT calculations using three different functionals (PBE, 

B3LYP and M08-HX), on the molecular geometries obtained through scheme (I). 

III. SPE values are taken from DFT calculations with implicit solvation using three different 

functionals (PBE, B3LYP and M08-HX), on the molecular geometries obtained through 

scheme (I). 

Several observations can be made on comparing the RMSE and R2 values across the various 

methodological combinations. 

Comparisons within scheme (I): When comparing redox potential predictions from SPE values in 

scheme (I) to the PBEg benchmark (R2 = 0.954, RMSE = 0.072 V), we make the following observations. 

Please note that the subscript ‘g’ represents gas phase and subscript ‘aq’ represents aqueous phase 

geometry optimization at a given level of theory.: 

• In Fig. 3a, the gas phase (OPLS3eg: R2 = 0.596, RMSE = 0.213 V) and aqueous phase 

(OPLS3eaq: R2 = 0.060, RMSE = 0.325 V) calculated FF SPE are far worse than PBEg. Just as 

observed for the case of DFT methods, aqueous phase FF geometry optimization yields worse 

results than its gas phase counterpart. Clearly the, internal energy predictions at the FF level 

are quite inaccurate.  

• In Fig. 3a, the gas phase SEQM methods show significantly better performance compared to 

the FF method, and are close to the PBEg benchmark. Of note are the AM1g (R2 = 0.899, RMSE 

= 0.107 V) and PM7g (R2 = 0.906, RMSE = 0.103 V) methods. The aqueous phase SEQM 

geometry optimization with the COSMO solvation model results in very similar prediction 

accuracy to their gas phase counterparts for both AM1aq (R2 = 0.886, RMSE = 0.113 V) and 

PM7aq (R2 = 0.915, RMSE = 0.098 V) SEQM methods.  

• In Fig. 3a, the gas phase DFTB methods perform already as good as the PBEg benchmark with 

parameter sets DFTB-D3g (R2 = 0.953, RMSE = 0.072 V) and GFN1-XTBg (R2 = 0.944, RMSE 

= 0.079 V).  
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Comparisons within scheme (II): When comparing predictions from SPE values in scheme (II) to 

the corresponding PBEg benchmark (R2 = 0.954, RMSE = 0.072 V), we make the following 

observations:  

• In Fig. 3b (solid bars), the performance of gas phase DFT calculations of SPE on gas phase FF 

geometries (OPLS3eg: R2 = 0.947, RMSE = 0.077 V) is significantly better than their 

counterparts from scheme (I). The same can be observed for the gas phase DFT calculations of 

SPE using aqueous phase FF geometries (OPLS3eaq: R2 = 0.939, RMSE = 0.083 V). However, 

even after performing DFT calculations of SPE, OPLS3eaq performs worse than OPLS3eg. 

• In Fig. 3b (solid bars), the gas phase DFT calculations of SPE on gas phase SEQM geometries 

also show improved prediction accuracy with respect to their counterparts from scheme (a). 

The two best SEQM methods are AM1g (R2 = 0.963, RMSE = 0.064 V) and PM7g (R2 = 0.954, 

RMSE = 0.072 V), with performance equaling the PBEg benchmark. Gas phase DFT 

calculations of SPE on aqueous phase SEQM geometries resulted in worse predictions for both 

AM1aq (R2 = 0.956, RMSE = 0.070 V) and PM7aq (R2 = 0.943, RMSE = 0.080 V), though they 

are still better with respect to their counterparts from scheme (I). 

• In Fig. 3b (solid bars), the gas phase DFT calculations of SPE on gas phase DFTB geometries 

also show slightly improved prediction accuracy and are slightly better than the PBEg 

benchmark with parameter sets DFTB-D3g (R2 = 0.960, RMSE = 0.067 V) and GFN1-XTBg 

(R2 = 0.949, RMSE = 0.075 V).  

Comparisons within scheme (III): Upon including implicit solvation effects during DFT calculations 

of SPE, the performance of the lower level theories versus the corresponding PBEs benchmark (R2 = 

0.977, RMSE = 0.051 V) can be described as follows (please note that the subscript s represents gas 

phase geometry optimization but with implicit solvation included while calculating SPE with DFT):  

• In Fig. 3b (dashed bars), the RMSE values are lower by 0.02 V for FF optimized geometries 

both from the gas (OPLS3eg: R2 = 0.969, RMSE = 0.059 V) and the aqueous phase (OPLS3eaq: 
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R2 = 0.964, RMSE = 0.063 V), in comparison to their counterparts from scheme (II). 

Surprisingly, the performance of these methods is found to be close to the PBEs benchmark. 

This indicates that even though the thermochemistry with FF obtained energies is not accurate 

(as observed in Scheme I), the geometries from FF for quinone molecules is good enough for 

performing DFT SPE calculations. 

• In Fig. 3b (dashed bars), the prediction accuracy from SEQM optimized geometries is 

improved when compared to their counterparts in scheme (II). The two best SEQM methods 

are AM1g (R2 = 0.969, RMSE = 0.059 V) and PM7g (R2 = 0.976, RMSE = 0.051 V). Yet again, 

the predictions from aqueous phase SEQM geometries resulted in slightly worse predictions 

for both AM1aq (R2 = 0.961, RMSE = 0.066 V) and PM7aq (R2 = 0.962, RMSE = 0.065 V). 

The performance of these SEQM methods is interestingly close to the PBEs benchmark. 

• In Fig. 3b (dashed bars), the prediction accuracy from DFTB optimized geometries improves 

when compared to their counterparts in scheme (II). Both sets of DFTB parameters, the DFTB-

D3g (R2 = 0.978, RMSE = 0.049 V) and GFN1-XTBg (R2 = 0.977, RMSE = 0.051 V) perform 

better than the PBEs benchmark methods. 
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Fig. 3 Performance comparison of lower level methods: FF, SEQM and DFTB. (a) shows the RMSE 

for SPE values calculated at these three different levels of theory. Similarly, (b) show the RMSE for 

the DFT calculated SPE data on the geometries obtained from these three different levels of theory. In 

(b), the solid bars show the SPE results without the implicit solvation effect whereas the dashed bars 

show the results with the implicit solvation effects taken into account. The dashed green horizontal 

line represents the PBEg (R2 = 0.954, RMSE = 0.072 V) benchmark and the dashed orange horizontal 

line represents the PBEs (R2 = 0.977, RMSE = 0.051 V) benchmark. 

 

Discussion: All the variations in computational methods that are used for geometry optimization and 

SPE calculation, with and without implicit solvation effects, are found to influence prediction accuracy 
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to varying degrees. First, for all methods, the gas phase DFT calculation of SPE leads to significant 

improvements in prediction accuracy. This also implies that the computationally costly DFT geometry 

optimizations are hardly necessary for a first order screening of large numbers of candidate molecules. 

Instead, either of the SEQM or DFTB based methods can be employed for the task of gas-phase 

geometry optimizations. Secondly, SPE calculations employing the PBE density functional are 

generally better performing than with the computationally more expensive B3LYP and M08-HX 

functionals. Thirdly, for all the considered lower level methods, the inclusion of an implicit solvation 

model during the DFT calculation of SPE leads to improved prediction accuracies. Finally, these 

results confirm once again that the effect of geometry optimization in the aqueous phase is minimal 

and it often results in a slightly worse prediction accuracy. The calibration equation for the prediction 

of redox potential vs SHE from energy difference of reaction corresponding to the DFTB-D3g ( º T) 

method is: 

 

𝐸/ = −0.447[D𝐸,-.EFG_] − 0.823                                                                                                                                            (8) 

 

The exact performance metrics of all the lower level methods and their variations considered in this 

work can be found in the Supporting Information Table S3-S9. 

 

3.3. Computation time vs. prediction accuracy 

In addition to determining the most accurate method for predicting the redox potentials of electroactive 

quinones, a major aim of the current study is to find out the methods that are most suited for both 

standalone and HTCS studies for which speed and accuracy of computations are highly desirable. This 

is particularly important when the robust DFT calculations become impractical for a study on a very 

large chemical space (103 ~ 106) of new candidate compounds. Thus, knowing the trade-offs between 

computational accuracy and expense is essential for an efficient screening of large chemical spaces of 
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candidates. For a comparison of computation time of the various methods considered here, we selected 

a representative method for each level of theory, namely, OPLS3e (FF), PM7 (SEQM), DFTB-D3 

(DFTB) and PBE (DFT). Next, noting that the geometry optimizations are usually the most 

computationally demanding processes, we optimized the geometries of all the molecules in the gas 

phase using these representative methods. We added the FF geometry optimization time to all other 

methods’ calculation times, since we use it as the base method for performing all other geometry 

optimizations (as explained in the Computational Workflow). The averaged computation time 

calculated from five different runs, which showed no significant variation, is used to describe the 

relation between RMSE values from each of these methods versus their computational expense on a 

logarithmic scale, as shown in Fig. 4a. All of the benchmark simulations are performed on a single 

core of the Intel Core i9-9960X 3.10GHz CPU with Ubuntu 18.04 Bionic Beaver as the operating 

system. According to Fig. 4, DFTB-D3 is almost as accurate as the PBE method in predicting the redox 

potentials, and it requires substantially (~103 times) less computing time. Also noting that the DFTB-

D3 has previously been applied for the calculation of large systems at relatively low computational 

costs and with similar accuracies to that of the higher level (i.e. DFT-GGA functionals) methods,71 we 

find that for the small redox compounds the DFTB-D3 method provides the best compromise between 

prediction accuracy and computational expense. Accordingly, for HTCS studies that are aimed work 

on extremely large chemical spaces of molecules, we suggest DFTB-D3 computations on OPLS3e 

optimized geometries as a feasible strategy to accelerate the virtual screening of compounds.  

 

3.4. The effects of geometry optimization at various levels of theory and implicit solvation 

For the set of methods considered in Section 3.3, we also first quantify the effect of gas phase DFT 

calculation of the SPE by using the geometries that are obtained from lower level theories. As shown 

in Fig. 4b (solid bars), the improvement in prediction accuracy, Δe RMSE, is most significant for 

geometries optimized by OPLS3e (Δe RMSE = 0.136 V), followed by PM7 (Δe RMSE = 0.031 V), 



 24 

and lastly by DFTB-D3 (Δe RMSE = 0.005 V). These results indicate that the DFTB based methods 

do not only predict the correct reaction energies but they as well predict the geometries that are close 

to that of DFT calculations. For the same set of methods, we also investigate the relationship between 

differences in molecular geometries and observed values of Δe RMSE. In order to compare geometries 

from different methods with reference to the gas phase PBE geometry, we employed the structure 

superposition tool as implemented in the Schrödinger Materials Science Suite (version 2019-2) and 

obtained the average RMSD (in Å) of all the 86 reactant and product molecules under various atomic 

constraints as shown in Table 2. The RMSD values have been calculated for all atoms, all non-

hydrogen atoms, and carbon atoms in the rings.  

 

Table 2. The difference in the optimized molecular geometry using various calculation methods with 

reference to the PBE (DFT) geometry under various atomic constraints. The average RMSD values 

for the 86 molecules are shown in units of Å. 

Method All atoms Non - hydrogen Only ring carbon 
DFTB-D3 0.135 0.102 0.043 

PM7 (SEQM) 0.132 0.098 0.050 
OPLS3e (FF) 0.148 0.120 0.052 

   

First, it can be observed that under all constraints OPLS3e has the largest average RMSD with respect 

to PBE, which is not surprising. Secondly, it is apparent that when considering all atoms or only heavy 

atoms, PM7 and DFTB-D3 are very similar in geometrical difference with regards to PBE. Thirdly, it 

is surprising to note that DFTB-D3, while the most accurate of the all lower level methods, does not 

necessarily provide the geometry closest to PBE (i.e. lowest average RMSD) under all types of atomic 

constraints. However, when considering only the carbon atoms in the rings, the DFTB-D3 produces 

structures that are closest to PBE. Given that the cyclic carbon atoms are a large fraction of the total 

number of atoms, it is possible that being able to represent the geometry of the rings accurately is what 
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gives DFTB-D3 (Δe RMSE = 0.005 V) a clear advantage over PM7 (Δe RMSE = 0.031 V) and OPLS3e 

(Δe RMSE = 0.136 V) in terms of prediction accuracy in redox potential.  

Next, we quantify the improvement in prediction capability of the methods, with respect to gas phase 

DFT calculation of SPE, due to the inclusion of the implicit solvation, Δs RMSE (dashed bars), models. 

As shown in Fig. 4b, the Δs RMSE is very similar at each level of theory. The lowering in RMSE 

values is 0.018, 0.021, 0.018, and 0.021 V for OPLS3e, PM7, DFTB-D3, and PBE, respectively. These 

results imply that the amount of improvement due to the inclusion of the implicit solvation is 

independent of the source of geometry. Nevertheless, the improvement in prediction accuracy is 

evident for all levels of theory. These findings would be particularly useful, for instance, when building 

machine learning models for the prediction of solvation energies directly from the cheminformatics-

based descriptors and without the need for explicit knowledge of the 3D geometries of compounds. 

 

 

Fig. 4 (a) Variation of computation time for gas-phase geometry optimization vs the corresponding 

RMSE values from the four representative methods of each level of theory, namely OPLS3e (FF), 

PM7 (SEQM), DFTB-D3 (DFTB), and PBE (DFT). The computation times are calculated by 

averaging over the total number of electrons, atoms, and molecules in the calibration set. The SPE 

values are taken directly after optimization at the corresponding level of theory. (b) Bar plot for 

lowering in RMSE values, Δ[RMSE], due to gas phase DFT calculation of SPE and inclusion of 
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implicit solvation. Solid bars, Δe, show the impact of DFT calculation of SPE on geometries from 

lower levels of theory. Dashed bars, Δs, show the impact of the including implicit solvation during 

DFT calculations of SPE. 

 

4. Conclusions 

We developed a systematic computational approach involving one FF, nine SEQM, two DFTB, and 

eleven DFT methods, as well as their combination with implicit solvation environments, to predict the 

redox potentials of 43 different experimentally measured quinone-based electroactive molecules 

collected from four sources. The reaction energy difference between the reactant and product is used 

as an approximation for the Gibbs free energy of proton-coupled electron transfer redox reactions. All 

the DFT functionals are found to perform well with RMSE values within common experimental errors 

(~0.1 V). To evaluate the performance of the lower level methods, the PBE functional is chosen as an 

effective benchmark theoretical model, as it provides a good compromise between accuracy and 

computational cost when compared to other electronic structure methods. It is shown that the inclusion 

of implicit solvation during DFT calculation of SPE improves the prediction accuracy noticeably 

(~0.025 V). Surprisingly, geometry optimization in the implicit aqueous phase is found to have no 

positive effect on prediction accuracy. The prediction accuracies of the lower level methods considered 

in this work are not as good as DFT, with the exception of DFTB that is found to be at par with DFT. 

DFT calculations of SPE using gas phase geometries obtained by FF and SEQM methods lead to 

significantly improved results, thus showing that the quantum chemical treatment of the electronic 

structure for the calculation of SPE is beneficial. This also implies that the expensive DFT geometry 

optimizations are not always necessary, for instance, in case of a first-order screening of millions of 

candidate molecules. The inclusion of implicit solvation during DFT calculation of SPE leads to a 

similar improvement across all the methods considered in this work. We recommend the DFTB-based 

methods as ideal approaches from the perspective of the trade-off between computational expense and 
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prediction accuracy. Eq. (7) and Eq. (8) corresponding to the PBEs and DFTB-D3g methods, 

respectively, can be applied directly to predict the redox potentials of quinone-based molecules vs SHE 

under the same set of approximations as used in the current work. Further, the strategy of optimizing 

geometry at a lower level of theory followed by single point energy calculation with DFT can be used 

to quickly generate a large amount of data which can be useful for building generative-predictive 

machine learning models for the discovery of useful electroactive molecules.  
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