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Abstract 

The work is composed of python based programmatic tool that automates the dry lab drug 

discovery workflow for coronavirus.  Firstly, the python program is written to automate the 

process of data mining PubChem database to collect data required to perform a machine 

learning based AutoQSAR algorithm through which drug leads for coronavirus are generated. 

The data acquisition from PubChem was carried out through python web scrapping 

techniques.  The workflow of the machine learning based AutoQSAR involves feature 

learning and descriptor selection, QSAR modelling, validation and prediction. The drug leads 

generated by the program are required to satisfy the Lipinski’s drug likeness criteria as 

compounds that satisfy Lipinski’s criteria are likely to be an orally active drug in humans. 

Drug leads generated by the program are fed as programmatic inputs to an In Silico 

modelling package to computer model the interaction of the compounds generated as drug 

leads and the coronaviral drug target identified with their PDB ID : 6Y84. The results are 

stored in the working folder of the user. The program also generates protein-ligand 

interaction profiling and stores the visualized images in the working folder of the user. Select 

drug leads were further studied extensively using Molecular Dynamics Simulations and best 

binders and their reactive profiles were analysed using Molecular Dynamics and Density 

Functional Theory calculations. Thus our programmatic tool ushers in a new age of automatic 

ease in drug identification for coronavirus.  

mailto:bengeof@gmail.com


1. Introduction  

PubChem is a data repository of chemical compounds, their properties and biological 

activities [1] which can be programmatically accessed through web API packages such as 

PUB-REST and python web scrapping techniques [2,3]. Quantitative Structure-Activity 

Relationship(QSAR) studies are statistical based studies through which drug leads are 

generated which provide cost cutting advantages in testing and drug discovery for the 

pharmaceutical industry [4-7]. However the data set required to perform a QSAR study is 

curated by researchers before performing the statistically study. Our programmatic tool 

automates this process of data acquisition required to perform a QSAR study to generate drug 

leads for coronavirus through programmatic access of PubChem database and python web 

scrapping techniques [8,9]. The workflow of the QSAR study was also automated through a 

machine learning based AutoQSAR algorithm. The workflow of a machine learning based 

AutoQSAR algorithm involves feature learning and descriptor selection, QSAR modelling, 

validation and prediction [10-12]. The drug leads generated by the program are required to 

satisfy the Lipinski’s drug likeness criteria as compounds that satisfy Lipinski’s criteria are 

likely to be an orally active drug in humans [13]. Drug leads generated by the program are 

fed as programmatic inputs to an In Silico modelling package to computer model the 

interaction of the compounds generated as drug leads and the coronaviral drug target 

identified with PDB ID : 6Y84. The coronaviral drug targets identified from the literature 

was the main protease of SARS-CoV 2 (PDB ID : 6Y84) [14,15]. The results of the In Silico 

modelling are stored in the working folder of the user. The program also generates protein-

ligand interaction profiling and stores the visualized images in the working folder of the user. 

Thus our programmatic tool ushers in the new age automatic ease in drug identification for 

coronavirus through a fully automated QSAR and an automated In Silico modelling of the 

drug leads generated by the AutoQSAR algorithm.                                                                                                                

 Our work is distinguished from previous attempts of virtual screening of large ligand 

libraries in way that we employ programmatic techniques as compared to other works that do 

not [16]. However as compared to recent data drive machine learning based approaches to 

drug discovery [17,18] that use pre-downloaded data sets we deploy a real time data mining 

which makes a case for a dynamic approach to drug lead generation and the results of the 

program are reflective of PubChem data library at the instant the program is run and thus 

approaches drug discovery from a dynamic approach in an age Big Data and constantly 

growing data libraries. We also add to the existing richness of the novelty of methods [18-20] 



in data driven drug discovery in the following way. Our programmatic tool couples the drug 

leads generated by the AutoQSAR algorithm as programmatic inputs to an In Silico 

modelling package and programmatically profiles the protein-ligand interaction and stores the 

results in the working folder of the user. While adding to the existing richness in data driven 

machine learning based drug discovery methods, our work also adds new scientific findings 

to existing literature as the coronaviral drug target chosen for the study have been approached 

by data driven machine learning based methods.  

2. Methods and Techniques   

The workflow of the programmatic tool implementing programmatic data mining, 

AutoQSAR and automated In Silico modelling for identification of drugs against coronavirus  

is shown in Fig.1. The first process involved in programmatic workflow is the data mining of 

PubChem database to automate the process of data acquisition to implement a machine 

learning based AutoQSAR algorithm that automates the process of drug lead generation for 

coronavirus. The programmatic access to PubChem is accomplished through python 

commands [8, 9]. The program fetched activity data for reported for compounds on 

PubChem. At the instant we ran the program, data availability of PubChem provided us with 

activity data of 111 compounds reported to be active against coronavirus. The molecular 

descriptors for the active compounds was also programmatically fetched. The molecular 

descriptors include Molecular Weight, Heavy Atom Count, XLOGP, Complexity, Hydrogen 

bond Acceptor Count, Monoisotopic Mass, Rotatable Bond Count and Topological Surface 

Area.  The next process in the workflow involves implementing the machine learning based 

AutoQSAR algorithm for drug lead generation.  The drug leads are generated by the 

AutoQSAR algorithm through the workflow that involves feature learning, descriptor 

selection, QSAR modelling, validation and prediction [10-12]. QSAR models are usually  

linear or non-linear statistical correlation between the activity and molecular descriptors. 

While the total number of descriptors is 8, the program builds a QSAR model with every 

possible combination of descriptors by generating all possible combinations of descriptors  

where n = 8 and r = 2, 3, 4, 5, 6, 7 and nCr in such a case gives a total of 256 combinations of 

descriptor selection for the QSAR model. The program builds a linear and non-linear 

regression based QSAR model with all 256 possible combinations of descriptors and selects 

the QSAR with highest R2 value or R2 value closest to 1. The highest R2 value of R2 = 0.88 

was achieved for a non-linear regression based QSAR model which involved descriptors 

Molecular Weight, XlogP and Monoisotopic Mass.  



 Based on the validated QSAR model PubChem compound library is screened for 

drug lead generation based on the validated QSAR model. From the PubChem library the 

program identified 1355 compounds which are structurally associative to the 111 compounds 

that are active against coronavirus. The molecular descriptors of the 1355 compounds was 

collected by the program and the validated QSAR model was used to predict the activity 

against coronavirus for the 1355 compounds. The program prints out the top 50 compounds 

and identifies them as drug leads. The drug leads generated by the program were also 

required to satisfy the Lipinski’s drug likeness criteria [13].  

Running the program requires no more programming knowledge than running the python 

executable file in python 3 environment in Linux OS along with some python dependency 

packages installed such as: 

pandas 

biopandas 

numpy  

matplotlib 

scikit-learn 

seaborn 

selenium (along with selenium’s driver for firefox browser)  

 

Other additional dependencies for automated In Silico modelling  

openbabel 2.4.1  

mgltools  1.5.4 

autodock-vina 1.1.2-4 

 

The program is hosted, maintained and supported at the GitHub repository link given below 

 

https://github.com/bengeof/Programmatic-tool-to-automate-the-drug-discovery-workflow-for-

coronavirus  
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Fig. 1 – Workflow of the programmatic tool to automate the drug discovery for coronavirus   

 

 

The running of the program requires a stable internet connection and the run time of the 

program is expected to be a few hours however it is expected to vary based on CPU and 

internet speed. The program prints out the PubChem CIDs of Top 50 compounds identified as 

drug leads for coronavirus drugs  

 

The crystal structure of the SARS-CoV 2 main protease was downloaded from the RCSB-

PDB database [21] with PDB ID : 6Y84. The ligand and the protein files were prepared for 

AutoDock process using AutoDockTools(ADT) scripts and the protein drug target files are to 

be kept in the working folder of the user and can be downloaded from the GitHub repository. 

The structure of the drug lead compounds generated by the program were programmatically 

downloaded from PubChem and programmatically prepared for molecular docking using 

AutoDockTools ligand preparation scripts. The virtual screening using AutoDock Vina 



[22,23] was initiated programmatically through the program and the interaction between the 

drug targets proteins and lead drug compounds also automatically profiled and the visualized 

image of the protein-ligand interaction is saved in the working folder of the user by the 

program [24,25].  

 

Molecular Dynamics study of select drug candidates  

Select protein-ligand complexes associated with structurally diverse ligands having 

lowest binding energy obtained  from AutoDock-Vina screening were selected for extensive 

molecular dynamics simulation studies and subsequently for molecular mechanics 

generalized-born surface area (MMGBSA) with pairwise decomposition calculations. The 

ligands were cut out from the complexes and optimized using AmberTools18 from Amber18 

suite [26], followed by partial charges calculation according to AM1-BCC level of theory 

[27]. The topology and input coordinates were created using tleap. The protein was described 

using ff14SB force field, ligand using GAFF and water molecules by TIP3P. The system was 

placed inside truncated octahedral box with 16 A boundary, solvated and neutralized. 

Minimization encompassed 20000 steps, 10000 steepest descent algorithm and the rest using 

conjugate gradients.  The heating encompassed 50 to 300 K increase in the temperature and 

lasted 100 ps. Restraints on protein backbone of 4 kcal/mol*Ao were applied. The production 

run were performed under NPT ensemble for 20 ns, out of which 10 ns were truncated for 

equilibration purposes. The simulation runs were put under periodic boundary conditions, 

non-bonded interactions were evaluated with the Particle Mesh Ewald method with cut-off of 

9 Ao. Langevin thermostat and Monte Carlo Barostat were used for temperature and pressure 

maintenance [28]. All described simulations were done using pmemd module of AMBER 18, 

utilizing CPU for minimization and GPU for heating, equilibration and production. For each 

ligand, the simulations were repeated ten times. Subsequently, the trajectories were merged 

and clustered. The clusters encompassing ligand within the binding cavity were selected for 

MMGBSA calculations and then pairwise decomposition. The calculation were performed on 

the Intel® CoreTM i9-9900KF CPU @ 3.60GHz x 16 with 32GB @ 2666MHz with GeForce 

RTX 2070 SUPER/PCIe/SSE2 on the Ubuntu 20.04 Focal Fossa. 

 

DFT study of electrostatic topology and reactive sites of select compounds  

Density Functional Theory is used as approximation techniques to solve the many-

body Schrodinger equation system to study the electronic properties of atoms, molecules and 

compounds [29]. The energy functional which is composed of potential, kinetic and 



exchange-correlation parts is minimized to produce the configuration of the system 

corresponding to minimum energy. The DFT problem was solved using the ORCA package 

at a level of theory which involved using the B3LYP exchange correlation function [30]. The 

multiwfn program was used to visualize the results and Electrostatic Potential(ESP), Electron 

Locationzation Potential (ELF), Localized Orbital Locator (LOL) plots were generated and 

used to study the electrostatic topology and reactive sites of select compounds identified as 

strong binders to coronaviral drug target [31-34].   

 

3. Results and Discussion  

The python program was run in Python 3 environment with the dependency packages 

mentioned in the methodology section. The program prints out the PubChem CIDs of the top 

60 compounds identified as coronavirus drug leads by the program. This is done by the 

program through  automated programmatic data mining of PubChem database to collect data 

required to perform a machine learning based AutoQSAR algorithm on the dataset to 

generate the drug leads for coronavirus. The drug leads generated by the program for the 

coronavirus are useful to screen PubChem database which is over a billion compounds and 

the generated drug leads are useful to further pursue In Silico, In Vitro and In Vivo testing and 

is expected to save computational and experimental testing costs for the pharmaceutical 

industry.  

The drug leads generated by the program were required to satisfy the Lipinski’s criteria of 

drug likeness as compounds that satisfy the Lipinski’s criteria  are likely to be orally active 

drug in humans. The structure of the compounds identified as drug leads were 

programmatically downloaded from PubChem by the program and they were fed as 

programmatic ligand input files after ligand preparation via ADT scripts to a In Silico 

modelling package used widely known as AutoDock-Vina. Therefore the study of the 

interaction of the drug lead compounds and the SARS-CoV 2 drug target (PDB ID : 6Y84) 

was automated through the programmatic inputs given to AutoDock-Vina in the program. 

The results of the virtual screening for the top 50 drug lead compounds are given in Table 1 

and select images of interaction of the compounds generated as drug leads by the program 

and the coronaviral drug target, main protease (PDB ID : 6Y84) is shown in Fig 2, 3, 4 & 5.  

 

 



Table 1  - Automated Virtual Screening for identifying drugs against coronavirus  

PubChem CID  Drug Target Binding Affinity (Kcal/mol) 

137777 Main Protease of SARS-CoV 2  

( PDB ID : 6Y84 ) 

-5.5 

901295 -6.3 

1580642 -6.5 

2196453 -6.0 

3542734 -5.3 

4363256 -5.9 

5244119 -5.6 

16075059 -6.1 

16202740 -6.0 

16203681 -5.0 

16203682 -5.7 

16203797 -7.0 

16204319 -5.8 

29559485 -6.0 

44589253 -6.3 

47391569 -5.8 

50876798 -5.7 

54178808 -5.1 

61356255 -6.6 

61356261 -6.3 

61356831 -6.1 

61359893 -5.7 

61360057 -6.2 

61727697 -5.9 



61727698 -6.1 

61743020 -5.9 

62024579 -6.4 

62024757 -6.4 

64204896 -5.6 

64205053 -5.0 

64207301 -5.4 

64207509 -4.6 

65101793 -5.1 

65102076 -5.2 

65102365 -5.3 

65237247 -5.0 

67380717 -6.1 

68862352 -6.0 

70485909 -6.1 

75268360 -5.7 

80452260 -5.3 

90975560 -5.6 

91875621 -6.0 

91879629 -6.2 

104453473 -5.3 

130552686 -5.1 

130643811 -5.2 

140338441 -5.9 

142747432 -7.3 

142747435 -7.1 



 

 

Fig 2 – Interaction of drug target and compound with PubChem CID 1580642 

 

Fig 3 - Interaction of drug target and compound with PubChem CID 16203797 

 



Fig 4 - Interaction of drug target and compound with PubChem CID 61356255 

 

Fig 5 - Interaction of drug target and compound with PubChem CID 62024757  

 

Select drug candidates were identified from the fast and automated virtual screening and were 

further studied extensively using computationally more expensive methods such as Molecular 

Dynamics Simulations and Density Functional Theory calculations. The Binding Free Energy 

change was calculated using molecular dynamics simulations and the interacting residues for 

the select drug candidate compounds are given in Table 2 



Table 2 – MD                          

 

  
 

Method Molecular docking Molecular dynamics  

Feature 
Lowest free energy of 

binding ΔG [kcal/mol] 

% of time spent inside 

binding cavity 

Total relative binding 

free energy ΔΔG 

(Generalized-Born) 

[kcal/mol] 

Most important resids (more than -

1 kcal/mol contribution) 

Total relative binding 

free energy ΔΔG 

(Poisson-Boltzmann) 

[kcal/mol] 

1580642 -6.3 83.00% -18.95 ± 3.9 
TRP218, PHE219, LEU220, ASN221, 

ARG222, GLU270, LEU271, ASN274 

-3.64 ± 2.99 

16203797 -7 92.00% -16.6 ± -3.7 
ASN151, ILE152, ASP153, TYR154, 

PHE294, VAL297, ARG298 0.33 ± 5.2 

61356255 -6.6 88.00% -16.9 ± -3.6 
TRP218, PHE219, ASN221, ARG222, 

GLU270, LEU271, ASN274, ARG279 
-2.33 ± 3.33 



Electrostatic topology and reactive site study of the select drug candidates  

The geometry of the select compounds was minimized at B3LYP level theory of DFT 

calculations carried out on ORCA. The minimized geometry of the select compounds is given 

in Fig. 6, 10, 14. The electrophilic and nucleophilic reactive sites of compounds can be 

identified using the Molecular Electrostatic Potential (MEP) map of the compound. The 

reactive site analysis through MEP is complemented by the study of ELF(electron 

localization function) and LOL (localized orbital locator) where the probability of finding an 

electron pair in regions of molecular space is studied using ELF an LOL studies. The white 

regions of the MEP Plot indicate electrophilic region and reg regions indicates nucleophilic 

region. The value of ELF ranges from 0.0 to 1.0, where relatively large values in the interval 

0.5 and 1.0 indicate regions containing bonding and nonbonding localized electrons, whereas 

smaller values (less than 0.5) describe regions where electron are expected to be delocalized. 

High values of ELF are seen around hydrogen atoms while around carbon, chlorine and 

nitrogen atoms, values of ELF are low. The LOL attains large values (greater than 0.5) in 

regions where the electron density is dominated by electron localization. A high localization 

of electrons due to the presence of a covalent bond (a lone pair of electrons) or a nuclear shell 

in that region is indicated by large value in that region [31-34]. Carbon atoms appear in the 

blue region and white regions around hydrogen atoms indicates that electron density exceeds 

the upper limit of colour scale (0.80). The blue regions around few carbon atoms show the 

delocalized electron cloud around it. Red colour around hydrogen and nitrogen atoms show 

the covalent regions. The MEP, ELF and LOL plots of the three select drug candidates are 

shown in Fig. 7,8,9,11,12,13,15,16 & 17 respectively 

 

Fig. 6 – Optimized  geometry of compound with PubChem CID 1580642  



 

 

Fig.7 – MEP plot of compound with PubChem CID 1580642 

 

 

Fig.8 – LOL plot of compound with PubChem CID 1580642 



 

 

Fig. 9 – ELF plot of compound with PubChem CID 1580642 

 

 

 

Fig. 10 -  Optimized  geometry of compound with PubChem CID 16203797 

 



 

Fig.11 – MEP plot of compound with PubChem CID 16203797 

 

 

Fig.12 – LOL plot of compound with PubChem CID 16203797 

 

 



 Fig. 13 – ELF plot of compound with PubChem CID 16203797 

 

 

 

Fig. 14 -  Optimized  geometry of compound with PubChem CID 16203797 



 

Fig.15 – MEP plot of compound with PubChem CID 16203797 

 

 Fig.16 – LOL plot of compound with PubChem CID 16203797 

 



 Fig. 17 – ELF plot of compound with PubChem CID 16203797 

 

 

 

 

Therefore the usefulness of the programmatic tool is demonstrated in reducing the 

computational complexity of virtual screening for identifying drugs against coronavirus 

achieved through programmatic automation of data mining of PubChem to collect data 

required to implement a machine learning based AutoQSAR algorithm for automatic drug 

lead generation for coronavirus. The program requires that the drug leads generated by the 

program are required to satisfy the Lipinski’s drug-likeness criteria. Further, the program 

automates the In Silico modelling of the interaction of the compounds generated as drug leads 

and the drug target of coronavirus and stores the results in the working folder of the user. 

Thus, the program helps achieve a completely ‘hands off’ automation in identifying drugs 

candidates against coronavirus which further has to be examined for drug potential through 

experimental testing such as In Vitro and In Vivo testing.   

 

 



4. Conclusion and future scope  

 Thus the presented work is an attempt to automate the dry lab drug discovery 

workflow of drug discovery for coronavirus by a python program automate the process of 

data mining PubChem database to collect data required to perform a machine learning based 

AutoQSAR algorithm through which drug leads for coronavirus are generated. The data 

acquisition from PubChem was carried out through python web scrapping techniques.  The 

workflow of a machine learning based AutoQSAR involves feature learning and descriptor 

selection, QSAR modelling, validation and prediction. The drug leads generated by the 

program are required to satisfy the Lipinski’s drug likeness criteria. Drug leads generated by 

the program are fed as programmatic inputs to an In Silico modelling package to computer 

model the interaction of the compounds generated as drug leads and coronaviral drug target, 

main protease of SARS-CoV 2 identified with PDB ID : 6Y84. The results are stored in the 

working folder of the user. The program also generates protein-ligand interaction profiling 

and stores the visualized images in the working folder of the user. Thus our programmatic 

tool ushers in the new age automatic ease in drug candidate identification for coronavirus 

through a fully automated QSAR and an automated In Silico modelling of the drug leads 

generated by the AutoQSAR algorithm. The program reduces the computational complexity 

of virtual screening and helps identify best drug candidates to employ computationally more 

expensive methods such as Molecular Dynamics and DFT studies to study binding and 

reactive profiles of select drug candidates. While the compounds identified through the 

automated workflow must be test experimentally by the experimental research community for 

their drug potential against coronavirus, there is still a lot of scope to make the automation 

algorithm more self-aware of technical nuances which will help increase its accuracy in drug 

identification which we bring to the attention of the computational research community for 

their scholarly attention and efforts on the same. 
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