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ABSTRACT

Here are presented technical notes and tips on developing graph generative models for molecular
design. This work stems from the development of GraphINVENT, a Python platform for graph-based
molecular generation using graph neural networks. In this work, technical details that could be of
interest to researchers developing their own molecular generative models are discussed, including
strategies for designing new models. Advice on development and debugging tools which were helpful
during code development is also provided. Finally, methods that were tested but which ultimately
didn’t lead to promising results in the development of GraphINVENT are described here in the hope
that this will help other researchers avoid pitfalls in development and instead focus their efforts on
more promising strategies for graph-based molecular generation.
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1 Introduction

Molecular generative models have emerged as promising
methods for exploring the chemical space through de novo
molecular design [1–15]. Although molecular generative
models have largely focused on string-based approaches,
graph-based approaches have also emerged in the last 2-
3 years [9–21], including a recent approach, GraphIN-
VENT [22], from our group. In GraphINVENT, we intro-
duce graph-based molecular generative models inspired
by the works of Li et al. [9] and Li et al. [10]; the models
use a tiered deep neural network architecture, where graph
neural networks (GNNs) play a key role in learning graph
representations.

GNNs were used as they are powerful architectures for
modeling patterns in graph-structured data. They come
in a variety of flavors, such as message passing neural
networks (MPNNs) and graph convolutional networks
(GCNs). [23–26] GNN-based models have also shown
promise in molecular design applications. [9,10,13,15,22]
However, when it comes to development tools, there is a
lack of practical information surrounding the construction
of molecular graph generative models; for example, things
like why a specific architecture/method was chosen, or if
the authors tried any other methods unsuccessfully, are
rarely, if ever, explained. This motivated the creation of

this text, where choices made during development are de-
tailed in the hopes of helping other researchers developing
their own generative models.

Sections 2 and 3 begin by discussing strategies for select-
ing a generation scheme and a model architecture. This
is followed by a discussion on strategies for solving the
two biggest challenges faced during the development of
GraphINVENT: improving the memory requirements of
jobs (Section 4) and improving GPU utilization (Section
5). Details on methods used are discussed, noting specific
functions and schemes that were tried but failed, in Sec-
tion 6. Lastly, tips on development tools are provided in
Section 7.

2 Designing a generation scheme
In building a generative model, the first step is designing
an action space for how graphs will be constructed. The ac-
tion space will determine how the molecule is build, such
as a single atom at a time (atomistic) or many atoms at a
time (fragments). As each additional action required to
build a molecule adds computational expense to a model,
it is important to choose actions which suit the problem.
Commonly, when representing molecules as graphs, the
nodes represent individual atoms in the graphs, and the
pairwise edges represent bonds. Nonetheless, this doesn’t
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have to be the case; for example, molecular generative
models have been developed where a single node in a
graph can represent a group of atoms [11, 15].

In GraphINVENT, the action space is split into three atom-
istic actions: add, connect, and terminate. The add action
adds a new node and connects it to the graph with a new
edge. The connect action connects two existing nodes in
the graph. The terminate action ends the graph generation.
These actions, encoded as vectors, then become the target
“properties” to fit during training, and are the properties
which are sampled during the graph generation process.

However, one can imagine splitting up the action space
such that nodes and edges are added in separate actions, or
such that a single action can add more than a single node.
As GraphINVENT was to be applied to small molecule
generation, an atomistic approach for building graphs a
single node/edge at a time was a good way to sample chem-
ical space while minimizing unwanted bias. However, it is
not necessary to split the action space as in GraphINVENT.
For example, if the goal is to generate large molecules, it
might be desirable to add many nodes at once (as in Jin et
al. [15]) because the number of actions required to build
any molecule thus become fewer, and the models can build
large molecules faster.

One can also incorporate elements of recurrence in design-
ing the action space; one example of how to do this is given
by Li et al. [10]. Recurrence could also be applied during
each action e.g. selecting the add action leads to another
network for predicting the atom type to add, which then
leads to another network for predicting the formal charge
of the new atom, etc. However, to our knowledge this has
not yet been done for molecular generation.

Once the action space is determined, the training data must
be processed in such a way that the model can build each
of these atoms using the defined actions. In GraphIN-
VENT, this is done via a separate preprocessing phase (see
Sections 4 & 5), but this could also be done on-the-fly.

3 Selecting a network architecture

Selecting an architecture for graph generative models
means anticipating what class of models will perform best,
while also taking into consideration other factors e.g. if
chemical rules will need to be hard-coded into the model,
how many hyperparameters will need to be tuned, etc.

A GNN architecture was eventually selected for GraphIN-
VENT due in part to the success of GNNs in recently
published graph generative models, and in part due to the
good performance of GNNs in molecular property predic-
tion tasks [23, 27–29]. Molecular graph generation can
also be framed as a complex property prediction problem,
where target “property” for a given input graph becomes
the correct action for building a graph. Based on previous
work [9, 10], a tiered approach to molecular graph genera-
tion was selected, where a GNN is first used to generate
node and graph embeddings, followed by a second network

which converts the said node and graph embeddings into
properties.

Besides exploring a variety of GNNs, different architec-
tures were also experimented with in the second (and final)
block of the networks. This final block is what takes the
latent node and graph embeddings and returns the target
actions. This is described in detail below.

3.1 Model architecture
The models in GraphINVENT consist of two blocks:

1. a GNN block

2. a global readout block.

The output of the first block is used as input to the second
block. Implementing various GNNs in the GNN block
was straightforward using the MPNN framework, as one
can easily experiment with different message passing and
message update functions. More challenging was finding
a suitable global readout block, as having a sub-optimal
block here leads to models which generate too many invalid
structures (even if the initial GNN is properly trained); this
makes it difficult to compare GNN blocks.

Various global readout blocks were thus experimented with
to find what worked best; these are described below.

3.1.1 Node-only global readout block
The node-only multi-layer perceptron (MLP) block below
has a very simple functional form as it simply takes as
input the final transformed node feature states (no graph
embedding) and uses a unique MLP to predict each action
probability distribution (APD) component: fadd, fconn,
and fterm. The output is then concatenated and normal-
ized using the softmax to get the final APD.

fadd = MLPadd(HL)

fconn = MLPconn(HL)

fterm = MLPterm(HL)

APD = SOFTMAX [fadd, fconn, fterm] .

This global readout block did not work as well as the others.
The biggest issue with using this global readout block was
that the models had difficulty learning to form rings. As
this global readout block does not make use of the learned
graph embedding, g, this was unsurprising.

3.1.2 Tiered global readout block A
A tiered MLP block that uses both the node and graph
embeddings was found to work significantly better. The
block consists of three MLPs, as in the node-only block, to
generate a preliminary APD, where the preliminary APD
components are then concatenated with the graph embed-
ding and used as input to a final series of MLPs to obtain
the final APD components.
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1) Preliminary APD components obtained:

f ′
add = MLPadd,1(HL)

f ′
conn = MLPconn,1(HL)

f ′
term = MLPterm,1(HL).

2) Above output and g used to obtain the final APD:

fadd = MLPadd,2
([
f ′,add, g

])
fconn = MLPconn,2 ([f ′,conn, g])

fterm = MLPterm,2
([
f ′,term, g

])
APD = SOFTMAX [fadd, fconn, fterm] .

This readout block worked very well, but could be made
more efficient by removing redundancies, leading to the
next readout block.

3.1.3 Tiered global readout block B
The best global readout block – and the one reported in [22]
– was the following tiered MLP block. In this block, two
MLPs are first used to generate a preliminary APD. The
preliminary APD components are then concatenated with
the graph embedding and used as input to a final series of
MLPs to get the final APD components. Note that, as op-
posed to the tiered MLP block above, fterm only depends
on the graph embedding.

1) Preliminary APD components obtained:

f ′
add = MLPadd,1

(
HL

)
f ′
conn = MLPconn,1

(
HL

)
.

2) Above output and g used to obtain the final APD:

fadd = MLPadd,2 ([f ′
add, g])

fconn = MLPconn,2 ([f ′
conn, g])

fterm = MLPterm,2 (g)

APD = SOFTMAX [fadd, fconn, fterm] .

This MLP block was best as it performed on par with the
previous tiered global readout block but was faster to train.

4 Strategies for improving memory
requirement

4.1 Writing preprocessed data
In order to deal with the large memory requirement of
molecular graphs, the code is sectioned such that prepro-
cessing and training jobs can be run separately, working
with the data in chunks and thus maintaining a relatively
low RAM requirement throughout a given job. Prrocessed
data is written to disk using the HDF file format, available
in Python via the h5py [30] package.

Although initially memory chunking was used as imple-
mented in h5py, this scheme was eventually discarded,
leading to the development of a custom PyTorch Dat-
aloader which could read contiguous data blocks (see sub-
section below on Reading preprocessed data).

This strategy works well for large datasets, where the en-
tire processed training data does not fit in GPU memory
at once. Nonetheless, in GraphINVENT the same prepro-
cessing scheme is used for all datasets, including small
datasets with low GPU memory requirements, so as to keep
the same workflow. This has the additional benefit of max-
imizing GPU utilization during training, as preprocessing
is done separately on the CPU (see Section 5).

4.2 Sparse data structures

NumPy arrays are used to handle all matrix representations
during preprocessing. Both sparse SciPy arrays and sparse
PyTorch tensor representations were experimented with,
but no significant decrease in disk space requirement was
observed. Furthermore, using sparse data structures led to
noticeably longer processing times due to overhead.

4.3 Using smaller data types

Setting the data type of the graph representation arrays
(X and E) to int8 was found to be more useful than using
sparse data structures when it comes to reducing the mem-
ory requirement during both preprocessing and training.
However, float32 tensors were used for APDs during train-
ing, as int8 tensors were not fully supported in PyTorch
1.3 for GPU operations.

4.4 Collecting identical graphs

During preprocessing jobs, the fact that many graphs
share common subgraphs can be used to save a signifi-
cant amount of disk space when writing data. This is done
by collecting identical graph representations.

Graphs which have the exact same matrix representation
(i.e. Xi = Xj and Ei = Ej) in a group2 are collected
such that only one copy of Xn and En is kept in the group
while the APDs are summed and normalized. The memory
requirement is thus reduced because a single APD can
encode for multiple viable actions.

This naturally increases the preprocessing time, because
graphs must be compared and these comparisons are ex-
pensive; as such, graphs are only compared within groups
of fixed size (e.g. 1000) instead of comparison between
all graphs in the dataset (which can be millions). Fur-
thermore, only graphs which are exact matches in X and
E are collected i.e. the comparison is node order depen-
dent. However, as this leads to fewer graphs in the training
data, training is faster. Savings in training time are more
meaningful as training is done on a GPU.

2A group here is a mini-batch of graphs that are processed together. We wanted to avoid using the word mini-batch outside of the
training context, as a group and a mini-batch can be different sizes in GraphINVENT.
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5 Strategies for improving GPU utilization
5.1 Running separate jobs
Unlike Li et al [9], on-the-fly training data generation was
found to be unsuitable for moving on to larger training
sets (i.e. millions of structures), as it significantly slowed
down training and decreased GPU utilization. As such,
the workflow was split in a way that allowed training data
preprocessing and model training in separate jobs.

There are two advantages to separating training data pre-
processing from training. The first is that, because data
preprocessing is all done on CPU, doing it as a separate job
means that by extension GPU utilization is automatically
higher during training jobs, which use GPUs. The second
is that, for processes such as hyperparameter optimization
(HO), the same training data is used for multiple jobs with
different parameters; as such, the training data needs only
to be preprocessed once and then saved.

5.2 Reading preprocessed data
As detailed above, all processed training data is written to
disk as HDF files. This training data must then be read
from the HDF files during training jobs; to do this effi-
ciently, custom wrappers were created for the standard
PyTorch DataLoader and Dataset classes.

By default, the standard PyTorch DataLoader accesses one
“item” at a time from different locations on disk, which in
the case of HDF files means one data point (i.e. one graph
and APD). This is extremely inefficient for HDF files and
leads to low GPU utilization during training because the
DataLoader must read from disk as many times as there are
data-points. The aforementioned custom data structures
were thus created so as to minimize the number of disk
reads while still allowing for shuffling of training data.

The custom DataLoaders read contiguous blocks of data
at once. During training jobs, the block size is fixed to be
much larger than the mini-batch size so as to 1) minimize
the number of disk reads and 2) better shuffle data between
mini-batches. The default block size in the code is 100,000,
whereas the default mini-batch size is 1000.

5.3 Generating structures on the GPU
Models do not only train during training jobs, but are also
evaluated at periodic intervals so as to understand how
training is proceeding. During model evaluation, a small
set of graphs is generated using the trained model and ana-
lyzed. As such, optimizing GPU utilization during graph
generation was also important. Furthermore, being able
to speed up the generation process by taking advantage
of GPU operations meant more structures could also be
generated during generation and benchmarking runs.

The generation process was non-trivially parallelized in
the code so that it could be carried out for a batch of sub-
graphs simultaneously on the GPU, thus maximizing GPU
utilization during both training and generation jobs.

During GPU-optimized graph generation, a batch of empty
graphs (tuples of zero matrices) is input to a trained model,

which outputs a batch of APDs. The batch of APDs is
then sampled, and the sampled actions are applied to all
graphs simultaneously using matrix operations. To achieve
this, a dummy action was created that incorporates all the
indices corresponding to both add and connect actions
simultaneously, but in practice only applies the sampled
action. If either the terminate action or an invalid action is
sampled for a given graph, then the graph is saved (before
the dummy action is applied) and replaced in the mini-
batch with an empty graph (after the dummy action). The
process is repeated until the desired number of structures
have been generated.

6 Method details
This section contains technical details on processes in
GraphINVENT, as well as details on ineffective methods
that were not discussed in [22]. Throughout this section,
the following notation is used: G = (V, E) is a molecular
graph, where V is the set of nodes and E is the set of edges;
Gn ⊆ G is a subgraph of G.

6.1 Workflow
6.1.1 Preprocessing
Here, details on the complex data preprocessing scheme
are provided.

Graph fragmentation. In order for the model to learn
how to build molecular graphs, molecules in the train-
ing set must be fragmented in a way that they can be
reconstructed by the model. A key part of data prepro-
cessing thus involves calculating the graph decoding route,
r, which is determined by iteratively removing nodes and
edges from the graph.

The order of the node/edge removal is determined by
reversing a (modified) breadth-first search (BFS). The
BFS algorithm was modified so as to never create any
disconnected fragments in the graph after removing any
node/edge. Disconnected fragments are avoided since dis-
connected fragments cannot pass messages to each other
unless connected by an “artificial” edge, which was not
used here (to minimize the size of graph representations).

Graph traversal. The modified BFS graph traversal pro-
ceeds as follows. First, all nodes vi ∈ V are randomly
assigned an index from i = {1, 2, . . . , |V|}. The graph is
then traversed starting at v1, followed by all the nearest
neighbors of v1, denoted as N (v1), in order from lowest
index to highest index. Note that the specific choice of
which nearest neighbors to traverse first (lower or highest
index) is arbitrary so long as it’s consistent throughout
the preprocessing scheme. The process is repeated for the
nearest neighbors of the nearest neighbors, N (N (v1)),
and so on, until all nodes in a graph have been traversed.

Graph deconstruction. To get the decoding route, r, the
reverse order of the node traversal is followed during graph
deconstruction; in other words, the last node to be visited
during the graph traversal is the first node to be removed.
If the node has more than one edge linking it to the graph,
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then first each additional edge is removed one by one
(meaning each edge removal is a single action), until there
is a single edge left, and then the node and final edge are
removed in a single action.

Calculating the APD. For each intermediate subgraph
along r, an APD is created which describes how to get back
to the graph from which the edge or node+edge removal
was performed. The APD is a tensor and is discussed in
detail in [22].

Each graph G in the training set will contribute |E| + 2
subgraphs and |E| + 2 APDs to the training data. The
number |E| + 2 corresponds to one action for each edge
addition, plus one for adding the first node to an empty
graph and one for terminating the graph. Each individual
data-point in the processed dataset thus corresponds to a
tuple (Xn, En, APDn), where Xn is the node features
matrix and En is the adjacency tensor that describe Gn.

Empty graphs. The APD of an empty graph (no nodes
or edges) is a special case, as a separate action was not
created for adding a node without an edge to an empty
graph. Instead, the APD for empty subgraphs is nonzero in
fadd at indices indicating the node to be added; indices in-
dicating which node to connect to and with what bond type
are ignored when applying an action to an empty graph.

6.1.2 Training

Here are detailed notes regarding model training strategies.

Reading preprocessed data. The size of the blocks which
are read from disk at a single time should not be set to an
integer that is close to the total number of subgraphs in
the training set. This runs the risk of leaving too few mini-
batches in the final block that won’t be properly shuffled
and lead to spikes in the loss during training. Alternatively,
the final block can be dropped.

Model stability. Initially, a common issue faced when
training these models was a lack of robustness. However,
it was observed that if certain hyperparameters are in the
wrong range, then the models will be unstable and con-
verge to different solutions every time. Nonetheless, once
an adequate set of hyperparameters was identified, the
models were very robust.

Optimizer. All models were trained using the Adam op-
timizer with the default PyTorch parameters (except for
weight decay in certain specified cases). SGD was experi-
mented with to see if it would lead to more stable training,
but it converged too slowly to be practical. No other opti-
mizers were experimented with.

Avoiding early stopping. Early stopping was originally
used as a criterion for ending training and avoiding overfit-
ting. However, early stopping frequently led to inconsistent
results, and was overall unsatisfactory. Instead, increasing
the size of the networks, finding an appropriate learning
rate decay scheme, and training to convergence led to more
robust models.

Sampling the best epoch of a model. Instead of early
stopping criteria, terminating training when the loss con-
verged within three significant figures worked well for
GraphINVENT models.

Nonetheless, if the goal is to generate novel molecules,
then there is a benefit to training models for fewer epochs.
However, besides the observed model instability described
above, models not trained to convergence will generate a
higher fraction of invalid structures, so early stopping must
be used carefully. If the goal is to generate a high percent-
age of valid structures highly resembling the training set,
then longer training is desirable. Slight overtraining is not
problematic for GraphINVENT models.

Tracking training status. Four methods were used to
track training, each discussed below.

Loss. As long as the loss continues monotonically de-
creasing during training, then a model is still learning.
However, there are clear signs of inadequate hyperparam-
eters reflected in the loss: too fast initial learning rates
will lead to sharp peaks in the loss, and will also cause
the loss to plateau at large values (large being > 2.0 in
GraphINVENT models). These should be avoided.

NLL. Another method used when evaluating models was
the negative log-likelihood (NLL) of generated molecules.
When each molecular graph is constructed, the associated
probabilities for the sampled actions are saved. Summing
the NLLs for the sampled actions gives the total NLL of
generating any given molecule. NLL distributions can be
calculated for graphs in the training, validation, and gener-
ation sets. To calculate the NLL of training or validation
set structures, training/validation graphs are fed into the
network and the NLL is sampled for the correct action,
which is not necessarily the most likely action if the model
is not well trained. Having a larger probability for the
correct actions in the validation set and thus – a smaller
(non-negative) NLL for those actions – means that the
model is learning to build molecules correctly. However, if
the NLL corresponding to the validation set is much larger
than that of the training and generation sets, then the model
is clearly overfitting.

UC-JSD. For a more quantitative comparison of the NLL
distributions between training, validation, and genera-
tion set structures, the UC-JSD (Uniformity-Completeness
Jensen-Shannon Divergence) introduced in Arús-Pous et
al [31] is computed during evaluation epochs. This is a
measure of the Jensen-Shannon divergence between dis-
tributions of the NLL per action for the three datasets.
However, the UC-JSD was often too noisy in GraphIN-
VENT models to be informative, as it is only viable to
sample a couple thousand graphs per evaluation epoch dur-
ing training. The other metrics listed here worked better
with fewer samples.

Prior distribution. The simplest and most intuitive method
of analyzing how the model is training is to compare the
property distributions of the generated molecules with
those of the training set; if a model is good then the prop-
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erties of the training set will be reflected in the generation
set and gradually converge to the correct prior. These prop-
erties are, for example, the distributions in atom types,
formal charges, and bond types. With bad hyperparame-
ters, the distributions do not converge but rather fluctuate
around incorrect values (sometimes close to the correct
values). This metric was found to be very informative.

A combination of the methods discussed above were used
to determine how models were training, as certain metrics
were more useful for small datasets (loss, NLL) and others
for large datasets (loss, prior).

Observations. Below are a few additional observations
made during model training.

Batch size. The size of the mini-batch is not too important
for training so long as it is large enough and the learning
rate is adequately adjusted. Striking a good balance be-
tween computation time and GPU memory is more impor-
tant, where a larger mini-batch size means faster training
but also an increased memory requirement for jobs. A
batch size of 1000 was typically used.

Model robustness. Models without suitable hyperparame-
ters (e.g. too small MLP width and depth, or small feature
vector size) will converge to different solutions every time.
However, with adequate hyperparameters, GraphINVENT
models are robust and stable.

Proper termination of structures. When using inadequate
hyperparameters, one of the biggest problems observed in
the models is learning to “properly” terminate graphs. That
is, all too often an invalid action will be sampled before
the terminate action is sampled during graph generation.

Dropout. The effect of adding dropout to every MLP in
each model was investigated by varying the probability of
dropout. Specifically, torch.AlphaDropout() was used
to maintain self-normalizationin in the MLPs, which all
use the SELU activation function. The values of dropout
investigated ranged between {0.05–0.5}. In all models,
adding the lowest probability dropout (0.05) significantly
lowered the probability of generating valid structures as
well as the percentage of properly terminated structures.
Adding the largest probability dropout had disastrous ef-
fects on the percent validity and uniqueness of all model.

Weight decay. The effect of using weight decay in the
optimizer (Adam) was investigated by varying the weight
decay value. The values of weight decay investigated were
0.001 and 0.005. In all models, setting the weight decay to
0.001 noticeably increased the percentage of unique struc-
tures generated while only slightly decreasing the percent
valid. However, a weight decay of 0.005 seems to be too
large (for all models) as it has a strong negative effect on
the percentage of valid structures generated, although a
positive effect on the uniqueness.

6.1.3 Generation

Here are detailed notes and observations regarding molec-
ular graph generation.

Storing graphs as SMILES. Generated molecular graphs
are converted to SMILES for saving, as SMILES require
less disk space than the matrix representations. To do this,
a molecular graph is first converted into an RDKIT Mol ob-
ject, then to SMILES using the RDKit Chem.MolToSmiles
function. For graphs that cannot be converted to SMILES,
a placeholder string, “Xe”, is used in the output SMILES
file, so as to keep track of how often this happens while
also being able to easily filter these out if needed.

Percent validity (PV). When well trained, the best mod-
els sample 95% valid actions, but may not reach 100 PV
depending on the size of the training set. This is due to the
probabilistic nature of sampling the APD and the large size
of the action space. In other words, if there are many ex-
tremely low probability actions which are invalid then they
(potentially) have a non-negligible probability of being
sampled.

6.2 Hyperparameter optimization
Here are some notes regarding hyperparameter optimiza-
tion (HO) in GraphINVENT.

6.2.1 Initial optimization on GDB-13 subset
Initial HO was carried out on the GDB-13 1K training set
using a grid search. Model depth, learning rate, and hidden
node features size were found to be some of the most im-
portant parameters. Below is a summary of observations.

Vector widths. A key observation that applies to all models,
regardless of GNN block, is that the message size, hidden
node features size, graph gather width, and edge embed-
ding width all have to be sufficiently large in order for the
models to learn. The default values for all these qualities
in GraphINVENT is 100 for all models. Similarly, the
hidden dimensions of all MLPs in the models have to be
sufficiently large; for these, 500 is a good value. A strong
correlation was not observed between the message size
and the model performance (nonetheless, this was fixed to
100).

Once a suitable value was found for the aforementioned
vector widths, these were fixed for all models and not fur-
ther optimized so as to narrow down the hyperparameter
search space.

Initial learning rate. If the initial learning rate is too high,
the models will not learn. This will be evident in the loss
flattening within a few training epochs. If it is too small,
models will train unbearably slowly. An initial learning
rate of 1e-4 was found to be suitable for all models when
using a mini-batch size of 1000.

MLP depth. A larger MLP depth (i.e. a greater number of
layers) and slower rate of learning rate decay lead to better
learning. However, introducing too many layers leads to
less unique molecules, as models are more prone to overfit.
An MLP depth of 4 was found to work best coupled with a
hidden layer dimension of 500.

Rate of learning rate decay. A slower rate of learning rate
decay (i.e. a larger learning rate decay factor, lrdf ) leads to
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better learning, up until c.a. Epoch 80 – 100 for the GDB-
13 1K subset, when the second loss drop has occurred.
After the second loss drop has occurred, the learning rate
should be rapidly decreased to avoid the uniqueness of
the structures generated from significantly decreasing. To
tackle this, an exponential learning rate decay scheme was
implemented (see Experimenting with learning rate decay
below), where an lrdf = 0.9999 and lrdi = 100 were
found to work best with this scheme. Note that lrdi and
lrdf depend on the training set size; for larger training sets,
a larger lrdi in the range {100 - 10,000} is recommended.

Learning Rate Decay Schemes. The learning rate decay
scheme was found to be one of the most sensitive parame-
ters during model training.

The learning rate decay scheme found to work best mul-
tiplies the learning rate by lrdfepochs every lrdi epochs,
where epochs is the number of epochs elapsed. When visu-
alized against the number of elapsed epochs, the learning
rate resembles a smoothed step function, meaning the learn-
ing rate is slowly decreased in the beginning and rapidly in
the middle/end of training, eventually flattening out when
the minimum learning rate is reached.

The minimum learning rate is defined by setting the mini-
mum relative learning rate; 5e-2 was found to work well,
meaning that if the initial learning rate was 1e-4, the mini-
mum learning rate allowed in a calculation would be 5e-6.

Loss. A lower loss generally corresponds to a greater over-
all validity of molecules that will be generated by a model
at that epoch.

Properly terminated structures. More layers and a slower
learning rate decay lead to a greater percentage of prop-
erly terminated structures. In order to have close to 100%
proper termination of generated structures, a large hidden
node features size is necessary; 100 works well.

Attention. All else being the same, adding attention to the
models doesn’t lead to improved performance. However,
the possibility that this is due to sub-optimal hyperparam-
eters in these models cannot be ruled out, as given how
much slower the Attention models train, less hyperparame-
ter combinations could be tried for these in a fixed amount
of time during HO.

Loss function. The KL divergence was found to work
best for training GraphINVENT models. The MSE and
SmoothL1 loss also work adequately, although a lower
percentage of valid and properly terminated molecules are
observed with these. The L1 and BCE loss do not work so
well in GraphINVENT.

Weight initialization scheme. Both normal and uniform
weight initialization lead to indistinguishable model per-
formance. However, using no weight initialization scheme
led to noticeably slower training (more than twice as long
all else being the same).

Learning rate warm up. Ramping up the learning rate
(e.g. from 1e-6 to 1e-4) during the initial {10 – 100} mini-
batches has no effect other than to delay training.

Bias. All MLP biases are set to True by default. This is
necessary for the models to learn to grow on empty graphs,
which are all zeros.

6.2.2 Experimenting with learning rate decay
As previously mentioned, the learning rate decay scheme
was found to be one of the most sensitive parameters when
it comes to training, so various schemes were experimented
with to find what works best. Here is a summary of obser-
vations.

The terms lrdf and lrdi are frequently used throughout
this section. These are the learning rate decay parameters.
lrdf ∈ {0.0− 1.0} is the learning rate decay factor, and
lrdi ∈ Z+ is the learning rate decay interval. Both are
user defined hyperparameters.

Multiplying learning rate by lrdf every lrdi epochs. This
works fine, but leads to too rapid learning rate decay in
early epochs and too slow learning rate decay in later train-
ing epochs.

Subtracting a constant amount from the learning rate ev-
ery lrdi epochs. This also leads to too rapid learning rate
decay in early epochs and too slow learning rate decay in
later epochs.

Multiplying learning rate by an exponentially smaller
lrdf every lrdi epochs. Multiplying the learning rate by
lrdfepochs ever lrdi epochs works the best of any of the
learning rate decay schemes tried. The learning rate is
slowly decreased in the beginning and rapidly in the mid-
dle/end of training.

Multiplying learning rate by lrdf whenever a convergence
criteria is met. This generally lead to too rapid learning
rate decay and was sensitive to the convergence criteria.

7 Useful development tools
In this section, packages and development tools which
were found to be extremely useful during GraphINVENT
development are described, as well as tips for debugging
graph generative models.

7.1 Memory profiling
For profiling memory usage in code, PyPi memory-profiler
[32] was used.

7.2 GPU profiling
The torch.utils.bottleneck tool in PyTorch [33] was very
effective for finding GPU bottlenecks in the code and im-
proving GPU utilization.

7.3 Unit testing
Unit tests were heavily used for testing the GNN imple-
mentations. The unittest framework in Python was used
exclusively for this.

7
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7.4 Tips for debugging
Test cases. Besides regular unit testing, it was useful
throughout development to test the code with the following
test cases:

1. 1 benzene

2. 3 small molecules

3. 3 large molecules

4. 3 aromatic rings

Details on the molecules in each test set can be found in
Appendix Section B. To summarize, the molecules in each
test case were quasi-randomly selected to have a variety of
different atoms. The test sets were kept extremely small at
three molecules so that tests could be run quickly.

The point of the 1 benzene set is that it is very quick to
preprocess and train on, and building a benzene molecule
uses all the actions for building graphs (add, connect, and
terminate). It is a good way to test that the different aspects
of the code are working. Furthermore, if training the mod-
els on 1 benzene doesn’t eventually lead to (overtrained)
models which exclusively generate benzene, then that is a
red flag. This could point to either a) bugs in the code, or
b) inadequate parameters/hyperparameters in the models.

The point of the 3 small molecules set is that it is also very
quick to preprocess and train on, but a step up from having
a single molecule in the training set. Testing with multiple
molecules is a way to test that mini-batches are working
correctly.

The reason for the 3 large molecules set is that some errors
(e.g. in graph traversal/fragmentation/construction) will
not pop up for small molecules simply because they have
fewer atoms and bonds and there are fewer places to make
mistakes. As such, low-probability actions might not be
sampled for a dataset of small molecules, but they could
be for a set of large molecules. Large molecules with com-
plicated bonding patterns are also useful for checking that
the deconstruction algorithm does not create disconnected
fragments. Using a large molecule dataset can also give an
idea of how much slower the code will run as one increases
the size of the molecules in the dataset.

Finally, the 3 aromatic rings set is recommended as there
are some bugs that are easier to spot during ring forma-
tion. This was the most useful test case for finding bugs in
GraphINVENT.

While the specific molecules in the test cases are not im-
portant, it is very useful to have a such sets of test cases
during development. It is extremely difficult to debug code
with a real-life dataset, as it is much easier to spot bugs
when the molecules in the training set are few.

Warning signs. An important metric for identifying bugs
in the code this is the PVPT metric (percent valid of prop-
erly terminated). If there are bugs at any point in the
preprocessing/training/generation schemes, this will mani-
fest itself as a low PVPT in the generated structures. This

is because a low PVPT means that structures are not be-
ing properly terminated, and that could be for a variety of
reasons (e.g. bugs in deconstruction path, bugs in action
sampling, etc).

Another good overall check for any generative model is
testing that the model can indeed overfit to the training
set. Naturally, it is not the goal of a molecular generative
model to regenerate the training set, but if a model can-
not learn to memorize the training set that is a huge red
flag. This could point to an inadequate model architecture,
inadequate hyperparameters, or bugs in the code.

8 Conclusion
Development of molecular generative models is still a rel-
atively young field. We have written this technical note
with the hope that it helps researchers in the development
of their own graph-based generative models, providing
strategies on efficiently reading and writing data, improv-
ing model training time, and efficiently debugging models.
Graph-based generative models are promising methods for
molecular discovery, and we hope that this work lowers
the barrier of entry for other researchers looking to move
into the exciting field of graph-based molecular design.

9 Supplementary Information
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A Abbreviations
APD : action probability distribution

GCN : graph convolutional networks

GNN : graph neural network

HO : hyperparameter optimization

MLP : multi-layer perceptron

MPNN : message-passing neural network

PPT : percent properly terminated

PU : percent unique

PV : percent valid

PVPT : percent valid of properly terminated

B Test Cases
A few test cases were created for use not only in debugging the code, but also in understanding how the models learn
different features. As an example, the canonical SMILES strings for the molecules in each example test case are
provided below.

B.1 1 benzene
c1ccccc1

B.2 3 small molecules
CCC(C=CC)=CC(C)C
OCC1(CC1)C(=O)OC=C
OCCNCCN(O)C=N

B.3 3 large molecules
CC1C2CCC(C2)C1CN(CCO)C(=O)c1ccc(Cl)cc1
COc1ccc(-c2cc(=O)c3c(O)c(OC)c(OC)cc3o2)cc1O
CCOC(=O)c1ncn2c1CN(C)C(=O)c1cc(F)ccc1-2

B.4 3 aromatic rings
Cc1ccccc1
Clc1ccccc1
Oc1ccccc1
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